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CONDITIONAL INFERENCE ABOUT
GENERALIZED LINEAR MIXED MODELS1

BY JIMING JIANG

Case Western Reserve University

We propose a method of inference for generalized linear mixed models
Ž .GLMM that in many ways resembles the method of least squares. We
also show that adequate inference about GLMM can be made based on the
conditional likelihood on a subset of the random effects. One of the
important features of our methods is that they rely on weak distributional
assumptions about the random effects. The methods proposed are also
computationally feasible. Asymptotic behavior of the estimates is investi-
gated. In particular, consistency is proved under reasonable conditions.

1. Introduction. Inference about generalized linear mixed models
Ž .GLMM has received much attention. These models take into account the
fact that in many practical problems responses are both discrete and corre-

�lated, and therefore are useful in statistical application e.g., McCullagh and
Ž . Ž .Nelder 1989 , Section 14.5, Breslow and Clayton 1993 , Lee and Nelder

Ž . Ž .�1996 and Malec, Sedransk, Moriarity and LeClere 1997 . Several methods
of inference about GLMM have been proposed, which will be summarized
below.

In this paper, we shall consider these models more generally and propose a
method of inference about these models which in many ways resembles the

Ž .method of least squares LS in linear models. An important feature of our
method is that it relies on weak distributional assumptions about the random
effects. In particular, to apply the method one does not have to assume that
the random effects are normally distributed. In practice, one is almost never
sure about normality. In fact, in many problems little is known about the
distribution of the random effects. Therefore, it is of practical interest to
develop methods that do not require strong distributional assumptions.

It is interesting to note a difference between linear and nonlinear models.
In the linear case, assuming normality brings technical convenience, because
one can then write out the likelihood function in a closed form. This advan-
tage disappears in GLMM. To see this, consider the following example.

EXAMPLE 1.1. Suppose that given the random effects a , 1 � i � m andi 1
b , 1 � j � m , binary responses y ’s are independent withj 2 i j

�1.1 logit P y � 1 a, b � � � a � b .Ž . Ž .Ž .i j i j
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Ž 2 .Assume that the a ’s and b ’s are independent with a � N 0, � , b �i j i j
Ž 2 . 2 2N 0, � . The log-likelihood for estimating the parameters �, � and � has

the form

m m1 22 2constant � log � � log � � � y��2 2
m m1 2� � �1

� log ��� 1 � exp � � a � bŽ .Ž .Ł ŁH H i j½ 5�� �� i�1 j�1

m m1 11
2� exp a y � aÝ Ýi i � i2½ 2�i�1 i�1

1.2Ž .

m m m m2 2 1 21
2� b y � b da db ,Ý Ý Ł Łj � j j i j2 52� i�1 j�1j�1 j�1

where y � Ým1 Ým2 y , y � Ým2 y and y � Ým1 y . If m � m � 40, asi�1 j�1 i j i � j�1 i j � j i�1 i j 1 2
in the salamander mating problem discussed in McCullagh and Nelder
�Ž . � Ž .1989 , Section 14.5 , the integral in 1.2 will be 80-dimensional. Obviously,
such an expression is much more difficult to evaluate than the log-likelihood
under a linear mixed model, so one advantage of assuming normality is much
reduced.

To overcome the computational difficulty, several authors have proposed
� Ž .alternatives. These include approximate inference methods e.g., Schall 1991 ,

Ž . Ž . Ž .Breslow and Clayton 1993 , McGilchrist 1994 , Kuk 1995 , Lin and Breslow
Ž . Ž .�1996 and Lee and Nelder 1996 ; Bayesian inference based on Gibbs

� Ž . Ž .sampling e.g., Zeger and Karim 1991 , Karim and Zeger 1992 , Malec,
Ž .� � ŽSedransk, Moriarity and LeClere 1997 ; Monte Carlo EM McCulloch 1994,

.� � Ž .�1997 and the method of simulated moments Jiang 1998 . However, these
approaches have two characteristics. First, strong distributional assumptions

Ž .about the random effects e.g., normality or conjugate distributions are often
�Ž . �made. It should be pointed out that Schall 1991 , page 720 has indicated

that it is not necessary to assume the random effects to be normal when
computing the estimates. However, it is not clear, from a theoretical point of
view, how the estimates behave when strong distributional assumptions do

Ž .not hold. Second, the estimates of the fixed and random effects are tied up
with those of the variance components. In other words, one has to simultane-
ously estimate the effects and variance components, or estimate the variance
components first, then compute estimates of the effects. In the following we
shall propose a method which is different from all the above in exactly these
two aspects.

Ž .Linear models LM have been known as a special case of generalized
� Ž . �linear models GLM, e.g., McCullagh and Nelder 1989 , Section 2.2 . How-

ever, this is the case only when normality is assumed. On the other hand, the
definition of LM does not have to be associated with normality. In other
words, GLM by their classic definition do not necessarily include LM as a

�special case. A similar paradox exists between linear mixed models LMM,
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Ž .�e.g., Searle, Casells and McCulloch 1992 and GLMM. Therefore, we need to
extend the definition of GLMM so that it includes LMM as a special case
regardless of the normality assumption.

Ž .Suppose that, given a vector � � � of unobservable randomk 1� k � m
Ž .variables the random effects satisfying

1.3 E � � 0,Ž . Ž .
responses y , . . . , y are independent with conditional expectation1 N

� �1.4 E y � � b � ,Ž . Ž .Ž .i i i

Ž .where b � is a differentiable function. Furthermore, supposei

1.5 � � x t 	 � z t� ,Ž . i i i

Ž . Ž .where 	 � 	 is a vector of unknown constants the fixed effects , andj 1� j� p
Ž . Ž .x � x , z � z are known vectors, 1 � i � N. This gener-i i j 1� j� p i ik 1� k � m

alizes the classic definition of GLMM, in which it is assumed that the
conditional density

y � � b �Ž .i i i i
�1.6 f y � � exp � c y , 
 ,Ž . Ž .Ž .i i i½ 5a 
Ž .i

Ž . Ž .i � 1, . . . , N, where b � ’s and c � , � ’s are specific functions correspondingi i
Ž .to the type s of the exponential family, 
 is a dispersion parameter, and

Ž . Ž . Ž .a � ’s are functions of weights. Let � � � , X � xi i 1� i� N i j 1� i� N , 1� j� p
Ž . Ž .and Z � z . We assume wlog that rank X � p and no col-ik 1� i� N , 1� k � m

umn of Z is 0.
Ž . Ž . Ž . 2In LM, which correspond to 1.4 and 1.5 with b � � � �2 and m � 0i i i

Ž .i.e., there are no random effects , a well-known method is weighted least
Ž .squares WLS which defines the estimate of 	 as the minimizer of

N
21.7 w y � � ,Ž . Ž .Ý i i i

i�1

where w , 1 � i � N are weights, or equivalently, the maximizer ofi

N 2�i
1.8 w y � � .Ž . Ý i i iž /2i�1

A straight generalization of this method to the case of GLMM would suggest
the maximizer of the following function as the estimates of 	 and � :

N

1.9 w y � � b � .Ž . Ž .Ž .Ý i i i i i
i�1

However, conditionally, the individual fixed and random effects may not be
Ž . Ž . Ž . Ž .identifiable. For example, the rhs of 1.1 � � � c � d � a � c � b � d ,i j

1 � i � m , 1 � j � m for any c and d. In LM there are two remedies when1 2
the identifiability problem arises, namely, reparametrization and constraints.
We shall, for now, focus on the latter. A set of linear constraints on � may be
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expressed as P� � 0 for some matrix P. By Lagrange’s method of multipliers,
Ž .maximizing 1.9 subject to P� � 0 is equivalent to maximizing

N
2� �1.10 w y � � b � � � P�Ž . Ž .Ž .Ý i i i i i

i�1

without constraint, where � is an additional variable. On the other hand, for
Ž .fixed � the last term in 1.10 may be regarded as a penalizer. The only thing

that needs to be specified is the matrix P. For any matrix M and vector
Ž . 
space V, let BB V � B: B is a matrix whose columns constitute a base for

4 Ž . 
 4 Ž t .� tV ; NN M � the null-space of M � v: Mv � 0 ; P � M M M M , andM
Ž Ž ..� �P � I � P . Let A 	 BB NN P Z . We define the penalized generalizedM M X

Ž . Ž .WLS PGWLS estimate of � � 	, � as the maximizer of
N � 2� �1.11 l � � w y � � b � � P � ,Ž . Ž . Ž .Ž .ÝP i i i i i A2i�1

Ž .where � is a positive constant. The notation l is used because 1.11 mayP
also be viewed as a penalized conditional quasi-log-likelihood. In Section 2 we
shall further explain why the penalizer is chosen this way.

Several questions arise immediately. First, the method seems to ignore the
information about the distribution of the random effects. Our view is differ-
ent. Such information is useful only when it is available. For example, in
some rare case one might know for sure that the random effects are normal,
which is a lot of information. On the other hand, if one has little knowledge
about the random effects, there will not be much information loss by using
PGWLS. Plus, PGWLS does not completely ignore the information about � .

Ž .Note that so far the only assumption about � is 1.3 , which implies that
Ž .E P � � 0, where � is the vector of true realizations of the randomA 0 0

effects. This means that the constraints P � � 0 are, on average, satisfied byA
� �� . In fact, it will be seen that quite often one has P � � 0 as sample size0 A 0 P

increases. Therefore, these constraints are also satisfied asymptotically. PG-
WLS also uses the fact that since the first moments of the random effects are
finite, the � ’s should be relatively concentrated around their means, and
therefore cannot be too large in absolute values, or they will be penalized.

A related observation is that PGWLS seems to treat the random effects as
fixed. If so, does one always have sufficient information, in large samples,
about all the random effects? The answer is not necessarily. But if there is
sufficient information about all the random effects, the latter may, in some
sense, be treated as fixed. For example, in order to consistently estimate �,
� 2 and � 2 in Example 1.1, it is necessary that m , m � �. In such a case1 2
there is sufficient information about all the random effects, because each one
of them appears a large number of times. However, there is a different case.

