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ASYMPTOTIC DISTRIBUTIONS OF THE MAXIMAL DEPTH
ESTIMATORS FOR REGRESSION AND MULTIVARIATE

LOCATION

By Zhi-Dong Bai1 and Xuming He2

National University of Singapore and University of Illinois

We derive the asymptotic distribution of the maximal depth regres-
sion estimator recently proposed in Rousseeuw and Hubert. The estimator
is obtained by maximizing a projection-based depth and the limiting distri-
bution is characterized through a max–min operation of a continuous pro-
cess. The same techniques can be used to obtain the limiting distribution
of some other depth estimators including Tukey’s deepest point based on
half-space depth. Results for the special case of two-dimensional problems
have been available, but the earlier arguments have relied on some special
geometric properties in the low-dimensional space. This paper completes
the extension to higher dimensions for both regression and multivariate
location models.

1. Introduction. Multivariate ranking and depth have been of interest
to statisticians for quite some time. The notion of depth plays an important
role in data exploration, ranking, and robust estimation; see Liu, Parelius and
Singh (1999) for some recent advances. The location depth of Tukey (1975) is
the basis for a multivariate median; see Donoho and Gasko (1992). Recently,
Rousseeuw and Hubert (1999) introduced a notion of depth in the linear re-
gression setting. Both measures of depth are multivariate in nature and de-
fined as the minimum of an appropriate univariate depth over all directions of
projection. The maximal depth estimator is then obtained through a max–min
operation which complicates the derivation of its asymptotic distribution. The
present paper focuses on the asymptotics of maximal depth estimators.

First, we recall the definition of regression depth. Consider a regression
model in the form of yi = β0 + x′i�1 + ei where xi ∈ Rp−1, �′ = �β0��

′
1� ∈ Rp

and ei are regression errors. A regression fit � is said to be a nonfit to the
given data Zn = ��xi� yi�� i = 1�2� 	 	 	 � n	 if and only if there exists an affine
hyperplane V in the design space such that no xi belongs to V and such that
the residuals ri > 0 for all xi in one of its open half-spaces and ri < 0 for
all xi in the other open half-space. Then, the regression depth rdepth���Zn�
is the smallest number of observations that need to be removed (of whose
residuals need to change sign) to make � a nonfit. To put it into mathematical
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formulation, let w′
i = �1�x′i�, ri��� = yi − w′

i�. Following Rousseeuw and
Hubert (1999), we define

rdepth���Zn�

= inf

u
=1
v∈R

min

{
n∑
i=1

I�ri����u′xi − v� > 0��
n∑
i=1

I�ri����u′xi − v� < 0�
}
	

(1.1)

The maximal depth estimate �̂n maximizes rdepth���Zn� over � ∈ Rp. For
convenience, we reformulate the objective function (1.1) as follows. Denote
Sp = �� ∈ Rp� 
�
 = 1	 as the unit sphere in Rp. Then it is easy to show
that

rdepth���Zn� =
n

2
+ 1

2
inf
�∈Sp

n∑
i=1

sgn�yi −w′
i��sgn�w′

i���(1.2)

where sgn�x� is the sign of x. In the rest of the paper, we consider the problem
of

sup
�∈Rp

inf
�∈Sp

n∑
i=1

sgn�yi −w′
i��sgn�w′

i��	(1.3)

Note that the deepest point based on Tukey depth for multivariate data has
a similar formulation. Given n observations Xn = �x1�x2� 	 	 	 �xn� in Rp, the
deepest point �̂n solves

sup
�∈Rp

inf
�∈Sp

n∑
i=1

I��′�xi − �� > 0�

= 1
n
+ 1

2
sup
�∈Rp

inf
�∈Sp

n∑
i=1

sgn��′�xi − ���	
(1.4)

Both (1.3) and (1.4) involve a max–min operation applied to a sum of data-
dependent functions. Common techniques can be used to derive the asymptotic
distributions of these estimators. In fact, the asymptotic distributions of both
estimators have been derived for the case of p = 2 by He and Portnoy (1998)
and Nolan (1999), respectively. The limiting distribution can be characterized
by the random variable that solves max� min�∈Sp�W��� + ����′�� for some
Gaussian process W and smooth function �. The difficulty in treating the
higher-dimensional case lies mainly in proving uniqueness of the solution � to
the above max–min problem. Both works cited above used arguments based on
two-dimensional geometry and direct extensions to higher dimensions appear
difficult. See Nolan (1999) for an explicit account of the difference between the
two-dimensional and the higher-dimensional structures.

Limiting distributions as characterized by an arg-max or arg-min functional
are not that uncommon in the statistics literature. A good recent reference is
Kim and Pollard (1990). The problem we are concerned with here is com-
plicated by the additional optimization over � ∈ Sp. This type of limiting
distribution comes up naturally from the use of projections. We focus on the
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maximal depth regression and the deepest point (as a location estimate) in
the present paper due to their importance as a natural generalization of me-
dian for regression and multivariate data. Both estimators enjoy some of the
desirable properties that we expect from the median. For example, they are
affine equivariant, have positive breakdown point (higher than that of an M-
estimator), and are root-n consistent to their population counterparts. For
confidence bands based on depth, see He (1999).

