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THE LIMITING BEHAVIOR OF A MODIFIED MAXIMAL
SYMMETRIC 2s-SPACING WITH APPLICATIONS1

BY JAN W. H. SWANEPOEL

Potchefstroom University for CHE

This paper presents a solution to an open problem in astrophysics,
namely that of estimating nonparametrically the strength of the pulsed
signal in a series of high-energy photon arrival times. The newly proposed
estimator, based on a modified maximal symmetric 2 s-spacing, is shown
to be strongly consistent and asymptotically normally distributed, and a
Monte Carlo study shows that its small and moderate sample behavior is
very satisfactory. Additionally, new results regarding the weak and strong
limiting behavior of modified maximal 2 s-spacings are derived.

1. Introduction and main results. New results on the behavior of
modified maximal symmetric 2 s-spacings will be derived and applied to solve
an open problem in astrophysics, namely that of estimating the strength of
the pulsed signal in a series of high-energy photon arrival times nonparamet-

� Ž .�rically see, e.g., Swanepoel, De Beer and Loots 1996 . A typical data set
consists of a sequence of arrival times, each arrival time representing either
noise or pulsed radiation. The unknown periodic density f of the folded
Ž . Žmodulo 1 arrival times f is often called a light curve in the astrophysical

.literature can be represented as

1.1 f x � 1 � p � pf x , 0 � x � 1,Ž . Ž . Ž .S

where p, 0 � p � 1, is the unknown strength of the pulsed signal and f isS
the unknown source function that characterizes the radiation pattern of the

Ž .source pulsar .
It is usually assumed that

min f x � 0,Ž .S
0�x�1

so that the estimation of p can be reduced to the estimation of the minimum
value of an unknown density function with bounded support, namely,

f � � min f x .Ž . Ž .
0�x�1 �

Ž . Ž .In 1.8 we propose a nonparametric estimator f � for f � , and an estima-Ž .
tor for p can therefore be defined by

�
1.2 p � max 0, 1 � f � .Ž . Ž .ˆ � 4n
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�
In order to define f � , we first introduce some general notation andŽ .

discuss some known results regarding the behavior of maximal spacings. Let
X , X , . . . , be a sequence of independent and identically distributed random1 2

Ž .variables on some probability space �, FF, P with unknown univariate dis-
Žtribution function F, which is assumed to be absolutely continuous with

. �respect to Lebesgue measure with density function f not necessarily belong-
Ž .�ing to the class defined by 1.1 . Throughout the discussion below we assume

that the following two conditions hold:

Ž . Ž . Ž .1.3 For some finite constants a and b, a � b, f x � 0 for all x � a, b and
Ž .f x � 0 otherwise.

Ž . Ž . Ž .1.4 There exists a constant � � a, b such that, for all x � a, b , x � � ,
Ž . Ž .f x � f � � 0.

Denote the order statistics of X , X , . . . , X by1 2 n

Y � Y � ��� � Y .1 2 n

� 4Let s be a nonrandom sequence of positive integers. The maximal s -n n
spacing is defined for 1 � s � n � 1 byn

1.5 M � max Y � Y .Ž . Ž .n j�s jn1�j�n�sn

A great deal is known about the behavior of M when s � 1 and F is then n
Ž . Ž .uniform distribution function on 0, 1 . For example, Devroye 1981, 1982

Ž .and Deheuvels 1982, 1983 derived laws of the iterated logarithm for M .n
Ž .Deheuvels and Devroye 1984 obtained analogous results if s � � at cer-n

tain rates. However, few results are available when F is arbitrary. For
Ž .s � 1, Deheuvels 1984 derived strong limiting bounds for M . He pointedn n

out, among others, that if F has a continuous density f , the major influence
on the behavior of maximal spacings is exerted by the behavior of f in the
neighborhood of its minimum. Under the assumption that Y and Y belong1 n
to the domain of attraction of extreme-value distributions and that s � 1,n

Ž .Deheuvels 1986 showed that the weak limiting behavior of Y and Y1 n
characterizes completely the weak limiting behavior of M and he alson
obtained the corresponding limiting nonnormal distributions. Also, Barbe
Ž . Ž .1992 proved that M appropriately standardized converges in distributionn
to a Gumbel distribution if it is assumed, among others, that the density f
has a positive minimum and s � 1. The weak limiting behavior of M isn n
related to the minimum of the density function and to the local behavior of
the density function near its minimum, as is the case for the almost sure