EXAMPLE 1.2. Suppose that given the random effects a , b , 1 � i � m ,i i j 1
1 � j � n, binary responses y ’s are independent withi jk

�1.12 logit P y � 1 a, b � � � a � b ,Ž . Ž .Ž .i jk i i j
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2 Ž .k � 1, . . . , r. Suppose the a ’s and b ’s are independent with � � var ai i j a i
2 Ž .and � � var b , and that m , n � � but r remains fixed. Then there isb i j 1

sufficient information about the a ’s but not the b ’s. Nevertheless, in such ai i j
case one should be able to estimate �, � 2 and � 2 consistently.a b

The question now is what to do in situations like Example 1.2? One idea is
to ‘‘give up’’ the individual random effects that cannot be estimated with
adequacy, no matter what. Traditionally, this is done by integrating out all
the random effects. However, this requires knowledge about the distributions
of all the random effects. Furthermore, it is often possible to estimate, with
adequacy, a subset of the random effects, such as the a ’s in Example 1.2. Ini
fact, in this example, one only has to specify the distribution of the b ’s,i j
because they are the ones to be integrated out. Thus, a natural idea is to
divide the random effects into two groups: those that can be estimated with
adequacy and those that cannot. The integration will be carried out, but only
with respect to the second group, leaving the first group to be estimated
individually. This will only require distributional knowledge about a subset of
the random effects. To illustrate this method, let us consider a special case,
and the more general setting will be similar. Suppose

1.13 � � X	 � Z� � U
 ,Ž .
Ž . Ž . �where � � � is independent of 
 � 
 . Note that this corre-k 1� k � l k 1� j� M
Ž . Ž . �sponds to 1.5 with � replaced by � , 
 . Furthermore, suppose that U is

standard in the sense that it consists of 0’s and 1’s and there is exactly one 1
in each row and at least one 1 in each column and that 
 , . . . , 
 are1 M

Ž . Ž .independent � � ��� �� , where � � is a known density function and � � 0
is an unknown scale parameter, and

� �1.14 f y � , 
 � f y � , 1 � i � N ,Ž . Ž . Ž .i i i

Ž � . twhere f � � denotes the conditional density of � given � . Let u be the2 1 2 1 i
ith row of U and e the M-dimensional vector whose jth component is 1M , j


 4 Ž j.and other components are 0. Let S � 1 � i � N: u � e , and y �j i M , j
Ž .y , 1 � j � M. Then, it is easy to show thati i	 Sj

M
Ž j.� �1.15 f y � � f y � ,Ž . Ž . Ž .Ł

j�1

where

Ž j. � � t t1.16 f y � � E f y x 	 � z � � �� ,Ž . Ž . Ž .Ł i i iž /
i	Sj

Ž . Ž .and the expectation in 1.16 is taken with respect to � � � � . Intuitively, 

is a subset of the random effects about which it is impossible to make
adequate inference. It often corresponds to the random effect factor of highest

Ž .level of interaction or hierarchy nesting , for example, the b ’s in Examplei j
˜1.2. In Section 2 we shall consider inferences about 	 and � , which are˜

˜˜ ˜reparametrization of 	 and � such that X	 � Z� � X	 � Z� for some˜



INFERENCE ABOUT GLMM 1979

˜ ˜ Ž .known matrices X and Z. Since 1.15 is the likelihood function conditional
on a subset of the random effects, these estimates will be referred as

Ž .maximum conditional likelihood MCL estimates.
Because of the computational difficulty associated with GLMM, mentioned

earlier, it is natural to ask whether PGWLS and MCL are computationally
feasible. Although in practice the number of fixed effects in a GLMM is often
fairly small, the number of random effects can be quite large, which means
that one may have to solve a large system of nonlinear equations to obtain

Ž .the PGWLS MCL estimates. A Gauss�Seidel type algorithm is proposed by
Ž . Ž .Jiang 1999 for computing the maximum posterior MP estimates of the

Ž .fixed and random effects. The MP is similar to PGWLS but with w � 1�a 
 ,i i
� � 2 t �1� � 1 and P � replaced by � D � , where D is the covariance matrix of � ,A

Ž .which is assumed normal here. It is shown by Jiang 1999 that the algorithm
Ž .converges in all typical situations of GLMM 1.6 . It seems promising that

such types of algorithms may provide effective ways of computing the esti-
mates introduced in this paper.

In GLMM, the variance components associated with the random effects are
often of interest. Since our methods are based on conditional inference,

�estimates of the variance components are not directly obtained except for the
Ž .�scale parameter � in 1.16 . However, since the variance components are

closely related to the random effects, adequate inference about the random
effects often easily results in that about the variance components. We shall
discuss this in Section 4. Note that our method is different from the previous

Žapproaches, for inference about GLMM in that our estimates of the fixed
.and random effects do not depend on the estimates of the variance compo-

nents. This is, again, similar to the LS method. In LM, the LS estimates of
the regression coefficients do not depend on the estimate of the variance of
the errors, say, � 2. On the other hand, the estimate of � 2 is based on the
residuals which are analogous to the estimates of the random effects.

Finally, there is, of course, a question about the behavior of the PGWLS
and MCL estimates. The main goal of this paper is to study the behavior of
these estimates from an asymptotic point of view. In particular, we shall
prove the consistency of these estimates under reasonable conditions. The
main theorems are stated in Section 2 and further illustrated by examples in
Section 3. In Section 4, we make a number of observations regarding, in
addition to estimation of the variance components, choice of the penalizer and
the connection between PGWLS and the penalized-likelihood method based
on Laplace approximation. The proofs of the theorems are given in Section 5.

Notation. In addition to those that have been introduced, we have the
following.

Ž . Ž .Let B � b be a matrix, v � v a vector and V ai j 1� i� k , 1� j� l i 1� i� k
� � Ž t .1�2 � � � � Ž . Ž Ž ..vector space. Define v � v v , v � max v ; � B � B �1� i� k i min max

Ž . � � 1�2 Ž t . � � Ž Ž t ..1�2the smallest largest eigenvalue of B, B � � B B , B � tr B B ,Rmax
� � l � � 
 4 Ž . �B � max Ý b ; BV � Bv: v 	 V , � B � inf� V1� i� k j�1 i j min v 	 V 

04
Ž t t .v Bv�v v .
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Let v , . . . , v be vectors and B , . . . , B be matrices. We use the symbolŽ1. Žn. 1 n
Ž . Ž t t .tv , . . . , v for the vector v ��� v . To avoid confusion, a row vector willŽ1. Žn. Ž1. Žn.

Ž .be written as v ��� v , that is, without commas in between. Let1 n
Ž .diag B , . . . , B be the block-diagonal matrix with B being its ith diagonal1 n i

block.
Let X be the uth column of X, 1 � u � p, Z the kth column of Z,u k

Ž .tŽ .1 � k � m and H � X Z X Z . Let 	 and � be the true 	 and � ,0 0
respectively, and � � X	 � Z� .0 0 0

2. Asymptotic properties of the estimates. In two ways, the asymp-
totic theory regarding random effects is different from that about fixed
parameters. First, the individual random effects are typically not identifiable
� �see the discussion in Section 1 . Therefore, any asymptotic theory must take
care, in particular, of the identifiability problem. Second, the total number of
random effects m often increases with the sample size N. Asymptotic proper-
ties of estimates of fixed parameters when the number of parameters in-
creases with the sample size have been studied by Portnoy in a series of
papers. There are several major differences between our results and those of
Portnoy. Besides the fact that the effects we are interested in may be random
and that we are typically dealing with correlated responses, the design
matrix Z often has the ANOVA structure, which is more general than that

� Ž . �considered by Portnoy e.g., 1984 , Section 5 .
Also, we note that for the asymptotic results in this paper to hold as

N � �, m may be, wlog, considered as a function of N. This is because such
results hold iff they hold for each sequence with N increasing strictly
monotonically, in which case m may readily be regarded as a function of N.
Similarly, the number p, the matrices X, Z, A, etc., may be regarded as
dependent on N.

To explore the asymptotic behavior of the estimates of the fixed and
random effects, one has to distinguish two different cases: the case where
there is enough information about the random effects and the case where
there is not. The first case is characterized by m�N � 0, while the second by
m�N not � 0.

2.1. The case m�N � 0. In this case we consider the asymptotic behavior
of the PGWLS estimates. A basic technique here is penalization. As discussed
in Section 1, the purpose of the penalization is to make the individual effects
conditionally identifiable, which may be different from that of many tradi-
tional uses of the penalizers. More specifically, we first explain why P ,A

Ž .defined above 1.11 , is chosen this way. The main result states that, under
suitable conditions, the PGWLS estimates of the fixed and random effects are
consistent, where the convergence of the estimates of the random effects is in
an overall sense.

Ž .Consider the expression 1.11 . The reason that one needs a penalizer here
Ž . N Ž Ž .. Ž .is because the first term, l � � Ý w y � � b � , depends on � � 	, �C i�1 i i i i i

only through �. However, � cannot be identified by �, so there may be many



INFERENCE ABOUT GLMM 1981

vectors � for which � � X	 � Z� is the same. The idea is therefore to

 4consider a restricted space S � � : P � � 0 , such that within this subspace,A

� is uniquely determined by �.
˜ ˜Ž . Ž . �Define the map T : � � 	, � � � � 	, � as follows: � � P � , 	 � 	 �˜ ˜ ˜ A

Ž t .�1 tX X X ZP � . Obviously, T does not depend on the choice of A. SinceA
˜ Ž . Ž .�X	 � Z� � X	 � Z� � P ZP � � X	 � Z� , we have l � � l � . Let G˜ ˜X A C C A

X ZŽ .� . The proofs of the following results will be given in Section 5.t0 A

Ž .LEMMA 2.1. rank G � p � m.A

�Ž .COROLLARY 2.1. Suppose that b � � 0, 1 � i � N. Then there can be onlyi
one maximizer of l .P

LEMMA 2.2. For any positive numbers b , 1 � u � p and a , 1 � k � m,u k

� Gt GŽ .min A A�1 �1 �� W HW � � 0,Ž . W Smin 2 2max b � max aŽ .Ž .1� u� p u 1� k � m k

Ž .where W � diag b , . . . , b , a , . . . , a .1 p 1 m

�Ž . 
 2 Ž � .4THEOREM 2.1. Let b � be continuous, max w E var y � bei 1� i� N i i 0
bounded and

1 �12 2 2 2t t� � � � � � � �2.1 max X X X X Z � max Z P � � 0.Ž . Ž .u k A 0 Pž /ž /N 1�u�p 1�k�m

� �Let c , d � 0 be any sequences such that lim sup 	 �c � 1 andN N 0 N
Ž� � . p � � m � �P � �d � 1 � 1, M � c Ý x � d Ý z , 1 � i � N and � �ˆ0 N i N u�1 iu N k�1 ik
ˆŽ . Ž . 
 � � 4	, � be the maximizer of l over � M � � : � � M , 1 � i � N . Thenˆ P i i

p m1 2 22 2ˆ� � � �2.2 X 	 � 	 � Z � � � � 0,Ž . Ž .ˆŽ .Ý Ýu u 0 u k k 0 k Pž /N u�1 k�1

provided that
p � m

22.3 � o � ,Ž . Ž .
N

Ž �1 �1. � 
 �Ž .4where � � � W HW min w inf b h with W �W Smin 1� i� N i � h � � M ii
Ž � � � � � � � �.diag X , . . . , X , Z , . . . , Z .1 p 1 m

The following shows that, under further assumptions about the design
ˆmatrices, 	 is a consistent estimate, and the convergence of � can beˆ

expressed more intuitively.

� Ž .�COROLLARY 2.2. Let the conditions of Theorem 2.1 including 2.3 hold.

Ž .i Suppose p is fixed, and

2.4 lim inf � X tX �N � 0,Ž . Ž .min

ˆthen 	 � 	 .P 0
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Ž . Ž . Ž .ii Suppose Z � Z ��� Z and correspondingly, � � � , . . . , � , whereŽ1. Žq . 1 q
Ž .� � � , and each Z is a standard design matrix in the sameu uv 1� v � m Žu.u

Ž .sense as for U described below 1.13 , 1 � u � q. Let Z be the vth column ofuv
� � 2Z and n � Z � the number of appearances of the vth component of � .Žu. uv uv u

Then
�1m mu u

22.5 n n � � � � 0, 1 � u � q ,Ž . Ž .ˆÝ Ýuv uv uv 0 uv Pž /
v�1 v�1

where � and � , 1 � v � m , 1 � u � q are the corresponding compo-ˆuv 0 uv u
nents of � and � , respectively.ˆ 0

One special case of GLMM is the LMM. Theorem 2.1 and Corollary 2.1
imply the following.