In Section 2, we show that the maximal depth regression estimate is con-
sistent for the conditional median of y given x if it is linear. The conditional
distribution of y given x may vary with x. This property is shared with the
least absolute deviation regression (LAD), commonly interpreted as the me-
dian regression; see Koenker and Bassett (1978). Because the breakdown ro-
bustness of the LAD is design-dependent [cf. He, Koenker and Portnoy (1990)],
the maximal depth regression has the advantage of being robust against data
contamination at the leverage points.

In Section 3, we derive the asymptotic distribution of the maximal depth
estimate. In line with most other published results on the asymptotic distribu-
tions of regression estimators and to avoid being overshadowed by notational
and technical complexity, we work with a more restrictive regression model
with i.i.d. errors in this section. An almost sure LIL-type result for the estima-
tor is also provided in this section. We then present the limiting distribution
of the deepest point for multivariate data in Section 4, extending the work of
Nolan (1999). The Appendix provides all the proofs needed in the paper. In
particular, we provide a means to establish the uniqueness of solution to a
max–min problem that arises from the projection-based depth in regression
as well as multivariate location models. For computation of the regression and
location depth, we refer to Rousseeuw and Struyf (1998).

2. Consistency of maximal depth regression. We assume that the
conditional median of y given x is linear, that is, there exists �∗ ∈ Rp such
that

Median�yx� = w′�∗�(2.1)

where w′ = �1�x′�. For a set of n design points x1�x2� 	 	 	 �xn, independent
observations of yi are drawn from the conditional distributions of y given
x = xi.

If the conditional distribution of y−w′�∗ given x is the same for all x, then
the data can be modeled by the usual regression with i.i.d. errors. The above
framework includes the case of random designs so that the data �xi� yi� come
from the joint distribution of �x� y� as well as nonstochastic designs.

Since the maximal depth estimate �̂n is regression invariant, we assume
without loss of generality that �∗ = 0 so that the conditional median of y
is zero. To show that �̂n → 0, conditions on the design points and the error
distributions are needed. For this purpose, let Fi be the conditional c.d.f. of y
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given x = xi. Also define for any c > 0,

Qn�c� = inf
1∈Sp

n−1
n∑
i=1

I�w′
i1 > c�	(2.2)

We now state our assumptions as follows. If the design points are random, then
all the statements involving wi are meant to be in the almost sure sense:

(D1) For some b <∞, max1≤i≤n 
wi
 = O�nb�.
(D2) For any sequence an → 0, limn→∞Qn�an� = 1.
(D3) For some A <∞, n−1∑n

i=1�1−Fi�nA� +Fi�−nA�	 → 0 and
maxi≤n supx�Fi�x+ n−A� −Fi�x− n−A�� → 0 as n→∞.

(D4) For any r > 0, η�r� = inf i≥1 min�1− 2Fi�r�� 1− 2Fi�−r�	 > 0.

Condition (D2) is to avoid the degenerate case for the design points. This
condition is satisfied if �xi	 is a random sample from a continuous multivariate
distribution. Condition (D3) includes a weak requirement of the average tail
thickness and a weak uniform continuity of all the conditional distribution
functions, but (D4) requires that the error mass around the median is not
too thin, which is satisfied if each Fi has a density with a common positive
lower bound around the median. The following lemma is the basis for our
consistency result.

Lemma 2.1. Under conditions (D1)–(D3), we have with probability 1,

sup
�∈Rp��∈Sp

∣∣∣∣n−1
n∑
i=1

�sgn�yi −w′
i��sgn�w′

i��

−E sgn�yi −w′
i��sgn�w′

i��	
∣∣∣∣→ 0�

as n→∞.

Lemma 2.1 is a standard uniform approximation result except that the
approximation is now over the whole space for �. This is made possible by the
fact that when 
�
 is large the function sgn�yi−w′

i�� does not change much.
A proof of Lemma 2.1 for the possibly nonstochastic designs wi is given in the
Appendix.

By (D2) and (D4), for any given c > 0, there is a constant r > 0 such that
Qn�r/c� > 1/2 for sufficiently large n. Consequently, we have

inf

�
≥c

n−1
n∑
i=1

∣∣1− 2Fi�w′
i��

∣∣
≥ inf

1∈Sp
n−1

n∑
i=1

min�1− 2Fi�r�� 1− 2Fi�−r�	I�w′
i1 > r/c�

≥ η�r�Qn�r/c� > 1
2η�r�

(2.3)
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and with �∗ = 0 we have

n−1
n∑
i=1

E sgn�yi −w′
i��sgn�w′

i�� = −n−1
n∑
i=1

∣∣1− 2Fi�w′
i��

∣∣ < − 1
2η�r�

for sufficiently large n. Thus, inf �∈Sp n−1∑n
i=1E�sgn�yi−w′

i��sgn�w′
i��	 < 0.

On the other hand, E�sgn�yi�sgn�w′
i��	 = 0 for any � ∈ Sp, so

inf
�∈Sp

�n−1
n∑
i=1

E sgn�yi�sgn�w′
i��	 = 0	

Therefore, the maximal depth estimator has to be in the ball ��: 
�
 < c	.
The consistency of �̂n follows from the fact that c can be arbitrarily small. We
state the result formally as follows.