� Ž .�behavior of M Barbe 1992 .n
In this paper we investigate the strong and weak limiting behavior of a

statistic V which is derived by modifying M as follows. Suppose thatn n
2 s � n � 1 for each n � 1, 2, . . . , and s �� as n � �. For each n, let K ben n n
a positive integer-valued random variable defined by

1.6 Y � Y � max Y � Y .Ž . Ž .K �s K �s j�s j�sn n n n n ns �1�j�n�sn n
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Ž .Since F is absolutely continuous, K is almost surely a.s. unique and then
� 4maximal symmetric 2 s -spacing Y � Y is positive, a.s. Let r ben K �s K �s nn n n n

another nonrandom sequence of positive integers such that r � s for alln n
n � 1, 2, . . . , and r �� as n � �. Now, definen

1.7 V � Y � Y .Ž . n K �r K �rn n n n

A strong law of large numbers is proved for V in Theorem 1.1 below and it isn
shown to have an asymptotic normal distribution in Theorem 1.3. This
contrasts sharply with the limiting nonnormal distributions derived in the
literature for M .n

Ž . Ž .We now suggest estimating f � � min f x bya� x � b

� �11.8 f � � 2r nV .Ž . Ž . Ž .n n

Ž .It follows immediately from 1.2 and Theorem 1.1 below that p � p a.s. asˆn
n � �. Also, from Theorem 1.3 and Slutsky’s theorem we deduce that as
n � �,

�2 21�2 1�2�12r p � p � N �3 k�2 f � � f � , f � ,� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆ Ž .n n d

Ž .where k is defined by 1.18 , and � denotes convergence in distribution.d
The performance of p on real astrophysical data is extensively discussedˆn

Ž .by Swanepoel, De Beer and Loots 1996 . It is pointed out, among other
things, that an efficiency is achieved which is very close to a well-known norm
set by astrophysicists. This norm was not nearly achieved by previous estima-
tion procedures. An obvious alternative estimator of p, say p , is obtained if˜n�

Ž .we replace f � in 1.2 by the minimum value of a kernel density estimator.Ž .
However, the Monte Carlo study of Section 5 shows that p performsˆn
substantially better than p for small and moderate sample sizes.˜n

Our first theorem shows that a strong law of large numbers holds for Vn
Ž .defined by 1.7 .

THEOREM 1.1. Assume the following conditions hold:

Ž .1.9 f is continuous in some neighborhood of � ;
Ž .1.10 r �n�0, s �n�0, r �log n � � as n � �.n n n

Then, as n � �,

�1f � n 2r V � 1 a.s. P .Ž . Ž .n n

In order to derive a limiting distribution for V , we need to know then
Ž .limiting distribution of the discrete random variable K defined by 1.6 . Wen

state this as a theorem below, since the result is of independent interest.
First, a stochastic process is defined which is needed for the formulation of
the theorem.
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� Ž . 4Suppose that for each constant C, 0 � C � �, Z t , �� � t � � is aC
Gaussian process, originating from zero, with expectation zero and covariance
function given by

Cov Z t , Z t*� 4Ž . Ž .C C
1.11Ž . 1�3 1�3 1�3� � � � � �� B min t , 2C � min t* , 2C � min t � t* , 2C ,� 4Ž . Ž . Ž .

where
6 2B � f � � f � � .Ž . Ž .Ž . Ž .

� Ž .4If C � �, Z t is a two-sided Wiener�Levy process, which is defined as�

� Ž . 4 � Ž . 4follows. Let W t , t 	 0 and W t , t 	 0 be two independent standard1 2
Ž . Ž .Wiener processes such that W 0 � W 0 � 0 a.s. Then,1 2

W 2 Bt , if t 	 0,Ž .11.12 Z t �Ž . Ž .� ½W �2 Bt , if t � 0.Ž .2

� Ž .4In this case the covariance function of Z t is the limiting covariance�

� Ž .4function of Z t as C � �, namely,C

Cov Z t , Z t*� 4Ž . Ž .� �1.13Ž .
� � � �� 2 B min t , t* I t 	 0, t* 	 0 � I t � 0, t* � 0 ,� 4Ž . Ž . Ž .