� Ž . 
 2 Ž � .4COROLLARY 2.3. Suppose b � � 1; max w E var y � isi 1� i� N i i 0
Ž . Ž . Ž .bounded, and 2.1 holds. Then 2.2 holds provided 2.3 , where � is theˆ

Ž �1 �1. �unique maximizer of l and � � � W HW min w .W SP min 1� i� N i

Note that one difference between Theorem 2.1 and Corollary 2.3 is that in
Ž .the former case � is the maximizer of l over � M , while in the latter case �ˆ ˆP

is the global maximizer of l . In general, we have the following.P

�Ž .LEMMA 2.3. Suppose that b � � 0, 1 � i � N. Let � be as in Theoremˆi
o 
 � � � � 42.1. If � 	 R � � : 	 � c , � � d , then � is identical to the uniqueˆ ˆN N N

global maximizer of l .P

o Ž .This is because if � 	 R 
 � M , then � is a local maximizer of l andˆ ˆN P
hence a root to

� lP
2.6 � 0.Ž .

��

On the other hand, by the proof of Corollary 2.1, it is easy to show that the
Ž .root to 2.6 is identical to the unique maximizer of l .P

In the following, we consider a special class of GLMM in which the
responses are clustered into groups with each group associated with a single

Ž .random effect possibly vector valued . Suppose that given unobservable
Ž .random vectors � , . . . , � satisfying E � � 0, the responses y , 1 � i � m,1 m i i j

Ž . Ž � . � Ž . Ž .1 � j � n n � 1 are independent with E y � � b � , where b � isi i i j i j i j i j
differentiable. Furthermore,

2.7 � � a � x t 	 � z t� ,Ž . i j i j i i

Ž . Ž .where a is an unknown intercept, 	 � 	 s is fixed is an unknownk 1� k � s
Ž .vector of regression coefficients, and x � x and z are knowni j i jk 1� k � s i

vectors. Such models are useful, for example, in the context of small-area
� Ž .�estimation e.g., Ghosh and Rao 1994 in which � represents a randomi

effect associated with the ith selected area. Here we are interested in the
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estimation of the fixed effects a, 	 , 1 � k � s, and the ‘‘area-specific’’ ran-k
dom effects v � z t� , 1 � i � m. Therefore, wlog, we may assume that in thei i i
above model � has the following expression:i j

2.8 � � a � x t 	 � v ,Ž . i j i j i

Ž . Ž .where v , . . . , v are random variables with E v � 0. Note that in 2.8 ,1 m i
a � a � v may be regarded as a random intercept. It is clear that this is ai i

Ž . Ž . Ž .special case of the GLMM 1.3 � 1.5 with 	 replaced by a, 	 , � � v �
Ž . Ž . mv , and the design matrices X � 1 X ��� X , where N � Ý n ,i 1� i� m N 1 s i�1 i

Ž . Ž . Ž .X � X , and X � x , and Z � diag 1 , 1 � i � m . Fur-k ik 1� i� m ik i jk 1� j� n ni i
Ž Ž .. 
 4�thermore, it is easy to show that A � 1 	 BB NN P Z , S � � : v � 0 ,m X �

m Ž .where v � Ý v . Thus, 1.11 has a more explicit expression,� i�1 i

nm i �
22.9 l � � w y � � b � � mv ,Ž . Ž . Ž .Ž .Ý ÝP i j i j i j i j i j 2i�1 j�1

where v � v �m. For such models, we have the following more explicit result.�
� m n tiŽ . Ž Ž .Ž . .Let � � min w inf b h , � � � Ý Ý x � x x � xN i, j i j � h � � M i j N min i�1 j�1 i j i i j ii j�1 niwith x � n Ý x .i i j�1 i j

� Ž . 2 Ž � . � �THEOREM 2.2. Let b � be continuous; w E var y v , x be bounded,i j i j i j 0 i j
Ž . Ž � �lim inf � �N � 0 and v � 0. Let c , d � 0 be such that lim sup a �N 0 P n n 0

� �. Ž� � . Ž � �.	 �c � 1 and P v �d � 1 � 1, M � c 1 � x � d and � �ˆ0 N 0 N i j N i j N
ˆŽ . Ž . 
 � � 4� , 	, v be the maximizer of l over � M � � : � � M , all i, j . Then,ˆ ˆ P i j i j

	̂ � 	 , andP 0
m1 22.10 n a � a � 0,Ž . Ž .ˆÝ i i 0 i PN i�1

Ž 2 .where a � a � v and a � a � v , provided that m�N � o � . If theˆ ˆ ˆi i 0 i 0 0 i N
Ž .�1 Ž 2 .latter is strengthened to min n � o � , then, in addition, a � a ,ˆ1� i� m i N P 0

and
m m1 12 22.11 n v � v � 0, v � v � 0.Ž . Ž . Ž .ˆ ˆÝ Ýi i 0 i P i 0 i PN mi�1 i�1

Ž .Note. It can be shown, by a simple example, that a � a and 2.11 mayˆ P 0
not hold without min n � �, even if m�N � 0.1� i� m i

2.2. The case m�N not � 0. In this case we consider the asymptotic
behavior of the MCL estimates. As noted in Section 1, a basic technique here
is reparametrization, because, conditionally, the individual effects may not be
identifiable. We first introduce the reparametrization, which is a map from

˜Ž . Ž .	, � to 	, � . The main result states that, under suitable conditions, the˜
˜MCL estimates of 	, � and � are consistent with a certain convergence rate.˜

Ž .We consider the model defined by 1.13 with all the assumptions. Further-
more, we assume that there are no random effects nested within 
 . In
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notation, this means that z � z	 , i 	 S , 1 � j � M, where z	 �i j j j
Ž .z	 . The following lemma defines the reparametrization.jk 1� k � l

˜LEMMA 2.4. There is a map 	 � 	, � � � such that:˜
˜˜ ˜ ˜ ˜Ž . Ž .i X	 � Z� � X	 � Z� , where X Z is a known matrix of full column˜

rank.
t ˜Ž .ii z � z	 , i 	 S for some known vector z	 , where z is the ith row of Z˜ ˜ ˜ ˜i j j j j

Ž .and S is defined above 1.15 .j

By Lemma 2.4, we have

2.12 � � W� � U
 ,Ž .
˜ ˜ ˜ ˜Ž . Ž . Ž . Ž . Ž .where W � X Z , � � 	, � . Let � � 	, � , � � � , � . By 1.14 we have˜ ˜

M
Ž j.� �2.13 f y � � f y � ,Ž . Ž . Ž .Ł

j�1

Ž j. t ˜Ž � . Ž .and it is easy to show that f y � � g z 	 � , 	, � , where˜ ˜j j

� t2.14 g s � E f y s � x s � s �Ž . Ž . ˜Ž .Łj i 1 i Ž2. r�2ž /
i	Sj

˜Ž . Ž . Ž .with s � s ��� s and r � dim 	 . Note that r � p. Let n � dim �̃Ž2. 2 r�1
Ž . Ž . Ž .Note that n is the same as t in the proof of Lemma 2.4. Let h s � log g s ,j j

Ž j. t ˜Ž . Ž � . Ž . Ž � . Ž .l � � log f y � and l � � log f y � � h z 	 � , 	, � . Then˜ ˜C C, j j j

M

2.15 l � � l � .Ž . Ž . Ž .ÝC C , j
j�1

˜ tLet Z	 be the matrix whose jth row is z 	 , 1 � j � M. Let � and � be the˜ j 0 0
vectors corresponding to the true parameters and realizations of random

Ž l . M � � l M � �effects. Define s � Ý z	 , l � 1, 2, . . . , t � Ý Ý z	 z	 ,˜ ˜ ˜M , k j�1 jk M , k j�1 l
 k jk jl

2� hj
2.16 H � � ,Ž . Ž .j 2 t ˜s �z 	 � , s �	 , s ��˜ ˜� s 1 j Ž2. r�2

M tz	 0 z 	 0˜ ˜j j�2.17 A � H � � E H � � ,Ž . Ž . Ž .Ž .Ý Ž .2 j 0 j 0 0ž / ž /0 I 0 Ir�1 r�1j�1

where I represents the l-dimensional identity matrix,l

M tt z	 z 	 0˜ ˜ ˜ ˜Z 	Z	 0 j j2.18 G � � ,Ž . Ýž / ž /0 MI 0 Ir�1 r�1j�1

� hj
t� �2.19 � � � min � Var � ,Ž . Ž . ˜Ž z 	 � , 	 , � .˜ ˜M min jž /ž /� s1�j�M
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Ž l . l l t ˜Ž . Ž . Ž .Ž .and � � � � . Let � � � � h �� s z 	 � , 	, � , l � 1, 2,˜ ˜M M 0 j j 1 j

Ž1. � Ž1. � �Ž1.V � � max E � � 1 � ,Ž . Ž .ž /k j 0 Ž � z	 � Ž� . � �1�2 � . 0˜ jk j 01�j�M

Ž2. � Ž2. Ž2. � � �2V � � max E � � � E � � � 1 � .Ž . Ž . Ž .Ž .ž /k j 0 j 0 0 Ž z 	 � � � � � � � � � �1�2 � . 0˜ jk1�j�M

THEOREM 2.3. Suppose:

Ž . Ž Ž j. � .i the conditional densities f y � , 1 � j � M are with respect to a
common measure � and have common support, and the first and second

Ž Ž j. � .partial derivatives of Hf y � d� with respect to components of � exist and
can be taken under the integral sign.

Ž . Ž .ii h s , 1 � j � M are three times differentiable and there exist � , B � 0j
such that

2 3� h � hj j
max max � max � B½ 5ž / ž /� s � s � s � s � s1�j�M 1�u�r�2 1�u , v , w�r�21 u u v w

� �for all � such that � � � � � .0
˜ ˜ ˜Ž .iii Z	 
 0, 1 � k � n, where Z	 is the kth column of Z	, and thek k

following are bounded:

sŽ1. sŽ2. sŽ4.
M , k M , k M , k˜� �Z	 , max , max , max and� Ž2. Ž4. Ž2.ž / ž / ž /s s s1�k�n 1�k�n 1�k�nM , k M , k M , k

2 2
� h � hj j2� �max z	 E � max E ,˜ j ž / ž /� s � sž / ž /1�j�M 2�u�r�21 us s0 0

2.20Ž .

t ˜Ž .where s � z 	 � , 	 , � and˜ ˜0 j 0 0 0
Ž .iv � � 0, and there is a sequence � such that 0 � � � � � 1, andM M M M

the following � 0 in probability:

t nM , k�1�2 �1�2 4� G A G �� , max � , � andŽ .max 2 M M MŽ2. ž /ž / Ms1�k�n M , k

max log n�� 2 l min sŽ6�2 l . � n max V Ž3�l . � l �� l .Ž .M M , k k M Mž / ž /
l�1, 2 1�k�n 1�k�n

ˆThen, with probability approaching 1, there is a sequence � satisfying
ˆ ˆŽ .Ž . � � Ž .� l ��� � � 0 and � � � � o � .C 0 P M

� �Note. In fact, it is seen from the proof of the theorem that � � � �ˆ 0
Ž 2 .o � .P M

Consider a special case in which there is only one random effect factor. In
such a case, one may integrate out all the random effects, if necessary. The
resulting MCL estimates are the maximum likelihood estimates for the fixed
parameters. We have the following.
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Ž . ŽCOROLLARY 2.4. Suppose that in 1.13 � � 0 i.e., there are no random
.effects besides 
 , and that:

Ž . Ž .i Part i of Theorem 2.3 holds with � replaced by �.
Ž . Ž .ii h � , 1 � j � M are three times differentiable and there is � , B � 0j

such that

� �max sup any third derivative of h � � B.Ž .Ž .j
1�j�M � ���� ��0

Ž . Ž ŽŽ .Ž . � ..iii � � min � Var � h ��� � � � 0 andM 1� j� M min j 0 0

M1 2� �E H � � EH � � 0,Ž . Ž .Ý Rž /j 0 j 022M � � 1Ž . j�1M

Ž . 2 2where H � � � h ��� . Then, with probability approaching 1, there is aj j
Ž .Ž . � � ŽŽ .2 .sequence � such that � l ��� � � 0 and � � � � o � � 1 .ˆ ˆ ˆC 0 P M

This follows easily from Theorem 2.3 and the note following the theorem.
�Note that since there is no � , most of the assumptions in Theorem 2.3 e.g.,

Ž . Ž .�iii and most of iv are not needed.