Theorem 2.1. Under conditions (D1)–(D4), the maximal depth regression
estimate �̂n → �∗, almost surely.

Conditions (D1)–(D4) are sufficient but not necessary. It helps to note that
the maximal depth regression estimator is consistent for the conditional me-
dian of y given x whenever the median is linear in x. This is a property
shared with L1 regression but not other M-estimators. The limit of other
M-estimators can only be identified with some additional information on the
conditional distributions such as symmetry.

3. Limiting distribution of the maximal depth regression. In this
section we derive the asymptotic distribution of the maximal depth estimator
for the usual regression model

yi = β0 + �′1xi + ei� i = 1�2� 	 	 	 � n�

where xi is a random sample from a distribution in Rp−1 with finite second
moments, ei’s are independent of each other and of xi’s with a common distri-
bution function F and density function f whose median is zero. We continue
to use the same notation as in Section 2.

The following Lemma 3.1 is important for finding the limiting distribution
of �̂n. First, we itemize our assumptions for easy reference.

(C1) E
x
2 ≤ B and sup1∈Sp P�w′1 ≤ a
w
� ≤ Baδ for some δ ∈ �0�2� and
B <∞.

(C2) F�x+ r� −F�x� ≤ Brδ for any x and r.
(C3) As r→ 0, F�r� −F�0� = f�0�r+ o�r� with f�0� > 0.
(C4) E�sgn��′1ww′�2�	 is continuous in �1��2 ∈ Sp, and E�w sgn�w′��	 is

continuously differentiable in � ∈ Sp.

In typical cases, the constant δ = 1 in (C1) and (C2).

Remark 3.1. It is clear that conditions (D2) and (D4) are implied by (C1)
and (C3). For independent and identically distributed errors whose distribu-
tion F has no positive mass at its median, condition (D3) is trivial. Condition
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(D1) is true if E
x
1/b <∞. Thus, the maximal depth estimator is consistent
under conditions (C1)–(C3).

Remark 3.2. If xi’s are not random or the ei’s may have different distri-
butions Fi, the results of this section remain true if the above four conditions
are replaced by:

(C1′) n−1∑n
i=1 wiw

′
i → A, a positive definite matrix, as n→∞, and

sup1∈Sp n−1∑n
i=1 I�w′

i1 ≤ a
wi
� ≤ Baδ for some δ ∈ �0�2� and B <∞.
(C2′) For any x and r, n−1∑n

i=1 Fi�x+ r� −Fi�x� ≤ Brδ.
(C3′) As r → 0, maxi≤n Fi�r� − Fi�0� − fi�0�r = o�r�, as r → 0, and f̄ =

infn f̄n�0� = infn n−1∑n
i=1 fi�0� > 0.

(C4′) The limit of n−1∑n
i=1 wi sgn�w′

i�� (as n→∞) exists and is continuously
differentiable in � ∈ Sp, and the limit of n−1∑n

i=1 sgn��′1wi�sgn�w′
i�2�

exists uniformly and is continuous in �1��2 ∈ Sp.

The proofs for our results in this section under conditions (C1′)–(C4′) are
almost the same as those under (C1)–(C4) with averaging in place of expecta-
tions of wi. Let

Sn����� =
n∑
i=1

��sgn�ei −w′
i�� − sgn�ei��sgn�w′

i��	

−E��sgn�ei −w′
i�� − sgn�ei��sgn�w′

i���	
(3.1)

In this paper, we use an � bn � cn to mean an/bn → 0 and bn/cn → 0.

Lemma 3.1. If (C1) and (C2) hold, then for any constant ν > 0 and any
bounded sequence 'n � n−1/�δ+2v�1+δ��, we have

sup

�
≤'n��∈Sp

Sn����� = Op�n1/2'δ/2−νn �	

If we further assume 'n → 0 slowly or regularly in the sense that there
exist a constant α > 0 and a function L�x� such that 'n = n−αL�n� and
L�bx�/L�x� → 1 as x→∞ for any b > 0, then

lim sup
n→∞

sup

�
≤'n��∈Sp

Sn�����/�2n'δn log log n�1/2 ≤ 1 a.s.

In the Appendix, we actually prove a more general lemma in the form
of an exponential inequality. This is often useful for asymptotic analyses in
statistics. General results of this type may also be found in Pollard [(1984),
page 144]. The following lemma allows for nonrandom designs as in He and
Shao (1996), but is proved using a different chaining argument.

Lemma 3.2. Suppose that 'n > 0 is a sequence of constants andD is a com-
pact set in Rp. For each ����� with 
�
 ≤ 'n and � ∈ D, �W1������W2������
	 	 	 �Wn�����	 is a sequence of independent random variables of mean zero
satisfying:
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(L1) For some constants δ > 0 and C1 > 0,

1
n

n∑
i=1

EWi��1��1� −Wi��2��2�2 ≤ C1�
�1 − �2
 + 
�1 − �2
�δ	

(L2) For some constant C2 > 0,∣∣Wi��1��1� −Wi��2��2�
∣∣ ≤ C2 if 
�j
 ≤ 'n and �j ∈ D� j = 1�2	

(L3) For some constant C3 and for any d > 0, 
�1
 ≤ 'n and �1 ∈ D,

1
n

n∑
i=1

E sup

�1−�
+
�1−�
≤d

∣∣Wi����� −Wi��1��1�
∣∣2 ≤ C3d

δ	

Then we have the following results:

(i) If 'n → 0 and 'δn log 'n � εn �
√
n'

δ�1+ν�
n for some ν ∈ �0�1�, then,

for any a > 2, there exists Ca <∞, such that

P

(
sup


�
≤'n��∈D
max
m≤n

∣∣∣∣∣ m∑
i=1

�Wi����� −Wi�0����
∣∣∣∣∣ ≥ √

nεn

)
≤ Ca exp�−�aC1'

δ
n�−1ε2

n		
(3.2)

(ii) If log�2 + 'n� � ε2
n � n, then for any a > 2, there exists Ca < ∞ such

that

P

(
sup


�
≤'n��∈D
max
m≤n

∣∣∣∣∣ m∑
i=1

�Wi����� −Wi�0����
∣∣∣∣∣ ≥ √

nεn

)
≤ Ca exp�−a−1�εn/C2�2		

(3.3)

(iii) If εn = c
√
n for some constant c > 0 and  log 'n = o�n�, then (3.3)

continues to hold for some constant a ≥ 12 even when (L1) and (L3) are replaced
by one weaker condition (L3′) given below.

(L3′) There is a constant B > 0 such that

n−1
n∑
i=1

E sup

�−�1
+
�−�1
≤n−B

∣∣Wi����� −Wi��1��1�
∣∣→ 0	(3.4)

Now back to the maximum depth regression. We first show that �̂n =
Op�n−1/2�; that is, for any sequence ζn →∞, we shall show that

P�
�̂n
 > ζn/
√
n� → 0	(3.5)
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We only need to consider the case with ζn/
√
n → 0 given the consistency of

�̂n. Note that for any c > 0,

sup
ζnn

−1/2≤
�
≤1
min
�∈Sp

n−1/2
n∑
i=1

E�sgn�ei −w′
i�� − sgn�ei��sgn�w′

i��

≤ sup
ζnn

−1/2≤
�
≤1
−2n−1/2

n∑
i=1

EFi�w′
i�� −Fi�0� ≤ −cf�0�ζnn−1Nn�

where

Nn = inf
1∈Sp

n∑
i=1

P�w′
i1 ≥ c��

and we have used the fact that w′
i�/
�
 ≥ c implies, by condition (C3),

F�w′
i�� −F�0� ≥ F�cζn/

√
n� −F�0� ≥ 1

2cζnf�0�/
√
n	 By condition (C1) and

the fact that 
wi
 ≥ 1, we have

n−Nn = sup
1∈Sp

n∑
i=1

P�w′
i1 < c�

≤ sup
1∈Sp

n∑
i=1

P�w′
i1 < c
wi
� ≤ Bncδ	

Therefore, by choosing c small enough so that Bcδ < 1/2, we obtain

sup
ζnn

−1/2≤
�
≤1
min
�∈Sp

n−1/2
n∑
i=1

E�sgn�ei −w′
i�� − sgn�ei��sgn�w′

i�� < −η�c�ζn	(3.6)

Lemma 3.1 then implies that

sup
ζn/

√
n≤
�
≤1

min
�∈Sp

n−1/2
n∑
i=1

�sgn�ei −w′
i�� − sgn�ei�	sgn�w′

i��

< −η�c�ζn + op�ζ1/2
n �	

This, together with Theorem 2.1, proves (3.5).
Now, define � = √

n� and �̂n =
√
n�̂n = Op�1�. By condition (C1), we have

n−1/2 maxi≤n �̂
′
nwi = op�1�. Then by condition (C3), we have, for 
�
 ≤ V,

any large constant,

n−1/2
n∑
i=1

E��sgn�ei −w′
i�� − sgn�ei��sgn�w′

i��	

= −2n−1/2
n∑
i=1

E��F�n−1/2w′
i�� −F�0��sgn�w′

i��	 = �′����+ o�1��
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where ���� = −2f�0�E�w sgn�w′��	. Therefore, by Lemma 3.1, it holds uni-
formly for 
�
 ≤ V and � ∈ Sp,

1√
n

n∑
i=1

sgn�ei −w′
i�n�sgn�w′

i��

= 1√
n

n∑
i=1

sgn�ei�sgn�wi�� + �′����+ op�1�	
(3.7)

Notice that n−1/2∑n
i=1 sgn�ei�sgn�wi�� converges to a Gaussian process W���

with mean 0 and covariance function 1��1��2� = E�sgn�w′�1�sgn�w′�2��.
Since 1��1��2� is continuous in �1 and �2, we may define W��� so that

almost all paths are continuous. Also, note that 1��1��2� satisfies the Hölder
condition of order δ due to conditions (C1) and (C4). It follows from an applica-
tion of Lemma 3.2 that the sequence of processes �n−1/2∑n

i=1 sgn�ei�sgn�w′
i��	

in D�Sp�-space is tight. Therefore, it converges weakly to W��� with the Sko-
rohod metric in D�Sp�-space. Similarly to Theorem 2.7 of Kim and Pollard
(1990), it follows that the limiting distribution of �̂n is characterized by the
variable � that solves

max
�

min
�∈Sp

�W��� + ����′���(3.8)

where

���� = −2f�0�E�sgn�w′��w	�(3.9)

provided that the solution � to (3.8) is unique. Establishing this uniqueness
property can be viewed as the most difficult part of the work we are under-
taking in the present paper.