Ž .where I � denotes the indicator function.

THEOREM 1.2. Suppose the following conditions hold:

Ž .1.14 f has a bounded second derivative f � in some neighborhood of � , with
Ž . Ž0 � f � � � �, and f � satisfies a Lipschitz condition of order � 0 �
.� � 1 at � ;

Ž . �Ž3 ��8. Ž3��10.1.15 n s � 0 as n � �;n
Ž . �4 51.16 n s � C, for some constant C, 0 � C � �.n

Then, as n � �,

n�1�3s2�3 n�1K � F � � T ,Ž .Ž .n n d

where T is a random variable which maximizes the process

Z t � t 2 , �� � t � � .Ž .� 4C

Contrary to the limiting nonnormal distribution derived up to now in
Ž . Žthe literature for M defined by 1.5 usually some extreme-value distribu-n

.tion , the next theorem states that V has in fact an asymptotic normaln
distribution.

Ž . Ž .THEOREM 1.3. Suppose 1.14 , 1.15 and the following conditions hold:

Ž . �4 51.17 n s � � as n � �;n
Ž . �4 51.18 n r � k as n � �, for some constant k, 0 � k � �;n
Ž . 4 �2 �31.19 n s r � 0 as n � �.n n
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Then, as n � �, we have

�31�2 �1 1�2�12r f � n 2r V � 1 � N �3 k�2 f � � f � , 1 .Ž . Ž . Ž . Ž . Ž . Ž .Ž .� 4 Ž .n n n d

�̂ ˆŽ . Ž .REMARK. For inference purposes, a possible estimator for f � � is f � ,h n
�̂Ž . Žwhere f � is the second derivative of the kernel estimator with bandwidthh

ˆ. Ž .h defined in Section 5 and in view of 2.4 below, � can, for example, ben
chosen as

1ˆ ˆ� � Y � Y or � � Y .Ž .n K �s K �s n K2 n n n n n

2. Proof of Theorem 1.1. Define the inverse of a distribution function
�1Ž . � Ž . 4H by H t � inf x: H x 	 t . Without loss of generality we assume that

�1Ž . Ž .X � F U , where U , . . . , U is a sequence of independent uniform 0, 1i i 1 n
Ž . �1 n Ž . Ž .distributed random variables. Let G t � n Ý I U � t and write Q tn i�1 i n

�1Ž . � 4� G t , the so-called sample quantile function based on U . For conve-n i
�1 Ž �1 .nience, we use � to denote composition; for example, f � F means f F .

Then,

Y � YK �s K �sn n n n

� max F�1 �Q t � s �n � F�1 �Q t � s �nŽ . Ž .n n n n
Ž .s �1 �n�t�1�s �nn n

Q t � s �n � Q t � s �n � 2 s �nŽ . Ž .n n n n n� max �1½ f � F t � o 1Ž . Ž .Ž .s �1 �n�t�1�s �nn n

2.1Ž .

2 s �nn� ,�1 5f � F t � o 1Ž .Ž .

Ž . �where o 1 converges to zero a.s. and uniformly in t which follows from the
� Ž . � Ž . �fact that sup Q t � t � o 1 a.s. .t n

Ž .Under the conditions s �log n � �, s �n�0 and log n�s �log log n � �n n n
Ž .as n � �, Mason 1984 proved that

� �n Q t � s �n � Q t � s �n � 2 s �nŽ . Ž .n n n n n
lim max � 1 a.s.,
n�� Ž .s �1 �n�t�1�s �n 4s log n�2 s' Ž .n n n n

from which we deduce that

� �n Q t � s �n � Q t � s �n � 2 s �nŽ . Ž .n n n n n
lim max

2.2Ž . 2 sn�� Ž .s �1 �n�t�1�s �n nn n

� 0 a.s.