3. Examples. First, we use an example to illustrate Theorem 2.1.

Ž .EXAMPLE 3.1. Consider the logit random effects model 1.1 . We have
X � 1 � 1 , Z � I � 1 , Z � 1 � I , where � means Kroneckerm m Ž1. m m Ž2. m m1 2 1 2 1 2

Ž . Ž Ž Ž ...�product. Then, A � diag 1 , 1 	 BB NN P Z Z . Also W �m m X Ž1. Ž2.1 2
Ž Ž . Ž . . Ž . 
m m diag 1, 1� m I , 1� m I . For any �, a, b 	 S � a � b�' ' '1 2 1 m 2 m � �1 2

4 Ž . Ž .0 , let h, u, v � W �, a, b . Then,

t �1 �1h , u , v W HW h , u , vŽ . Ž .
m m1 2

2t� � , a, b H � , a, b � � � a � bŽ . Ž . Ž .Ý Ý i j
i�1 j�1

m m1 2
t2 2 2� m m � � m a � m b � h , u , v h , u , v .Ž . Ž .Ý Ý1 2 2 i 1 j

i�1 j�1

Ž �1 �1. � Ž .Therefore, � W HW � 1. It is easy to show that 2.1 is satisfied ifW Smin
m � m � �.1 2

Ž .2 Ž .2Suppose m , m � � such that log m � log m � 0, log m � log m �1 2 1 2 2 1

 4 
 4 Ž .0. Let c , e be any sequences such that c , e � �, c �log m � m � 0N N N N N 1 2

Ž .and e log m � m �log m � m � 0. Let d � e log m � m ;' 'Ž . Ž .N 1 2 1 2 N N 1 2
Ž� �M � b � c � 2 d . Then, by Lemma 3.1 in the following, a �N , Ž i, j. N N N 0

� �. 
 � Ž .4 
 h Ž h.24b �a � 0. Also, � � min inf b h � inf e � 1 � e0 N i, j � h � � M i, j � h � � bN , Ž i, j. N
Ž . Ž . Ž .� 1�4 exp �2b . Thus it is easy to show that 2.3 is satisfied.N

Ž . m1 Ž .2It follows from Theorem 2.1 that � � � , 1�m Ý a � a � 0,ˆ ˆP 0 1 i�1 i 0 i P
m2 ˆ 2Ž . Ž .and 1�m Ý b � b � 0.2 j�1 j 0 j P
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Ž 2 . 2LEMMA 3.1. Suppose � � N 0, � , 1 � k � m, and max � isk k 1� k � m k
Ž� � . 2bounded. Then P � � d � 1 provided log m�d � 0.N N

We now use an example to illustrate Theorem 2.2.

EXAMPLE 3.2. Suppose y , 1 � i � m, 1 � j � n are binary withi j i
Ž Ž � ..logit P y � 1 � � � � 	 � 	 x � � , where x ’s are covariates andi j i j 0 1 i j i i j

Ž 2 .� , . . . , � � N 0, � .1 m

m n 2iŽ . Ž .Suppose the x ’s are bounded, and lim inf 1�N Ý Ý x � x � 0,i j i�1 j�1 i j i
that is, asymptotically, there is variation within the groups.

Ž Ž ..2 Ž .Suppose that log m� log N�m � 0. Let M � 2 � c d , where d �N N N
Ž .1�4Ž Ž ..1�2 � � Ž� �log m log N�m , and c � max x . Then, by Lemma 3.1, P � �i, j i j 0

. Ž � �.d � 1. Let c � d and M � M . Then, M � c 1 � x � d . Also,N N N i j N i j N i j N
Ž . Ž .as in Example 3.1, � � 1�4 exp �2 M . Thus, it is easy to show thatN N

�2 ˆŽ .m�N � � 0. It follows, by Theorem 2.2, that 	 � 	 andN 1 P 01
�1 m Ž .2N Ý n a � a � 0, where a � 	 � � .ˆi�1 i i 0 i P i 0 i

Ž .2If, furthermore, log m� log n	 � 0, where n	 � min n , we can choose,i i
Ž . Ž .1�4�Ž Ž ..1�2instead, M � 2 � c d , where d � c � log m log N�m �N N N N

Ž .1�2 � Ž .�1 �2log n	 . Then, by the same argument, we have n	 � � 0. Thus, byN
ˆ �1 m 2 �1 mŽ . ŽTheorem 2.2, 	 � 	 and N Ý n � � � � 0, m Ý � �ˆ ˆ0 P 00 i�1 i i 0 i P i�1 i

.2� � 0.0 i P

Finally, we use one example to illustrate Theorem 2.3.

Ž .EXAMPLE 3.3. Consider the model defined by 1.12 . Suppose the a ’s andi
b ’s are normally distributed with � 2 � 0 and r � 2. Take � � a �i j 0 b
Ž . Ž .a , 
 � b � b . We have X � 1 and Z � I �i 1� i� m i j 1� i� m , 1� j� n m nr m1 1 1 1

1 . The transformation of Lemma 2.4 results in a � � � a , 1 � i � m , and˜nr i i 1
˜ ˜ ˜there is no 	. Furthermore, we have Z � Z, Z	 � I � 1 , and S �m n i, j1


Ž . 4i, j, k : 1 � k � r . Suppose m , n � �, and there is 1�2 � � � 1 such that1

�
3.1 log m �log n � 0.Ž . Ž .1

We shall verify the conditions of Theorem 2.3.

Ž . Ž .i is obvious, and ii follows from Lemma 3.3 in the following.
˜Ž .iii Z	 is a m n-dimensional vector whose components are divided intoi 1

m -blocks of equal length n with the ith block being 1 and other blocks 0;1 n
˜ Ž l .� � � �Z	 � 1; s � n, 1 � i � m , l � 1, 2, . . . ; z	 � 1, which, combined with˜M , i 1 i j

Ž .Lemma 3.3, implies the boundedness of 2.20 .
Ž .iv By Lemma 3.2 in the following, there is c � 0 such that0

� �3.2 � � d exp �2 2r � 5 a ,Ž . Ž .Ž .M 0 0

Ž Ž . � �.where d � c exp �2 2r � 5 � , � is the true � and a is the vector of0 0 0 0 0
true realizations of a. By Lemma 3.1,

�
� �3.3 P a � log m � 1.Ž . Ž .Ž .0 1



J. JIANG1988

Ž Ž .Ž . �.Let � � d exp �2 2r � 5 log m � � � 1. It is easy to see thatM 0 1 M
t � 0, 1 � i � m and we have, with probability approaching 1,M , i 1

n 1 �4 �4� � � d exp �log m � 8 2r � 5 log m � 0;Ž . Ž .Ž .M 0 1 1 Pž / ž /M m1

log n�� 2 l min sŽ6�2 l .
M M , i

1�i�m1

log n
�2 l� � d exp �log n � log log nŽ0ž /n

��4l 2r � 5 log m � 0;Ž . Ž . .1 P

and

n max V Ž3�l . � l �� l � 0 for large m , l � 1, 2.Ž .i M M 1
1�i�m1

Finally, we have

� G�1�2A G�1�2Ž .max 2

n1
�� max H � � E H � � .Ž . Ž .Ž .Ý Ž .i j 0 i j 0 0n1�i�m1 j�1 R

3.4Ž .

Ž 2 .Ž . Ž � . Ž . ŽŽLet � � � h �� s � s � � E ��� � , where h s � log E exp si, j, c, d i j c d 0 0 i j 1
. Ž Ž ... Ž .� s � y � r log 1 � exp s � s � with � � N 0, 1 . By Lemma 5.3 in Sec-2 i j � 1 2

tion 5, there is a constant B � 0 such that � � � 0, whenever 0 � �� � 4�B,M

n1
2�P max H � � E H � � � �� B �Ž . Ž .Ž .Ý Ž .i j 0 i j 0 0 M 0ž /n1�i�m1 j�1 R

m2 n1 ��M 2� P � � nB �Ý Ý Ý i , j , c , d 0ž /4c, d�1 i�1 j�1

m 2 2 2 22 1 � � � BM 2 2� 2 exp � nB � 8 exp n� � � o 1 � 0.Ž .Ý Ý M P Pž / ž /64 64c, d�1 i�1

Ž �1�2 �1�2 .Therefore, by the dominated convergence theorem, � G A G ��max 2 M
� 0.P

Ž . Ž . ŽŽ . ŽLEMMA 3.2. Let � � �, � , h � , k � log E exp � � �� k � r log 1 �
Ž ... Ž .exp � � �� , k � 0, 1, . . . , r, where � � 0, r � 2 and � � N 0, 1 . Let Y be a


 4 Ž .random variable taking values in 0, 1, . . . , r such that P Y � k �
rŽ . Ž Ž ..exp h � , k . Then, there is a constant c � 0 which may depend on � suchk

that for all �,

� h
� �3.5 � � � � Var � , Y � c exp �2 2r � 5 � .Ž . Ž . Ž . Ž .Ž .min ž /ž /��
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LEMMA 3.3. For any b � 0, the first, second and third derivatives of
Ž . Ž .h � , k see Lemma 3.2 are uniformly bounded for � 	 R, 0 � � � b and

0 � k � r.