The following lemma, stated for each sample path, plays a fundamental
role in the paper.

Suppose that ���� is a continuously differentiable function defined on Sp.
Extend ���� to Rp − �0	 by ��r�� = ���� for any r > 0 and � ∈ Sp. Let

D� =
∂�′��+ 1�

∂1

∣∣∣∣∣
1=0

�

which is a p× p matrix. Obviously, this matrix cannot be of full rank.

Lemma 3.3. Suppose thatW��� is continuous and ���� is differentiable on
Sp. Under the following conditions (W1)–(W3), the solution to (3.8) is unique.

(W1) For any 1 ∈ Sp, the minimum of 1′���� is negative and achieved only at
� = 1.

(W2) There exists at most one direction ±� ∈ Sp such that D� is well defined
with rank p− 1 and �D��� = 0 for all � not parallel to α.

(W3) There do not exist � and � such thatW���+����′� =W�−��+��−��′�.
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The same proof shows that Lemma 3.3 is true if µ��� is replaced by −µ���.
It will be shown in the Appendix that ���� = −2f�0�E�sgn�w′��w	 satisfies
(W1)–(W3) if conditions (C1)–(C4) hold. Our main purpose in the paper is to
establish the following theorem.

Theorem 3.1. Under conditions (C1)–(C4), n1/2��̂n − �� converges in dis-
tribution to the random variable as the solution to

max
�∈Rp

min
�∈Sp

(
W��� + ����′�

)
�

where ���� is given in (3.9), W��� is the Gaussian process with mean 0 and
covariance function cov�W��1��W��2�� = E�sgn��′1ww′�2�	.

In the case of p = 2, the limiting distribution of n1/2��̂n − �� simplifies
to that derived in He and Portnoy (1998), even though the two forms look
somewhat different. Except for the case of the usual median (p = 1) problem,
the non-Gaussian limiting distributions given in Theorem 3.1 are typical for
projection-based estimators but not convenient for inference. However, some
properties of the limiting distributions may be understood; see He (1999) for
more details. Tyler (1994) gives another example with the same type of limit-
ing distributions.

Similar arguments to those used in Section 2 plus the second part of Lemma
3.1 allow us to get an almost sure bound on the estimator as follows.

Theorem 3.2. Under conditions (C1) and (C2), we have �̂n − � =
O��log log n/n�1/2� almost surely, provided that inf �∈Sp Ew′� > 0. If we fur-
ther assume (C3), then

lim sup
n→∞

√
n/ log log n�̂n − � ≤

(√
2f�0� inf

�∈Sp
Ew′�

)−1
	

4. Asymptotics of the deepest point in RP. The same techniques used
in Section 3 apply to the asymptotic analysis of the deepest point for mul-
tivariate data. The result stated in this section completes the work of Nolan
(1999). Let X1� 	 	 	 �Xn be a random sample of p-dimensions. The deepest point
Tn is defined as the solution to the max–min problem

sup
t

inf
u∈Sp

n∑
i=1

I�u′�Xi − t� > 0�	(4.1)

We assume that there exists �0 as the unique deepest point for the pop-
ulation such that P�u′�X − �0� > 0� = 1/2 for all u ∈ Sp. Without loss of
generality, assume �0 = 0. To get the asymptotic linearization results paral-
lel to those in Section 3, let Pu be the one-dimensional marginal distribution
of u′X, and pu be its corresponding density function. Nolan (1999) showed
that if

(N1) Pu has a unique median at 0, for all u, and
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(N2) Pu has a bounded positive density, pu, at 0, and pu�x� is continuous in
u and x at x = 0,

then n1/2Tn converges to the random variable

argmaxt min
u∈Sp

�Z�u� − u′tpu�0���(4.2)

where Z�u� is a Gaussian process on u ∈ Sp with mean zero and Cov�Z�u��
Z�v�� = P�u′X > 0�v′X > 0� − 1/4, provided that the solution to (4.2) is
unique. In the special case of p = 2, a proof is given in Nolan (1999) for the
desired uniqueness based on some geometric properties in R2. We now verify
that the conditions of Lemma 3.3 hold so that the limiting distribution (4.2)
is established for any dimension p. This is done under a mild assumption:

(N3)
∫ 
ḟ�x�

x
dx < ∞, where ḟ is the gradient of f, the density function
of X.

Theorem 4.1. For any p ≥ 2, under conditions (N1)–(N3),
√
nTn tends in

distribution to the random variable defined by the solution to (4.2).

Proof. We use Lemma 3.3 to prove the uniqueness of the solution to the
max–min problem (4.2). Let ��u� = −pu�0�u. We show that the derivative
of ��u� is Du = −pu�0��I − uu′� − �ub′u�. To get the directional derivative of
� along any direction 1, we use the product rule. The derivative of u gives
pu�0�1 and the derivative of pu�0� gives −uu′1pu�0�+ �ub′u�1, where bu will
be calculated below.