�It is easy to check using, e.g., the results of Komlos, Major and Tusnady´ ´
Ž .� Ž . Ž .1976 that 2.2 still holds if we drop the condition log n�s �log log n � �n
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Ž . Ž . Ž .assumed above. Hence, from assumption 1.9 , 2.1 and 2.2 , it follows that

n Y � Y 1Ž .K �s K �sn n n n2.3 lim � sup � 1�f � a.s.Ž . Ž .�12 s f � F tn�� Ž .0�t�1n

Furthermore, we claim that

Kn
2.4 lim � F � a.s.,Ž . Ž .

nn��

Ž .which can be proved as follows. Suppose 2.4 does not hold. Then there is a
� Ž .4 Ž . Ž . Ž .subsequence n i such that lim K �n i � F � � F � , for some con-i�� nŽ i. 1

stant � � � . By the same arguments as above, we now obtain1

n i Y � YŽ . Ž .K �s K �snŽ i . nŽ i . nŽ i . nŽ i .lim
2 si�� nŽ i.

n i F�1 �Q K �s �n i �F�1 �Q K �s �n iŽ . Ž . Ž .Ž . Ž .� 4Ž . Ž .nŽ i. nŽ i. nŽ i. nŽ i. nŽ i. nŽ i.� lim
2 si�� nŽ i.

� 1�f � � 1�f � ,Ž .Ž .1

Ž .which is in contradiction with 2.3 .
Finally, if r � �,n

�1n 2r Q K � r �n � Q K � r �n� 4Ž . Ž . Ž .Ž . Ž .n n n n n n n�1n 2r V � a.s.,Ž .n n �1f � F F � � o 1Ž . Ž .Ž .

Ž . Ž .and the proof of the theorem now follows from 1.10 and by using 2.2 once
more. �

3. Proof of Theorem 1.2. Notice that the first three derivatives of F�1

are given by

F�1 � � 1�f � F�1 , F�1 � � � f ��f 3 � F�1 ,Ž . Ž . Ž .
F�1 	 � � f ��f 4 � F�1 � 3 f ��f 5 � F�1 ,Ž . Ž . Ž .
Ž �1 . Ž Ž .. Ž �1 . Ž Ž .. Ž . Ž Ž ..4and in particular F � F � � 0, F 	 F � � �f � � � f � . Now, set


 t � F�1 F � � t � s �n � F�1 F � � t � s �nŽ . Ž . Ž .Ž . Ž .n n n

� F�1 F � � s �n � F�1 F � � s �nŽ . Ž .Ž . Ž .n n

� F�1 �Q � F�1 F � � t � s �nŽ .Ž .Ž .n n

� F�1 �Q � F�1 F � � t � s �nŽ .Ž .Ž .n n

� F�1 �Q � F�1 F � � s �nŽ .Ž .Ž .n n

� F�1 �Q � F�1 F � � s �n .Ž .Ž .Ž .n n
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� Ž . Ž . � �1Note that K �n � F � � arg max 
 t � 1�n. Expanding F up to ordern t n
Ž .three and using 1.14 , it readily follows that

F�1 F � � t � s �n � F�1 F � � t � s �nŽ . Ž .Ž . Ž .n n

42 3 3� 2 s � nf � � f � � s t �n � s � 3n � f �Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .n n n3.1Ž .
3��� �� O t � s �n .Ž .n

Ž . Ž .Since we are assuming that f � � 0 and f � x exists in some neighborhood
Ž .of � , we deduce from Theorem 6 of Csorgo and Revesz 1978 that for each n˝ ˝ ´ ´

� Ž . 4there exists a Brownian bridge B t ; 0 � t � 1 such thatn

� 1�2 �1 �1 �1 �sup n F �Q � F t � B �f � F tŽ . Ž .Ž . Ž .n n
t3.2Ž .

� O n�1�2 log n a.s.,Ž .

where the supremum is taken over t belonging to a fixed neighborhood of
Ž . Ž .F � , with 0 � F � � 1.

Ž . Ž . Ž .For brevity, write B � B. Recalling that B t � W t � tW 1 , wheren
� Ž .4 Ž . Ž .W t is a standard Wiener process, we obtain from 3.1 and 3.2 ,

42
 t � �f � � s t � n f �Ž . Ž . Ž .Ž .Ž .n n

� n�1�2 W F � � t � s �n � W F � � t � s �n� Ž . Ž .Ž . Ž .n n3.3Ž .
�W F � � s �n � W F � � s �n �f �4Ž . Ž . Ž .Ž . Ž .n n