4. Remarks.

1. In many cases the variance components of the random effects are of
interest. The methods developed in Sections 1 and 2 provide an easy way to
consistently estimate these parameters. To see this, let us first consider the

Ž .case m�N � 0. Suppose that � and Z have the structures described by ii of
2 Ž .Corollary 2.2. Suppose that � , . . . , � are i.i.d. with � � var � ,u1 um u uvu

Ž 4 . Ž m u .�2 m u 2 Ž .E � � � and that Ý n Ý n � 0, 1 � u � q. Then 2.5 impliesuv v�1 uv v�1 uv
Ž m u .�1 m u 2 2that Ý n Ý n � � � , 1 � u � q. In the case of m�N notˆv�1 uv v�1 uv uv P u

� 0, the MCL estimate � of � , which often corresponds to a dispersionˆ
parameter, is consistent under the conditions of Theorem 2.3. If, furthermore,

Ž .� and Z in 1.13 are as described above, the same consistent results hold for
the variances of the � ’s.uv

2. As pointed out in Section 1, our procedures are different from the
traditional approaches, in which one needs to get the variance components
right before going to the effects, or one has to estimate the effects and
variance components simultaneously. It may seem surprising that one can
estimate the fixed and random effects without first getting the variance
components right. Here, we need to clarify a few points. First, there have
been other occasions in which one estimates the effects without ‘‘getting the

�variance components right.’’ A well-known example is WLS e.g., Diggle,
Ž . �Liang and Zeger 1996 , Section 4.3 , in which an estimate of 	, the vector of

Žregression coefficients, is obtained by minimizing the quadratic form y �
.t Ž .X	 W y � X	 , where W is a weighting matrix. In cases where the re-

sponses are correlated, it can be shown that the optimal weighting matrix, in
the sense of mean squared errors, is given by W � V�1, where V is the
covariance matrix of the errors. Note that V involves not only the variance
components but also the correlation structures. Therefore, to identify this
optimal weighting matrix, one needs not only to get the variance components
right, but also to know the complete correlation structure of the data. The
latter is often more difficult to do and requires more assumptions. On the
other hand, the WLS estimate with an arbitrary W is unbiased, consistent,
and asymptotically normal, even if it is not efficient. Our procedures, in a
sense, are similar to WLS. Note that we do not assume the covariance matrix
of the random effects � is known up to a number of variance components
�Ž . � Ž .1.3 is the basic assumption . In fact, with only 1.3 , it may not be clear
what are the ‘‘variance components.’’ Also, our results only show the consis-
tency of these estimates, not the asymptotic optimality. Second, the consis-

Ž .tency of the PGWLS or MCL estimates holds only in large sample cases
Žwhere there is enough information in the data about the random effects or a

.subset of the random effects . For example, in Example 1.1, if both m and1
m are large, one has enough information about the a ’s and b ’s. One does2 i j
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not need to know, in addition, the variances of the a ’s and b ’s, because thesei j
Ž .can be deduced from the previous information see Remark 1 . Finally, one

should always be aware that large sample results may not apply to small
sample cases.

� � 2 �3. In PGWLS we have chosen the penalizer as in the form � P� see
Ž .�1.11 . One reason for choosing such a penalizer is computational conve-
nience, because it is a quadratic function of � , which corresponds to a linear

Ž .function of � on the left side of the estimating equations 2.6 . A penalizer of
� � 2the form � P� also has some ideal theoretical properties. For example, with

Ž .P � P , where A is defined above 1.11 , the maximizer of l , if it exists, isA P
Ž .unique Corollary 2.1 . On the other hand, it is seen from the proof given in

the next section that the result of Theorem 2.1 would hold for a variety of
� � kpenalizers not necessarily quadratic, for example, those of the form P� ,

where k � 0. It would be interesting to know what is the ‘‘best’’ choice of
penalizer. Note that although many penalties would lead to consistent esti-
mates, there may be a difference in terms of efficiency and small sample
properties.

The PGWLS procedure also involves a constant � which is assumed
known. For the consistency of the estimates, � does not make a difference. On

Ž .the other hand, the choice of � might affect the asymptotic efficiency as well
as the small sample behavior of the estimates. It would be interesting to
know to what extent this is the case.

4. There is some connection between PGWLS and the penalized-likeli-
�hood method based on Laplace approximation e.g., Breslow and Clayton

Ž . Ž . Ž . Ž .�1993 , Shun and McCullagh 1995 , Lee and Nelder 1996 , Vonesh 1996 .
The Laplace-based penalized-likelihood method leads to a penalizer which
typically involves unknown parameters such as variance components. PG-
WLS, on the other hand, is simpler in the sense that the penalizer is

� Ž .�completely specified. It can be shown that Jiang, Jia and Chen 1999 , in
terms of consistency, the unknown variance components involved in the
Laplace-based penalizer do not make a difference, provided that m�N � 0.
Therefore, assuming normality of the random effects and with any given
values of the variance components, the Laplace-based method leads to a

Ž .penalized log-likelihood in the form of 1.11 . Note that the Laplace approxi-
mations considered here are nonstandard in the sense that the dimension of
integrals increases with the sample size. Earlier results have indicated that,
under more restricted limiting process than m�N � 0, the Laplace approxi-
mation is asymptotically exact, and the estimates of the fixed parameters are

Ž . 1�3consistent. For example, Shun and McCullagh 1995 requires that m�N
Ž .� 0; Vonesh 1996 considers a special case of a nonlinear mixed model with

single random factor and requires that min p � �, where p is the numberi i i
of observations at the ith level of the random factor. Note that the latter
assumption is, in fact, sufficient for the estimates of individual random effects
to be consistent, while under m�N � 0, one can only expect consistency of

Ž .the estimates of the random effects in an ‘‘overall’’ sense see Theorem 2.1 .
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Nevertheless, the PGWLS estimates of the fixed effects are consistent under
m�N � 0.

Ž � . Ž .5. To apply the MCL method, the conditional density f y � in 1.14i i
Ž . Ž � .must be known. Sometimes, such as in 1.6 , f y � may contain an addi-i i

tional dispersion parameter 
, although, in some cases such as the binomial
and Poisson models, 
 is known. When 
 is unknown, it, too, has to be
estimated. An obvious way to do this is to include 
 as part of � defined

Ž .below 2.12 so that it can be estimated jointly with other parameters.

5. Proofs.

Ž t .�1 t
�PROOF OF LEMMA 2.1. Let B � � X X X ZA. Then XB � ZA � PX

BŽŽ .. Ž . Ž .�ZA � 0. On the other hand, rank � rank A � m � rank P Z � m �XA

BŽ ŽŽ .. Ž .. ŽŽ .. Ž . Ž ŽŽ ...rank X Z � rank X � p � m � rank X Z . Thus 	 BB NN X Z .A
t 	 BŽ . Ž . Ž . Ž . Ž .Suppose, i X	 � Z� � 0, ii A� � 0. i � � l for some vector l.� A

Ž . tThus by ii , A Al � 0 � l � 0. �

Ž 2 2 .PROOF OF COROLLARY 2.1. It is enough to show that � l ��� � 0, � � .P
Simple calculation shows that

t2 N� l x xC � i i� � w b �Ž .Ý i i i2 z zž / ž /�� i ii�1
5.1Ž .

tN x x ti i� �� � �� X Z X Z ,Ž . Ž .Ý z zž / ž /i ii�1


 �Ž .4 p mwhere � � min w b � � 0. Thus for any v 	 R , u 	 R ,1� i� N i i i

t 2 t 2 t� l � l 0 0P Cv v v v v v� � �2 2ž / ž / ž / ž / ž / ž /0 Pu u u u u už /A�� ��

� � 2 � � 2� �� Xv � Zu � � P u � 0.A
Ž . Ž . Ž . tIf ‘‘� ’’ in the above holds, then i Xv � Zu � 0; ii P u � 0. ii � A u � 0A

v vX ZŽ .Ž . Ž .� � 0 � � 0 by Lemma 2.1. �t u u0 A

PROOF OF LEMMA 2.2.
t � � 2 t t t � � 2� � 	 S, � H� � X	 � Z� � � G G � � � G G � . � �	 	 WS,Ž .A A min A A

we have
�1 t �1 �1 t t � � 2� � W �	 	 S � �	 W HW �	 � � H� � � G G �Ž .min A A

� � Gt G �	tW�2�	Ž .min A A

� Gt GŽ .min A A 2� �� �	 .
2 2max b � max aŽ .Ž .1� u� p u 1� k � m k

The result then follows from Lemma 2.1. �
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˜PROOF OF THEOREM 2.1. First we show that � 	 S. This is because � 	ˆ ˆ
˜ 2ˆ ˆ˜ ˜Ž . Ž . Ž . Ž . � �� M since � � X	 � Z� � X	 � Z� � � � l � � l � � ��2 P � �ˆ ˆ ˆ ˆ ˆ ˆ ˆP C A

˜ ˜ ˜ 2 2Ž . Ž . Ž . � � Ž . Ž . � � Ž . Ž .�l � � l � � ��2 P � � l � � ��2 P P � � l � � ��2ˆ ˆ ˆ ˆ ˆ ˆP C A C A A C
� � 2P � � 0 � P � � 0, that is, � 	 S.ˆ ˆ ˆA A

By Taylor series expansion and the fact that � � � , we have˜0 0

p m� l � lC C˜l � � l � � 	 � 	 � � � �Ž . Ž . Ž .˜ ˜Ž .Ý ÝC C 0 u 0 u k 0 k�	 ��u k� �u�1 k�10 0

21 � lCt� � � � � � �Ž . Ž .˜ ˜0 022 �� �*

5.2Ž .

1
� I � I ,1 22

Ž .where �* � 1 � t � � t� for some 0 � t � 1. We have˜0

2 2p p N� lC�2 �2 �� � � �E X � X E E w x y � b � �Ž .Ž .Ý Ý Ýu u i iu i i 0 i 0ž /ž /�	ž / 
 0u �u�1 u�1 i�10

p N
�2 2 2� � �� X w x E var y �Ž .Ý Ýu i iu i 0

u�1 i�1

2 �� max w E var y � p.Ž .i i 0ž /
1�i�N

Similarly,

2m m N� lC�2 �2 2 2� � � � �E Z � Z w z E var y �Ž .Ý Ý Ýk k i ik i 0ž /��ž /k �k�1 k�1 i�10

2 �� max w E var y � m.Ž .i i 0ž /
1�i�N

Ž .Therefore, by 2.3 ,

1�22 1�2p p� l 2c�2 2 ˜� � � �I � X X 	 � 	Ž .Ý Ý1 u u u 0 už /ž /�	ž /u �u�1 u�10

1�22 1�2m m� lc 2�2 2� � � �� Z Z � � �Ž .˜Ý Ýk k k 0 kž /ž /��ž /k �k�1 k�10

5.3Ž .