Write ut = �u + t1�/
u + t1
, and consider

P�u′tX ≤ a� =
∫
u′x+t1′x≤a
u+t1


f�x�dx	

Let B = �u�C� be an orthonormal matrix with the first column u. Change
the variable x = By and partition y′ = �v� z′� with v ∈ R. Then the above
integral can be written as∫ [ ∫

v≤�a
u+t1
−t1′Cz�/�1+t1′u�
f�By�dv

]
dz	

Taking derivative wrt a and evaluating it at a = 0 yields

put�0� =
1
u′tu

∫
f

(
− t1′Czu
�u′tu�
u + t1


+Cz

)
dz	

The derivative of 1/�u′tu� wrt t at t = 0 is −u′1. Now taking the derivative
of the inside under the integral wrt t at t = 0 we get

bu = −
∫
�u′ḟ�Cz���Cz�dz	

We have completed the proof of Du = −�I−uu′�pu�0�−ub′u. The definition
of C implies that b′uu = 0, and further that Duu = 0. Thus, �a′Du:a ∈ Rp	 =
�a′Du:a′u = 0	 = �pu�0�a′:a′u = 0	, which means that the rank ofDu is p−1.
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Here condition (W2) holds without having to exclude an exceptional direction
�. The other conditions of Lemma 3.3 hold trivially. We then conclude that the
asymptotic distribution for the deepest point estimator holds in any dimension
and that the proof of Theorem 4.1 is complete. ✷

APPENDIX

Proof of Lemma 2.1. We apply Lemma 3.2(iii) here. Under (D1)–(D3), we
can verify condition (L3′) by taking B = max�b+ 1�A	. It follows from

1
n

n∑
i=1

E sup

�−�1
+
�−�1
≤n−B

∣∣sgn�yi −w′
i��sgn�w′

i��

− sgn�yi −w′
i�1�sgn�w′

i�1�
∣∣

≤ 2
n

n∑
i=1

E�Fi�w′
i�1 + n−A� −Fi�w′

i�1 − n−A�� + I�w′
i�1 < n−1�

≤ 2
n

n∑
i=1

sup
x
�Fi�x+ n−A� −Fi�x− n−A�� + 2�1−Qn�1/n�� = o�1��

where the first inequality uses a fact that w′
i� and w′

i�1 have the same sign
when w1�1 ≥ 1/n and w′

i�−w′
i�1 ≤ n−2. Condition (L2) holds automatically.

Assume �∗ = 0 without loss of generality and let

Hi����� = �sgn�yi −w′
i�� − sgn�yi��sgn�w′

i��	(A.1)

By Lemma 3.2(iii) with ε = √
n and bn = n2A for A given in (D3), we have

sup

�
≤bn
�∈Sp

∣∣∣∣∣ n∑
i=1

�Hi����� −EHi�����	
∣∣∣∣∣ = o�n�	

To complete the proof, it remains to show that

sup

�
>bn
�∈Sp

∣∣∣∣∣ n∑
i=1

�sgn�yi −w′
i��sgn�w′

i�� −E sgn�yi −w′
i��sgn�w′

i��	
∣∣∣∣∣ = o�n��

which follows from

sup

�
>bn
�∈Sp

∣∣∣∣∣ n∑
i=1

��sgn�yi −w′
i�� − sgn�−w′

i���sgn�w′
i��	

∣∣∣∣∣ = o�n�	
To verify this, write A� = �i ≤ n: w′

i� > n−A
�
	. By (D2), inf� size�A��
= n− o�n�. We further notice that for i ∈ A�,

�sgn�yi −w′
i�� − sgn�−w′

i���sgn�w′
i�� ≤ 2I�yi > w′

i�� ≤ 2I�yi > nA�	
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Therefore,

n−1 sup

�
>bn��∈Sp

∣∣∣∣∣ n∑
i=1

��sgn�yi −w′
i�� − sgn�−w′

i���sgn�w′
i��	

∣∣∣∣∣
≤ n−1 sup


�
>bn��∈Sp

[
n∑
i=1

�2I�yi > nA�	 + size�Ac��
]

= 2n−1
n∑
i=1

I�yi > nA� + o�1� = op�1��

where the last step is due to (D3). The proof is then complete. ✷

Proof of Lemma 3.1. The proof of Lemma 3.1 is a direct application of
Lemma 3.2 withWi�����= sgn�ei−w′

i��sgn�w′
i��−E�sgn�ei−w′

i��sgn�w′
i���.

Here we first verify that conditions (L1)–(L3) of Lemma 3.2 are satisfied. First,
we notice that sgn�w′

i�1�−sgn�w′
i�2� �= 0 (= 2 in fact) if and only if w′

i�1 and
w′
i�2 have different signs. Consequently, w′

i�1 ≤ w′
i��1 − �2� ≤ 
wi

�1 −

�2
. This proves that Esgn�w′
i�1�−sgn�w′

i�2� ≤ 2P�w′
i�1 ≤ 
wi

�1−�2
�.