2 3���1�2 �1� � � �� n O t � s �n � O n log n � O t � s �n .Ž . Ž .Ž .P n P n

Now, the asymptotic behavior of K �n can be easily analyzed. We have an
Ž . 2 Ž Ž ..4 2quadratic drift �f � � s t �n f � of order s t �n plus a Gaussian processn n
Ž .1�2 � Ž Ž . . Ž Ž . .which is of order t�n since W F � � t � s �n � W F � � s �n �n n d

Ž . 1�2 � Ž .W t which is of order t . To maximize 
 t , the quadratic drift should ben
� Ž .�of the same order as the Gaussian process see also Kim and Pollard 1990 ,

which implies that t should be of order n1�3s�2�3.n
1�3 �2�3 Ž . �4 5Set t � n s � , for some finite constant � . From 1.16 we have n sn n

� C, for some constant C, 0 � C � �. First, consider the case when C is
Ž . Ž . Ž Ž . . Ž Ž ..finite. Applying 1.15 , 1.16 and the fact that W F � � � � W F � �d

Ž . Ž . Ž � �.1�2 Ž . Ž .W � and W a � � a W � for any finite constant a , it easily followsd
Ž .from 3.3 that

4 1�3 1�3 1�3 �2�3Z � � f � n s 
 n s � �f � �Ž . Ž . Ž .Ž . Ž .n n n n

32 �1�6 1�3� �� � f � �f � � n sŽ . Ž .Ž .Ž .d n

� W C�2�15� � C1�5 n�1�5 � W C�2�15� � C1�5 n�1�5Ž . Ž .� Ž . Ž .
�W C1�5n�1�5 � W �C1�5n�1�5 � o 1Ž . Ž . Ž .4 P
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32 1�3 1�3� �� � f � �f � � W � � C � W � � C�Ž . Ž . Ž . Ž .Ž .Ž .d

�W C1�3 � W �C1�3 � o 14Ž . Ž . Ž .P

	 �� 2 � Z � � o 1Ž . Ž .C P

	 Z 0 � � o 1 ,Ž . Ž .C P

Ž . � �where o 1 � 0 in probability, uniformly in � � �� , � , for any finiteP 0 0
Ž . Ž .constant � � 0. Note that in the definition of Z � , W t is defined as0 C

Ž . Ž . Ž . Ž . � Ž . 4W t � W t if t 	 0, and W t � W �t if t � 0, where W t , t 	 0 and1 2 1
� Ž . 4W t , t 	 0 are two independent standard Wiener processes such that2

Ž . Ž .W 0 � W 0 � 0 a.s. It is easy to check that the covariance function of1 2
� Ž .4 Ž . Ž .Z � is given by 1.11 . If C � �, we obtain as above, by using 1.16 , thatC

Ž . 2 Ž . Ž . Ž . Ž .Z � � �� � Z � � o 1 , where Z � is now defined by 1.12 with then d � P �

Ž .covariance function given by 1.13 .
At this point it has been shown that, for any constant 0 � C � �, Z � Z 0

n C
� � � �weakly on D �� , � as n � �, where D �� , � is the space of real-valued0 0 0 0

� �functions defined on �� , � that are right-continuous and have left-hand0 0
Ž .limits. Since � was arbitrary, it follows from Billingsley 1968 that the0

Ž . Ž .weak convergence result holds for all � � ��, � . Now, for x � D ��, � , let

h x � min t : x t � max x � ,Ž . Ž . Ž .½ 5
�

and notice that as n � �,

n�1�3s2�3 n�1K � F � � arg max 
 n1�3s�2�3� � O n�4�3s2�3Ž .Ž . Ž . Ž .n n n n n
�

� h Z � o 1 .Ž . Ž .n

Hence, to complete the proof of the theorem, one uses the continuous map-
Ž . Ž 0 . �ping theorem to conclude that h Z � h Z � T as n � � Chernoffn d C

Ž . Ž . �1964 and Groeneboom 1989 proved that T � � a.s. . �

4. Proof of Theorem 1.3. From Theorem 1.2 it follows that

n�1K � F � � O n1�3s�2�3Ž . Ž .n P n
4.1Ž .