' � �� � N o 1 W � � � .Ž . Ž .˜P 0

Ž . Ž . Ž .ŽOn the other hand, if � , � 	 � M , then, since �* � X Z �* � 1 � t X0
. Ž . Ž . Ž . � � �Z � � t X Z � � 1 � t � � t� � 1 � t � � t�, � � M , 1 � i � N,˜ ˜0 0 0 i i

Ž . Ž .hence �* 	 � M . Therefore, we have, by 5.1 and the fact that � 	 S, � � ,˜
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Ž . Ž .that when � 	 � M and � 	 � M � S,0

2� lCtI � � � � � � � �Ž . Ž .˜ ˜2 0 02ž /�� �*

2� lCt �1 �1� W � � � �W W W � � �Ž . Ž .˜ ˜Ž . Ž .0 02ž /�� �*5.4Ž .
2� lC 2�1 �1 � � �� � �W W W � � �Ž .˜W Smin 02ž /�� �*

� � 2� � W � � � .Ž .˜0

Ž . Ž . Ž . Ž .Since l � � l � , � 	 S, we have, by combining 5.2 � 5.4 , that whenP C
Ž . Ž .� 	 � M and � 	 � M � S,0

l � � l � � l � � l �Ž . Ž .Ž . Ž .˜ ˜P P 0 C C 0

� 2' � � � �� � N o 1 W � � � � W � � �Ž . Ž . Ž .˜ ˜P 0 025.5Ž .
� �1 W � � �Ž .˜0' � �� � N W � � � o 1 � .Ž .Ž .˜0 P ž /ž /'2 N

Ž . Ž . 
 � Ž . �Note that the o 1 in 5.5 does not depend on � . Let R � � : W � � � �˜P � 0' 4 Ž . Ž . Ž . Ž .� N � � 0 . Since � 	 � M � � 	 � M � S, we have, by 5.5 and the˜0 0
proved fact that � 	 S, thatˆ

�
� 	 � M , o 1 �Ž . Ž .0 P½ 52


 � 	� M �S, l � � l � , � �	� M �S�Rc 
 � 	 R .
 4
 4Ž . Ž . Ž .Ž .˜ ˜ ˆ0 P P 0 � �


 Ž .4 
� � � � 4 Ž .Since � 	 � M � 	 � c , � � d , we have P � 	 R � 1. By theˆ0 0 N 0 N �

arbitrariness of � , we have
1 2� �5.6 W � � � � 0.Ž . ˆ ˜Ž .0 PN

Ž � � . Ž � � .Finally, let W � diag X , 1 � u � p , W � diag Z , 1 � k � m . Then,X u Z k

2 ˜ 2 2� � � � � �W � � � � W 	 � 	 � W � � �Ž . Ž .˜ ˜Ž .0 0 X 0 0 Z 0 0

�1 2 2t t� � � �� W X X X ZP � � W P �Ž .X A 0 Z A 0

�12 2 2 2 2t t� � � � � � � � � �� W X X X Z P � � W P �Ž .X A 0 Z A 0

�12 2 2 2t t� � � � � � � �� max X X X X Z � max Z P � .Ž .u k A 0ž /ž /1�u�p 1�k�m

Ž . Ž . Ž .2.2 thus follows from 5.6 and 2.1 . �

Ž � �. Ž � �.PROOF OF COROLLARY 2.3. Take c � 1 � 	 N, d � 1 � E � NN 0 N 0
and M � �, 1 � i � N. �i
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PROOF OF THEOREM 2.2. In the following, we use the abbreviation ‘‘PT2.1’’
Ž .for ‘‘the proof of Theorem 2.1.’’ As in PT2.1, � 	 S. By 5.2 , it is easy to showˆ

that
l � � l �Ž . Ž .˜C C 0

nm i

�� w y � E y v � � �̃Ž .Ž .Ý Ý Ž .i j i j i j 0 i j 0 i j
i�1 j�1

nm i
2�1� w b �	 � � �Ž . ˜Ž .Ý Ý i j i j i j i j 0 i j2

i�1 j�1

5.7Ž .

1� I � I .1 22

Note that
t˜ ˜5.8 � � � � a � a � x 	 � 	 � x � x 	 � 	 .Ž . ˜ ˜ Ž .Ž . Ž .i j 0 i j i 0 i i 0 i j i 0

Thus we have, similar to PT2.1, that
1�22nm i

�1� � �I � n w y � E y vŽ .Ý Ý Ž .1 i i j i j i j 0ž /ž /i�1 j�1

1�2m 2
t ˜� n a � a � x 	 � 	˜ Ž .Ý ž /i i 0 i i 0ž /

i�15.9Ž .
nm i

˜� � �� w y � E y v x � x 	 � 	Ž .Ž .Ý Ý Ž .i j i j i j 0 i j i 0
i�1 j�1

1�2m 2
t ˜ ˜' ' � �� O 1 m n a � a � x 	 � 	 � O 1 N 	 � 	 ;Ž . Ž .˜ Ž .Ý ž /P i i 0 i i 0 P 0ž /

i�1
nm i 2tt ˜ ˜I � � a � a � x 	 � 	 � x � x 	 � 	˜ Ž .Ž . Ž .Ý Ý ž /2 N i 0 i i 0 i j i 0

i�1 j�1

m 2 2t ˜ ˜� �� � n a � a � x 	 � 	 � � 	 � 	 .˜ Ž .Ý ž /N i i 0 i i 0 N 0ž /
i�1

5.10Ž .

22 m t 2˜ ˜Ž Ž .. � � Ž .Let r � Ý n a � a � x 	 � 	 � N 	 � 	 , we have, by 5.7 ,˜N i�1 i i 0 i i 0 0
Ž . Ž . Ž . Ž .5.9 and 5.10 that, when � 	 � M , � 	 � M � S,0

� �N N 2'l � � l � � O 1 m r � O 1 r � 1 � rŽ . Ž . Ž .Ž .˜P P 0 P N P N Nž /N 2
m 1 � rN N�1'� � r N O 1 � � 1 � .Ž . (N N P N ž /ž /'N 2 N N

5.11Ž .


 2 2 4 Ž .For any � � 0, let R � r � � N . By 5.11 and the same argument as in� N
Ž . 2PT2.1, we have P � 	 R � 1. Thus, r �N � 0, where r is r with �ˆ ˆ ˆ� N P N N

replaced by � . It follows thatˆ
m1 22ˆ ˜� �5.12 	 � 	 � 0 and n a � a � 0.Ž . ˆ ˜Ž .Ý0 P i i 0 i PN i�1
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We now show that

m1 22˜� �5.13 	 � 	 � 0 and n a � a � 0.Ž . Ž .˜Ý0 0 P i 0 i 0 i PN i�1

Ž .Therefore, the conclusions without min n � � follow. To show 5.13 ,1� i� m i
˜� �Ž .we let 	 * � a, 	 , and note that, by the definition, 	 � 	 �0 0

t �1 t ˜ ˜� �Ž . � � � � � �X X X ZP v , v � v � �P v and 	 � 	 � 	 � 	 , a � a �˜ ˜A 0 0 0 A 0 0 0 0 0 0 i 0 i
˜� � t� � � �	 � 	 � v � v . It is easy to show that the first row of X Z consists of˜0 0 0 i 0 i

Ž . Ž . tn , 1 � i � m, and the u � 1 ’s row 1 � u � s of X Z consists of x ,i i � u
n i ˜� �� �1 � i � m, where x � Ý x . It follows that 	 � 	 �i � u j� 1 i ju 0 0

�Ž �1 t .�1 � � � �1 t �Ž �1 t .�1 �N X X B , where B � N X ZP v . Now, N X X �A 0
Ž �1 Ž t ..�1 � � � � � Ž .N � X X , and the first row of B � P v , the u � 1 ’s row ofmin A 0

� �˜� � � � � � � � � � �B � P v max x , 1 � u � s and P v � v . Thus, 	 � 	 � 0.A 0 i, j, k i jk A 0 0 0 0 P
Ž .5.13 thus follows.

�1 Ž 2 . 2Finally, let n	 � min n , and suppose n	 � o � . Let s �1� i� m i N N
2m t 2 2 2˜ ˜Ž Ž .. Ž . � � 
 4Ý n a � a � x 	 � 	 � � �2 	 � 	 , and S � s � � mn	˜i�1 i i 0 i i 0 N 0 � N

Ž . Ž . Ž . Ž . Ž .� � 0 . By 5.7 , 5.9 and 5.10 , we have that, when � 	 � M and � 	0
Ž .� M � S,

l � � l �Ž . Ž .˜P P 0

�N 2 ˜' ' � �� O 1 m s � s � O 1 N 	 � 	Ž . Ž .P N N P 02
� � 2N N ˜' � �� N 	 � 	Ž .04N5.14Ž .

�1 �1�2'� � s mn	 O 1 � n	Ž .N N P Nž
'n	 sN�2 �1�O 1 � n	 � .Ž .P N ' /'2 mn	m sN

2 Ž .Here we use the fact that the function � x � � x � � 0 is bounded by
2 Ž . Ž .� �4�. By 5.14 and a similar argument as in PT2.1, we have P � 	 S � 1.ˆ �

Thus, s2 �mn	 � 0, where s is s with � replaced by � . It follows thatˆ ˆ ˆN P N N
� Ž .� �1 m Ž .2using the first half of 5.12 m Ý a � a � 0. Also, by the sameˆ ˜i�1 i 0 i P

�1 m Ž .2argument as before, we have m Ý a � a � 0. Therefore, by the˜i�1 0 i 0 i P
fact that � 	 S, we haveˆ

2m12
a � a � v � a � aŽ .ˆ ˆŽ . Ý0 0 i 0 iž /m i�1

m1 2� a � a � 0.Ž .ˆÝ i 0 i Pm i�1

The rest of the conclusions follow easily. �
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Ž t .� tPROOF OF LEMMA 2.4. Let �* � � � Z Z Z X	. Then
X	 � Z� � P � X	 � P X	 � Z�Z Z

�t t
�� P X	 � Z Z Z Z X	 � Z�Ž .Z5.15Ž .

� P � X	 � Z�*,Z

˜
 4 Ž .�Let S � j , . . . , j be a set of indexes such that X � P X 	1 s Z j j	 S
Ž Ž ..�BB LL P X . Then for k � S there are numbers � , j 	 S such thatZ jk

P � X � Ý � P � X . ThusZ k j	 S jk Z j
p

� �P X	 � P X 	ÝZ Z k k
k�1

� P � X 	 � � P � X 	Ý Ý ÝZ k k jk Z j kž /
k	S k�S j	S

5.16Ž .

˜˜�� P X 	 � � 	 � X	 ,Ý ÝZ j j jk kž /
j	S k�S

˜ ˜ ˜Ž .where 	 � 	 with 	 � 	 � Ý � 	 .j j	 S j j k � S jk k
˜
 4 Ž . Ž Ž ..Let T � k , . . . , k be a set of indexes such that Z � Z 	 BB LL Z .1 t k k 	 T

Then for j � T there are numbers � , k 	 T such that Z � Ý � Z .k j j k 	 T k j k
Thus

m
�Z�* � Z �Ý j j

j�1

� Z �� � � Z ��Ý Ý Ýj j k j k jž /
j	T j�T k	T

5.17Ž .

� � ˜� Z � � � � � Z� ,˜Ý Ýk k k j jž /
k	T j�T

Ž . � �where � � � with � � � � Ý � � .˜ ˜ ˜k k 	 T k k j� T k j j

˜ ˜ ˜ t ˜ tŽ . Ž .�Suppose that Xa � Zb � 0. Then since X Z � X P Z � 0, wej j	 S Z k k 	 T
˜ 2 t ˜ t ˜ ˜� � Ž .have Xa � a X Xa � 0 � a � 0 � Zb � 0 � b � 0. i thus follows from

Ž . Ž .5.15 � 5.17 .
Ž . Ž .Since z � z � z	 � z	 , i 	 S , we have z �˜i ik 1� k � m j jk 1� k � m j i

Ž . Ž .z � z	 � z	 , i 	 S . �˜ik k 	 T jk k 	 T j j

The proof of Theorem 2.3 is fairly long; therefore we divide it by lemmas.