Now, we can verify condition (L1) by

1
n

n∑
i=1

E
∣∣sgn�ei −w′

i�1�sgn�w′
i�1� − sgn�ei −w′

i�2�sgn�w′
i�2�

∣∣2
≤ 4
n

n∑
i=1

[
E
∣∣sgn�ei−w′

i�1�− sgn�ei−w′
i�2�

∣∣+E∣∣sgn�w′
i�1� − sgn�w′

i�2�
∣∣]

≤ 8
n

n∑
i=1

[
E
∣∣Fi�w′

i�1� −Fi
(
w′
i�2

)∣∣+P(∣∣w′
i�1

∣∣ ≤ 
wi

�1 − �2

)]

≤ 8
n

n∑
i=1

[
BE

∣∣w′
i��1 − �2�

∣∣δ + 
�1 − �2
δ
]

≤ 8�B�E
w
2�δ/2 + 1��
�1 − �2
δ + 
�1 − �2
δ��
where the third inequality here uses (C2) for the first part and (C1) for the
second part.

Condition (L2) is trivial, so it remains to verify condition (L3). For this
purpose, we note that by conditions (C1) and (C2),

1
n

n∑
i=1

E sup

�1−�
+�1−�
≤d

∣∣sgn�ei −w′
i��sgn�w′

i��

−sgn�ei −w′
i�1�sgn�w′

i�1�2

≤ 4
n

n∑
i=1

E sup

�1−�
+
�1−�
≤d

[∣∣sgn�ei −w′
i�� − sgn�ei −w′

i�1�
∣∣

+∣∣sgn�w′
i�� − sgn�w′

i�1�
∣∣]
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≤ 8
n

n∑
i=1

�P(∣∣ei −w′
i�1

∣∣ ≤ 
wi
d
)+P(∣∣w′

i�1

∣∣ ≤ 
wi
d
)]

≤ 8
n

n∑
i=1

E�B(
w2
d�δ + I
(∣∣w′

i�1

∣∣ ≤ 
wi
d
)] ≤ 8�B�E
w
2�δ/2 + 1

]
dδ	

The first conclusion of Lemma 3.1 follows from Lemma 3.2(i) or (ii) by taking
ε = 'δ/2−vn in the cases of 'n → 0, but ε = ζn →∞ and ζn �

√
n otherwise. For

both cases, one can verify that 'δn ln'n � ε � √
n'

δ�1+v�
n and log�2 + 'n� �

ε� √
n.

Now we turn to the proof of the second conclusion. For any t > 1, choose
ρ and a such that 1 < ρ < t2/�1+δ�1+α�� and 2 < a < 2t2/ρ1+δ�1+α�, where α is
the index of 'n given in the assumptions of Lemma 3.1. Also define '�8� =
max�'n� ρ8 ≤ n < ρ8+1	 and '�8� = min�'n� ρ8 ≤ n < ρ8+1	. Note that, for all
large 8, '�8�/'�8� < ρ1+α. Then Lemma 3.2(i) implies, for any large integer 8,

P

(
sup


�
≤'�8���∈Sp
max

ρ8≤n<ρ8+1
Sn�����/

√
2n'δn log log n > t

)

≤ P
(

sup

�
≤'�8���∈Sp

max
ρ8≤n<ρ8+1

Sn����� >
√

2t2ρ8'δ�8��log 8+ log ρ�
)

≤M
[

exp
(
− 2�aρ�−1t2�log 8+ log ρ��'/'�δ

)
+ exp�−ρ8�1/2−ν��

]
�

for some M < ∞ and ν < 1/2. The above bound is summable in 8, so the
desired result follows from the Borel–Cantelli lemma.

Before proceeding to the proof of Lemma 3.2, we quote the Lévy inequality
from Loève [(1977), page 259].

Lévy inequality. If X1� 	 	 	 �Xn are independent random variables and
Sk =

∑k
i=1Xi, then, for every ε,

P
{

max
k≤n

Sk −Median�Sk −Sn� ≥ ε
}
≤ 2P�Sn ≥ ε		

Proof of Lemma 3.2. The proof is based on chaining. It requires a se-
quence M �=Mn satisfying

√
nM−3δε−1

n →∞ and logM = o�ε2
n'

−δ
n �	(A.2)

For simplicity, we assume δ = 1. If general, replace 'n by 'δn in the proof. We
only give a detailed proof for the first case where 'n → 0. For the cases (ii) and
(iii), see the remarks at the end of this proof. In the proof, we shall assume that
'−1
n ε

2 has a positive lower bound, for, otherwise, the lemma becomes trivially
true. In the case of 'n → 0, we have εn = o�

√
n'1+ν�, so we can simply choose

M = '−ν/3n .
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Under our conditions on 'n and ε �= εn, there exists ρ �= ρn → 0 slowly
enough such that min�Mρ4� Mwρ	 → ∞ with w = 3ν/�21ν+ 6� and for some
4 ≤ k1 �= k1n ≤ k2 �= k2n,

'n
√
n

�Mρ�k1−1ε
→∞� 'n

√
n

�Mρ�k1ε
→ 0�(A.3)

max
{

'n
√
n

�Mρ�k2−1ε
�

'
1/2
n
√
n

�M1/2ρ�k2−1ε

}
→∞(A.4)

and

max
{
'n
√
n

�Mρ�k2ε
�

'
1/2
n
√
n

�M1/2ρ�k2ε

}
→ 0	(A.5)

Note that the above choices of k1 and k2 are made for general cases. In our
case of 'n → 0, the maxima in (A.4) and (A.5) are just equal to the second
ratios there.