	 F � � t .Ž . n

Ž . Ž .Using the notation of Sections 1�3, it easily follows, by applying 1.14 , 4.1
Ž . Ž .and the techniques required to derive 3.1 and 3.3 , that

V � Y � Yn K �r K �rn n n n

� F�1 F � � t � r �n � F�1 F � � t � r �nŽ . Ž .Ž . Ž .d n n n n

� F�1 �Q � F�1 F � � t � r �nŽ .Ž .Ž .n n n

� F�1 �Q � F�1 F � � t � r �nŽ .Ž .Ž .n n n
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42 3 3� 2r � nf � � f � � r t �n � r � 3n � f �Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .n n n n

� n�1�2 W F � � t � r �n � W F � � t � r �n �f �� 4Ž . Ž . Ž .Ž . Ž .n n n n

2 3���1�2 �1� � � �� n O t � r �n � O n log n � O t � r �n .Ž . Ž .Ž .P n n P n n

Ž . Ž . Ž .Thus, by using 1.15 and 1.17 � 1.19 , it can easily be seen that
1�2 �12r f � n 2r V � 1Ž . Ž . Ž .� 4n n n

31�2 2 2 2� 2r �f � � 3t � r �n � 6 f �Ž . Ž . Ž .Ž .Ž . Ž .½d n n n

�n1�2 W F � � t � r �nŽ .Ž .Ž n n

�W F � � t � r �n � 2rŽ . Ž .Ž . . 5n n n

21�2 �1�2� �� n�r O t � r �n � O r log nŽ . Ž . Ž .n P n n P n

3��1�2 � �� n�r O t � r �nŽ .Ž .n n n

�31�2�1� �3 k�2 f � � f � � W 1�2 � W 1�2 � o 1 ,� 4Ž . Ž . Ž . Ž . Ž . Ž .Ž .d 1 2 P

and the proof of the theorem follows by applying Slutsky’s theorem. �

5. Simulation study. In this section we present the results of a limited�
Ž .Monte Carlo study which compares the performance of f � , defined by 1.8 ,Ž .

Ž . Ž .with that of an obvious alternative estimator of f � � min f x ,0 � x �1
namely the minimum value of a kernel density estimator. The kernel method,

Ž .introduced by Rosenblatt 1956 , is probably the most commonly used density
estimation technique and is certainly the best understood mathematically.
The kernel estimator of f is defined by

n1 x � Xi
f̂ x � K ,Ž . Ýh ž /nh hi�1

where K is the kernel function, usually chosen to be a known density
function symmetric around zero. The smoothing parameter h, which depends
on the sample size n, is often referred to as the bandwidth. Hence, an

Ž .alternative estimator of f � is

˜ ˆf � min f x .Ž .h h
0�x�1

Ž .Since the density f is assumed to have bounded support, we took K �
Ž . Ž 2 .throughout as the Epanechnikov kernel K x � 0.75 1 � x for �1 � x � 1.

˜To implement f , we chose h to be the asymptotically optimal global band-h
ˆŽ Ž .width h that minimizes the mean integrated squared error E H f x �0 h

Ž ..2f x dx asymptotically as n � �. Other choices of h, for example data-driven
Ž .bandwidths, are discussed in De Beer, Loots and Swanepoel 1999 . It is well

� Ž . �known see, e.g., Wand and Jones 1995 , page 22 that
1�5

1 2 �1�5h � 15 f � x dx n .Ž .Ž .H0 ½ 5
0
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Furthermore, suppose r 5 � kn4 for some constant k � 0. From Theoremsn
1.1 and 1.3 it follows, by using Slutsky’s theorem, that as n � �,

� 1�21�2f � � f � 
 N k � � 2r , � � 2r ,Ž . Ž . Ž . Ž .Ž .1 n 2 n

where
�2 21�2

� � 1�18 f � � f � , � � f � .Ž . Ž . Ž . Ž .Ž . Ž .1 2
�

4�5 2� Ž Ž .. 4Hence, if for example the sequence n f � � f � is uniformly inte-Ž .
Ž .grable which will be the case under certain conditions , it follows from�

Ž .Theorem 5.4 of Billingsley 1968 that the mean-squared error of f � can beŽ .
approximated for large n by

� 2
2E f � � f � 
 � � k� � 2rŽ . Ž . Ž .Ž .Ž .½ 5 2 1 n

� 1�2 n�4�5 � k�1�5 � � 2k 4�5 ,Ž . Ž .2 1

which is minimized if k is chosen as
6 �22k � � � 4� � 9�2 f � f � � .Ž . Ž . Ž .Ž . Ž .Ž .0 2 1