Ž . Ž .LEMMA 5.1. Let f x � f x , . . . , x be a differentiable function, where1 s
Ž . 
 n � � 4x � x , 1 � i � s; R � x 	 R : x � x � � , 1 � i � s , wherei i j 1� j� n i 0 i iis Ž . Ž .n � Ý n , � � 0, 1 � i � s. Let x* 	 R such that f x* � max f x .i�1 i i x 	 R

Then, x* � � R provided thati

� ft5.18 x � x � 0, x 	 � R ,Ž . Ž .i 0 i i� xi

Ž . 
 n � � �where � f�� x � � f�� x , and �R � x 	 R : x � x � � , x �i i j 1� j� n i i 0 i i i�i
� 4x � � , i� 
 i .0 i� i�
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Ž . � � sPROOF. For any x 	 � R , define the function x u : 0, 1 � R as follows:i
Ž . Ž . Ž . Ž . Ž Ž .. Ž .x u � x � u x � x , x u � x , i� 
 i. Let � u � f x u ; then �� ui 0 i i 0 i i� i�

ni Ž .Ž Ž ..Ž . Ž . Ž .tŽ .Ž .� Ý � f�� x x u x � x , hence �� 1 � x � x � f�� x x � 0.j�1 i j i j 0 i j i 0 i i
Ž Ž .. Ž . Ž . Ž .Therefore, there is 0 � u � 1 such that f x u � � u � � 1 � f x , and

� Ž . � � � � Ž . � � �x u � x � u x � x � � , x u � x � x � x � � , i� 
 i. There-i 0 i i 0 i i i� 0 i� i� 0 i� i�

Ž .fore, x u 	 R 
 � R , hence x* � � R . �i i


 � � � � 24Given 0 � � � 1, let R � � : � � � � � , � � � � � , � R �˜ ˜� 0 0 � , 0

 � � � � 24 
 � � � �� : � � � � � , � � � � � , � R � � : � � � � � , � � � �˜ ˜ ˜ ˜ ˜ ˜0 0 � , k k 0 k l 0 l

� � 24� , l 
 k, � � � � � , 1 � k � n.0

LEMMA 5.2. Under the conditions of Theorem 2.3 we have that whenever
Ž �1�2 �1�2 .� � � G A G � d,M max 2

sup l � � l �
 4Ž . Ž .C C 0
�	� R� , 0

2' '� � Mn O 1 � � M O 1Ž . Ž .P P
5.19Ž .

� � 2�2 M � � � G�1�2A G�1�2 � d ,Ž . Ž .Ž .M max 2

� Ž . Ž .� Ž .where d � max sup H � � H � , and the O 1 ’s do notR1� j� M � ��� � � � j j 0 P0

depend on � .

PROOF. For any � 	 �R , we have� , 0

t
� lC

l � � l � � � � �Ž . Ž . ˜ ˜Ž .C C 0 0ž /�� �˜ 0

t
� lC� � � �Ž .0ž /�� �0

5.20Ž .

21 � l 1Ct� � � � � � � � I � I � I ,Ž . Ž .0 0 11 12 222 2�� �	

Ž .where �	 � � � t � � � for some 0 � t � 1.0 0
Ž . Ž Ž j. � .Given � , � l ��� � ���� log f y � , 1 � j � M are independent with,C, j

Ž . Ž � .by i , E � l ��� � � 0. Therefore,C, j

22 n� l � lC C
E � E E �Ý 0ž /ž /�� ���˜ ˜
 00 k �k�1 0

2n M � lC , j� E E �Ý Ý 0ž /��̃
 0k �k�1 j�1 0

2M � hj2� �� z	 E � KM ,˜Ý j ž /� s1 sj�1 0
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Ž .where K is given by 2.20 . Thus,
� lC '� � � �5.21 I � � � � � � Mn O 1 .Ž . Ž .˜ ˜11 0 P�� �˜ 0

Similarly, one can show
2

� lC
E � r � 1 KM .Ž .ž /�� �0

Thus,
� lC 2'� � � �5.22 I � � � � � � M O 1 .Ž . Ž .12 0 P�� �0

2 2 t z	 0˜ jŽ . Ž .On the other hand, we have � l ��� � C H � C , where C � 0 IC, j j j j j r� 1

Ž . Ž .and H � is defined by 2.16 . Thus,j

2 M M� lC , j t t� �� C E H � � C � C H � � E H � � CŽ . Ž . Ž .Ž . Ž .Ý Ý Ž .j j 0 0 j j j 0 j 0 0 j2�� �	 j�1 j�1

M
t� C H �	 � H � CŽ . Ž .Ž .Ý j j j 0 j

j�1

5.23Ž .

� A � A � A .1 2 3

Ž .It is easy to show, by i , that
2� h � hj jt t5.24 C E � C � �C Var � C .Ž . j 0 j j 0 j2 ž /ž / � ss� s s0 0

It follows that
M tz	 z 	 0˜ ˜j j5.25 A � �� � � �� G.Ž . Ž . Ý1 M 0 Mž /0 Ir�1j�1

In addition, we have

5.26 A � � G�1�2A G�1�2 G ,Ž . Ž .2 max 2

M
t5.27 A � � H �	 � H � C C � dG.Ž . Ž . Ž .Ž .Ý3 max j j 0 j j

j�1

Ž . � � Ž .Note that � A � A for any symmetric matrix A. 5.19 thus followsRmax
Ž . Ž . Ž . Ž .easily from 5.20 � 5.23 and 5.25 � 5.27 . �

� �LEMMA 5.3. Suppose X , . . . , X are independent with EX � 0 and X �1 n i i
B, 1 � i � n, where B � 0. Then for any 0 � � � 1�B and a � EX 2, 1 � i �i i
n,

n 2�
P X � � A � 2 exp � A ,Ý i ž /ž /ž / 2i�1

where A � Ýn a .i�1 i
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� Ž . �The proof is straightforward e.g., Stout 1974 , Lemma 5.4.1 .

COROLLARY 5.1. Suppose X , . . . , X are independent with EX � 0 and1 n i
EX 2 � �, 1 � i � n. Then for any � � 0 and a � EX 2, 1 � i � n,i i i

n n2� 1
� �P X � 2� A � 2 exp � A � E X 1 ,Ý Ýi i Ž � X � �1�2 � .ž / iž /ž / 2 � Ai�1 i�1

where A � Ýn a .i�1 i

PROOF. We have X � U � V , where U � X 1 � EX 1 , V �i i i i i Ž � X � �1�2 � . i Ž . . . . ii
Ž � n � . Ž Ž .2 .X � U . By Lemma 5.3, P Ý U � � A � 2 exp � ��2 A . By Chebyshevi i i�1 i

Ž � n � . Ž . n � �inequality, P Ý V � � A � 2�� A Ý E X 1 . The result thusi�1 i i�1 i Ž � X � �1�2 � .i

follows. �

LEMMA 5.4. Under the conditions of Theorem 2.3 there is a set S with�

2 B3� lc 2 l Ž6�2 l .�P S � � 2n exp � � min sŽ . Ý� 0 M , k½ ž /4 1�k�nl�1
5.28Ž . Ž3�l . Ž3�l . ls max V �Ž .M , k 1� k � n k� max ,Ž6�2 l . l 5ž / ž /s � B1�k�n M , k 3�l

� Ž Ž2.Ž . � . �where B � 1 � max E � � � and B � 1 � max1 1� j� M j 0 0 2 1� j� M
Ž Ž2.Ž . � .var � � � such that on S ,j 0 0 �

� lC�2˜� �max Z	 sup � � �˜ ˜Ž .k k 0 k½ 5��1�k�n ˜�	� R k� , k

tM , k2� � �� � d � b maxM 1 1 Ž2.½ ž /s1�k�n M , k

Ž4.sM , k�� 2 B � 2 B max1 2 Ž2.ž /s1�k�n M , k

5.29Ž .

Ž1.sM , k� r � 1 b max ,Ž . 2 Ž2. 5ž /s1�k�n M , k

where

� Ž2. �b � max sup � � ,Ž .1 j
1�j�M � ���� ��0

2� hj
b � max max sup ,2

t� s � s1�j�M 2�u�r�2 ˜Ž .� � 1 u z 	 � , 	 , ���� �� ˜ ˜j0

and
� Ž2. Ž2. �d � max sup � � � � � .Ž . Ž .1 j j 0

1�j�M � ���� ��0
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PROOF. For any 1 � k � n and � 	 R we have� , k

2� l � l � l2C C C
� � � � � � � � � � �˜ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .k 0 k k 0 k k 0 k 2�� �� ��˜ ˜ ˜k k k Ž .� � k0

2� lC� � � � � � �˜ ˜ ˜ ˜Ž . Ž .Ý k 0 k l 0 l �� ��˜ ˜k l Ž .� kl
k5.30Ž .
2� lC� � � � � � �Ž .˜ ˜Ž .k 0 k 0�� ��˜k � Žk .

� I � I � I � I ,k1 k 2 k3 k4

Ž .where � � � � t � � � for some 0 � t � 1.Žk . 0 k 0 k
Ž . Ž Ž1.Ž . � . 2 Ž Ž2.Ž . � . 2It follows from 5.24 that var � � � z 	 � �E � � � z 	 ,˜ ˜j 0 0 jk j 0 0 jk

1 � k � n. Thus,

2
� lC , j Ž1. 2 2�E � � var � � � z 	 � B z 	 .Ž . ˜ ˜Ž .0 j 0 0 jk 1 jkž /��̃k � 0

n 
 �Ž .Ž . � 2 Ž2. 4Let S � � � l ��� � � 2� B s . Then, on S ,˜� , 1 k�1 C k 0 1 M , k � , 1

� � 3 Ž2.5.31 I � 2� B sŽ . k1 1 M , k

and by Corollary 5.1,

n � lCc 2 Ž2.�P S � � P � 2� B s �Ž . Ý� , 1 0 1 M , k 0ž /��̃k �k�1 0

4n �
Ž2.� 2 exp � B sÝ 1 M , kž /4k�1

5.32Ž .
M1

Ž1.� � � � �Ž1. 2� z	 E � � 1 �Ž .˜Ý ž /jk j 0 Ž � z	 � Ž� . � �1�2 � . 0˜2 Ž2. jk j 0� B s1 M , k j�1

4 Ž1. 2 Ž1.n � V � sŽ .k M , kŽ2.� 2 exp � B s � .Ý 1 M , k 2 Ž2.ž / ž /ž /4 � B S1 M , kk�1

Next, we have

2 M� lC 2 Ž1. Ž2.�E � � � z 	 var � � � � �� sŽ .˜ Ž .Ý0 jk j 0 0 M M , k2ž /��̃k � j�10

and
2� lC , j 4var � � B z 	 .˜0 2 jk2ž /��̃k � 0
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n 
 �Ž 2 2 .Ž . ŽŽ 2 2 .Ž . � . � Ž4. 4Let S � � � l ��� � � E � l ��� � � � 2� B s .˜ ˜� , 2 k�1 C k 0 C k 0 0 2 M , k
Since

2 2 M� l � lC C 2 Ž2. Ž2. Ž2.� �� � z 	 � � � � � � d s ,Ž .˜ Ž .Ý jk j Žk . j 0 1 M , k2 2�� ��˜ ˜�Žk .k k � j�10

we have, on S , that� , 2

5.33 I � � 2 �� sŽ2. � 2� B sŽ4. � d sŽ2.Ž . Ž .k 2 M M , k 2 M , k 1 M , k

and by Corollary 5.1,

2 2n � l � lC Cc Ž4.�P S � � P � E � � 2� B s �Ž . Ý� , 2 0 0 2 M , k 02 2ž /�� ��ž /˜ ˜�k k �k�1 0 0

2n M� 1
Ž4. 2 Ž2.�� 2 exp � B s � z 	 E � �Ž .˜Ý Ý ž2 M , k jk j 0Ž4.ž /4 � B s2 M , kk�1 j�1

5.34Ž .
Ž2. � � �2�E � � � 1 �Ž .Ž . /j 0 0 Ž z 	 � � � � � � � � � �1�2 � . 0˜ jk

2 Ž2. Ž2.n � V � sŽ .k M , kŽ4.� 2 exp � B s � .Ý 2 M , k Ž4.ž / ž / ž /4 � B s2 M , kk�1

Also, we have

2M � lC , j 2� �5.35 I � � � � � � � � � b t ,Ž . ˜ ˜ ˜ ˜Ž . Ž .Ý Ýk3 k 0 k l 0 l 1 M , k�� ��˜ ˜k l �l
k j�1 Žk .

2 2r M M� l � lC , j C , j2� �I � � �Ý Ý Ýk4 ˜ �� ��ž /˜�� �	5.36 ˜Ž . k �u�1 j�1 j�1k u � Žk .Žk .

� � 3 r � 1 b sŽ1. .Ž . 2 M , k

Ž . Ž . Ž . Ž .Inequalities 5.28 and 5.29 then follow by combining 5.30 � 5.36 and
letting S � S � S . �� � , 1 � , 2

Ž .PROOF OF THEOREM 2.3. iv implies that there is a sequence � such thatM
0 � � � 1, � � 0 andM M

1�2 ln log n
�2� � max(M 2 l Ž6�2 l .ž / ž /½M � min sl�1, 2 M 1� k � n M , k

1�lŽ3�l . ln max V �Ž .1� k � n k M� � � 0.M Pl 5ž /�M
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Let � � � � . Then we haveM M M

�1 1�2 1�2�2� � n�M � � n�M �� � 0,Ž . Ž . Ž .Ž .M M M M P

log n�� 2 l min sŽ6�2 l . � log n�� 2 l min sŽ6�2 l . � 2 l � 0,M M , k M M , k M Pž /
1�k�n 1�k�n

n max V Ž3�l . � l �� l � n max V Ž3�l . � l �� l � l � 0.Ž . Ž .k M M k M M M Pž /
1�k�n 1�k�n

Ž .Replace � in Lemmas 5.2 and 5.4 by � . ii implies that there is aM
Ž . Ž .constant C such that B � B � b � b � C when � � � . ii and iii imply1 2 1 2 M

that there is D � 0 such that d � D� when � � � . Thus d �� � d�� �M M 1 M M
Ž .D� � 0. Note that b , b , d and d all depend on � .M 1 2 1 M

Ž0. 
 Ž �1�2 �1�2 . 4By Lemma 5.2, on S � � � � G A G � d , we haveM M max 2

sup l � � l �
 4Ž . Ž .C C 0
�	� R� , 0M

1 � G�1�2A G�1�2 dŽ .max 22� � � M � 1 � �M M ½ ž /2 � �M M

n
�2 � � O 1Ž .( M M P 5ž /M

5.37Ž .

1
2� � � M � � o 1 .Ž .M M Pž /2

By Lemma 5.4, on SŽ1. � S , we haveM � M

� lC�2˜� �max Z	 sup � � �˜ ˜Ž .k k 0 k½ 5½ 5��1�k�n ˜�	� R k� , kM

d t1 M , k2� � � �1 � � b max �M M 1 MŽ2.½ ž /� s1�k�nM M , k

Ž4.sM , k�� 2 B � 2 B maxM 1 2 Ž2.ž /s1�k�n M , k

5.38Ž .

Ž1.sM , k� r � 1 b maxŽ . 2 Ž2. 5ž /s1�k�n M , k

� � 2 � �1 � o 1 .Ž .Ž .M M P

Finally, we have

1 Ž0. c � 1 �1 �2 �1�2 � 0ŽS . ŽŽ� ŽG A G .� � .�Žd � � .�1. PM max 2 M M
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and

log n 1cŽ1. �P S � � 4 exp � � o 1Ž .Ž .ž /M 0 Pž /½ o 1 4Ž .P

n max V Ž3�l . � lŽ .1� k � n k M�O 1 � 0.Ž .P Pl 5ž /�M

Ž c .Therefore, by the dominated convergence theorem, P S � 0, where S �M M
SŽ0. � SŽ1..M M

ˆ ˆ
 4Let � be the maximizer of l over R . Then by Lemma 5.1, � � � R �C � �M M

 Ž . 4 
 Ž . 4 
 4 Ž .S � o 1 � 1�2 � o 1 � 1 � � � � , where the two o 1 ’s are as inM P P M P

ˆ o ˆŽ . Ž . Ž .5.37 and 5.38 , respectively. Thus P � 	 R � 1. Note that � satisfies�MˆŽ .Ž .� l ��� � � 0. �C

Ž 2 .PROOF OF LEMMA 3.1. Suppose � � N 0, � ; then it is easy to show that

22 � 1 �
� �5.39 P � � � � 2 exp � , � � 0.Ž . Ž . ( ž / ½ 5ž /� � 2 �

2 2 Ž .Let � � max � . By 5.39 ,1� k � m k

m

� � � �P � � a � P � � aŽ . Ž .ÝN k N
k�1

22 � 1 aN� 2 m exp �( 2½ 5ž /� a 2 �N

2 2 22 1 a � a log mN N 2� 2 exp � 1 � log � 2� � 0.( 2 2 2 2½ 5ž / ž /� 2 � a � aN N

�

ŽŽ .Ž ..PROOF OF LEMMA 3.2. It is easy to see that E � h��� � , Y � 0. We
Ž .shall first show that � � � 0, � � . Suppose that this is not true. Then there
Ž Ž .. Ž . Ž Ž .. Ž .is � such that E exp u � v � , � � � �E exp u � v � , � , 0 � k � r,k k k k

Ž . Ž . Ž Ž .. Ž . Žwhere u � � � � �� k � r log 1 � exp � � �� , v � , � � k � r exp �k k
. Ž Ž ..� �� � 1 � exp � � �� . By integration by parts we have

E exp u � v � , � � ��1E� � , � � ,Ž . Ž . Ž .Ž .k k k
5.40Ž .

E exp u � v � , � � � ��1E� � , � � 2 � 1 ,Ž . Ž . Ž .Ž . Ž .k k k

Ž . Ž Ž ..k Ž Ž ..rwhere � � , � � exp � � �� � 1 � exp � � �� . Therefore we havek

5.41 E� � , � � 2 � �� � 1 � 0, k � 0, 1, . . . , r .Ž . Ž . Ž .k
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2 2' 'Ž .Ž . Ž .Ž . Ž .Let � � 1�2 � � � � 4 , � � 1�2 � � � � 4 . By 5.41 and the1 2
fact that r � 2 we have

� 2 � �� � 1 20 � E exp � � ��Ž .Ž .r
1 � exp � � ��Ž .Ž .

2 2� � �� � 1
� exp � � �� E exp � � ��Ž .Ž .Ý rjž / 1 � exp � � ��Ž .Ž .j�1

2 2� � �� � 1
� exp � � �� EŽ .Ł rjž / 1 � exp � � ��Ž .Ž .j�1

2
�r� E 1 � exp � � �� � � � exp � � �� � exp � � �� � 0,Ž . Ž .Ž . Ž . Ž .Ž .Ł j j

j�1

which is a contradiction.
Ž . Ž . 2 2 Ž .Let g � , k � E� � , � . Let u, v 	 R such that u � v � 1. By 5.40 it isk

easy to show that
t � hu uVar � , YŽ .ž / ž /ž /v v��

r
2r�2 2� � min g � , k E� � , � v� � u� � v .Ž . Ž . Ž .Ž .Ý k½ 5ž /k0�k�r k�0

5.42Ž .

On the other hand, it is easy to show that there is a constant C such that
r

22E� � , � v� � u� � vŽ . Ž .Ž .Ý k
k�0

r
22� E� � , � v� � u� � v 1Ž . Ž .Ž .Ý k Ž � � � � � � � �� .

k�0
5.43Ž .

�2

� r � 1 C exp � .Ž . 2ž /4�

� � Ž � � . Ž � � .Suppose that � � � and v 
 0. Let � � � � � � �� , � � � � � �� .1 1 2 2
� � � � 2 Ž .Ž Ž . Ž ..By the fact that for � � � �� , Ł � � � exp �� � exp �� � 0 andj�1 j j

continuity, it is easy to show that

�r 2E 1 � exp � � �� v� � u� � vŽ .Ž . Ž .

2

� exp � � �� � exp � � �� 1Ž . Ž .Ž .Ł j Ž � � � � � � � �� .
j�1

�r2 �� �� v e E 1 � exp � � ��Ž .Ž .½5.44Ž .

2

� � � � exp �� � exp �� 1Ž .Ž . Ž .Ž .Ł j j Ž � � � � � � � �� . 5
j�1

�r � �� 2 � exp �2 r � 1 � ,Ž .Ž .
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for some constant � � 0. On the other hand, let

� 2 �� � max E� � , � v� � u� � v 1 .Ž . Ž .k Ž � � � � � � � �� .
0�k�2

Ž .Then, the lhs of 5.44 equals

2E� � , � v� � u� � v 1Ž . Ž .2 Ž � � � � � � � �� .

2

� exp � � �� E� � , � ���Ž .Ž .Ý j 1ž /j�15.45Ž .
2

� exp � � �� E� � , � ���Ž .Ž .Ł j 0ž /j�1

� 4� e3 � � � .

Ž . Ž . Ž .Combining 5.42 � 5.45 and the fact that g � , k � 1, we have that, when
� �� � � ,

t � hu uVar � , YŽ .ž / ž /ž /v v��

1
�2 Žr�2. 2 � �� 2 � exp �2 2r � 5 �Ž .Ž .2�5.46Ž .

2�
� r � 1 C exp �Ž . 2ž /4�

2 2 Ž .for all u, v such that u � v � 1 and v 
 0. By continuity, 5.46 holds even
Ž 2 .if v � 0 and u � 1 . The rest of the proof is easy to complete. �

PROOF OF LEMMA 3.3. It is easy to show that for any integers m, n, l � 0
and b � 0,

m
exp � � ��Ž .Ž . l� �sup exp n � m � E �Ž .Ž . n½ 51 � exp � � ��Ž .Ž .0���b

l� ��E exp m � n �� � � 0,Ž .Ž .
 4

as � � �, and

m
exp � � ��Ž .Ž . l l� � � �sup exp �m� E � � E exp m�� � � 0,Ž . Ž .
 4n½ 51 � exp � � ��Ž .Ž .0���b
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as � � ��. It is then easy to demonstrate that for any integers k, l, r � 0,
0 � s � t and b � 0, the expression

�1k k�sexp � � �� exp � � ��Ž . Ž .Ž . Ž .l l� � � �5.47 E � E �Ž . r r�t½ 5 ½ 5ž /1 � exp � � ��Ž .Ž . 1 � exp � � ��Ž .Ž .

is bounded for � 	 R, 0 � � � b. The conclusion then follows, because any
Ž .derivative of h � , k , up to third, is a linear combination of terms of the form

Ž .5.47 or products of terms of such a form. �
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