This choice of k yields0

� 2 4�5 2�5�2�5 �4�5 �14�5 �4�5E f � � f � 
 3 2 � 2 f � f � � n .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .½ 5
Note that the n�4�5 rate of convergence is the same as that of the mean

ˆintegrated squared error of the kernel estimator f . However, it is an openh0˜question whether the mean-squared error of f converges to zero at thish0�
Ž . Ž .rate. To implement f � � 2r � nV , we therefore choseŽ . n n

1�5 4�5r � min k n , n � 1 �2 ,Ž .� 4n 0

1�5 4�5�s � min k n , n � 1 �2 ,Ž .� 4n 0

� �where  � 0.0001, and z is the largest integer less than or equal to z. For�
small and moderate sample sizes, our simulation studies showed that f � isŽ .
most efficient if  is chosen very small.�

˜The estimators f � and f were evaluated by empirically calculatingŽ . h0

their biases and root mean-squared errors for sample sizes n � 50, 100 and
150. The following class of densities was considered:

aaf x � 1 � � a � 1 x � � a � 1 1 � x , 0 � x � 1,Ž . Ž . Ž . Ž . Ž .
Ž . Ž .where 0 � � � 1 and a � 0. Values of � , f � and f � � are displayed in�

�Table 1. Table 2 contains Monte Carlo estimates of BIAS , BIAS bias of f �Ž .1 2 �
˜ � �and f , respectively , RMSE , RMSE root mean-squared error of f � andŽ .h 1 20˜ �f , respectively and, to facilitate comparison,h0

RMSE1
RATIO � 100 � %.

RMSE2
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TABLE 1
Some characteristics of f

( ) ( )� a � f � f � �

0.3 2.0 0.30 0.63 6.0
0.3 3.0 0.40 0.44 11.0
0.5 2.0 0.50 0.75 6.0
0.5 3.0 0.50 0.50 12.0

Each entry in Table 2 was based on 10,000 independent trials. The estimated
standard errors of the averages were found to be negligibly small and were
therefore omitted from the table.�

From Table 2 it is clear that f � has, in all cases considered, smaller biasŽ .
˜than f . The latter estimator also suffers from large variability. This resultsh0 �

in a large RMSE in comparison to the RMSE of f � , as is also evident fromŽ .
the RATIOs. Similar results were obtained for other choices of � , a and the
sample size n, but will not be reported here.

Ž .De Beer, Loots and Swanepoel 1999 performed an extensive Monte Carlo�
� 4 � 4study to evaluate the performance of f � when r and s are chosenŽ . n n

� 4data-dependently. They derived two data-based methods of choosing r andn
� 4s by applying bootstrap techniques. The above findings regarding then �
superiority of f � were also confirmed by these authors in studies whereŽ .

� Ž .�other classes of density functions including the class defined by 1.1 and
sample sizes were used.

Computations were performed using Fortran programs together with IMSL
Ž .Version 2.1 routines on an IBM RS6000 43P PowerPC. Fortran code for the�
computation of f � can be obtained by request from the author.Ž .

TABLE 2
Monte Carlo estimates of bias and root mean-squared error

n � a BIAS BIAS RMSE RMSE RATIO1 2 1 2

50 0.3 2.0 0.002 �0.265 0.076 0.281 27.0
0.3 3.0 �0.017 �0.048 0.075 0.106 70.8
0.5 2.0 �0.020 �0.250 0.077 0.261 29.5
0.5 3.0 �0.013 0.014 0.082 0.083 98.8

100 0.3 2.0 0.002 �0.259 0.064 0.269 23.8
0.3 3.0 �0.018 �0.028 0.065 0.078 83.3
0.5 2.0 �0.016 �0.214 0.064 0.222 28.8
0.5 3.0 �0.020 0.030 0.069 0.080 86.3

150 0.3 2.0 �0.009 �0.256 0.058 0.264 22.0
0.3 3.0 �0.014 �0.019 0.057 0.064 89.1
0.5 2.0 �0.015 �0.195 0.059 0.202 29.2
0.5 3.0 �0.018 0.036 0.063 0.080 78.8
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