Our choice of ρ satisfies

M�k2/4�−�3k1/4�−�1/4�−�3/2ν� �M�k2−1�/2−k1ρk2−1−k1 = 'n
√
n

�Mρ�k1ε
· �M

1/2ρ�k2−1ε

'
1/2
n
√
n

→ 0�

which implies

k2 ≤ 3k1 + 1+ 6/ν	(A.6)

Without loss of generality, we assume that Wi�0��� ≡ 0. This is equivalent
to working with W∗

i����� =Wi����� −Wi�0��� rather than Wi�����.
We now use expanding collections of points denoted by ���j1

��81�	,���j1�j2
��81� 82�	� 	 	 	 � ���j1� 			� jk2

��81� 			� 8k2
�	, with jt� 8t = 1�2� 	 	 	 � Jt and t =

1�2� 	 	 	 k2, satisfying


�j1� 			� jt−1
− �j1� 			� jt


 + 
�81� 			� 8t−1
− �81� 			� 8t
 ≤ 'nM−t+1� 2 ≤ t ≤ k2	

Also, for any 
�
 ≤ 'n, � ∈ D, there exist integers j1� 	 	 	 � jk2
and 81� 	 	 	 � 8k2

such that


�− �j1� 			� jk2

 + 
�− �81� 			� 8k2


 ≤ 'nM−k2 	

Note that the tth set of points is constructed by adding Jt additional points
around every point in the �t − 1�th set. These expanding sets can be found
with J1 ≤KM2p'

−p
n and Jt ≤KM2p (t > 1) for some constant K. For brevity,

we write Wi�t� =Wi��j1� 			� jt
� �81� 			� 8t� and

Ui = Ui�j1� 			� jk2
� 81� 			� 8k2

= sup
∣∣Wi����� −Wi�k2�

∣∣



MAXIMAL DEPTH ESTIMATORS 1631

in the rest of the proof, where sup is taken over the set ������: 
�−�j1� 			� jk2

+


�− �81� 			� 8k2

 ≤ 'nM−k2	. Then, we have

P

(
sup


�
≤'n��∈D
max
m≤n

∣∣∣∣ m∑
i=1

Wi�����
∣∣∣∣ ≥ √

nε

)

≤ ∑
1≤j� 8≤J1

P

(
max
m≤n

∣∣∣∣ m∑
i=1

Wi��j��8�
∣∣∣∣ ≥ ε√n�1− ρ�)

+
k2∑
t=2

∑
j1� 81� 			� jt� 8t

P

(
max
m≤n

∣∣∣∣ m∑
i=1

�Wi�t− 1� −Wi�t��
∣∣∣∣ ≥ ρt−1ε

√
n�1− ρ�

)

+ ∑
j1� 81� 			� jk2

� 8k2

P

(∣∣∣∣ n∑
i=1

Ui

∣∣∣∣ ≥ ρk2ε
√
n�1− ρ�

)
	

(A.7)

We shall show that in the right-hand side of (A.7) the first term dominates
and gives the desired bound for Lemma 3.2.

For the case of t = 1, we have Wi��j��8� ≤ C2, and

E
∣∣Wi��j��8�

∣∣2 ≤ C1'n	(A.8)

Since ε2 � 'n, we have∣∣∣∣median
( n∑
i=m

Wi��j��8�
)∣∣∣∣ ≤ C1/2

1

√
n'1/2

n = o�√nε�	

Now by the Lévy inequality and Bernstein inequality, we obtain, for any a > 2,
ρ1 > ρ > 0 and for sufficiently large n,

P

(
max
m≤n

∣∣∣∣ m∑
i=1

Wi��j��8�
∣∣∣∣ ≥ ε√n�1− ρ�)

≤ 4 exp
(
− 1

2ε
2n�1− ρ1�2�nC1'n +C2�1− ρ1�ε

√
n�−1

)
≤ 4 exp

(
− �aC1'n�−1ε2

)
	

(A.9)

For any 1 < t ≤ k2, the same arguments show that for any ρ1 > ρ > 0 and
for sufficiently large n,

P

(
max
m≤n

∣∣∣∣ m∑
i=1

�Wi�t− 1� −Wi�t��
∣∣∣∣ ≥ ρt−1ε

√
n�1− ρ�

)
≤ 2 exp

(
− 1

4
nρ2t−2�1− ρ1�2ε2�nC1'nM

−�t−1�

+C2ρ
t−1�1− ρ1�ε

√
n�−1

)
≤
{

4 exp
(
− bρ2t−2M�t−1�'−1

n ε
2
)
� if 1 < t ≤ k1,

4 exp�−b√nρt−1ε�� if k1 < t ≤ k2,

(A.10)

where b > 0 is a constant.
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To bound the last term of (A.7), note that condition (L2) implies Ui ≤ 2C2
and condition (L3) and (A.5) imply

n∑
i=1

E�U2
i � ≤ C3n'nM

−k2 = o�ρk2
√
nε�	

which, together with (A.5), implies that

n∑
i=1

E�Ui� = O�n'1/2
n M−k2/2� = o�ρk2

√
nε�	

Then, for any constant ρ2 > ρ1 and for sufficiently large n,

P

(∣∣∣∣ n∑
i=1

Ui

∣∣∣∣ ≥ ρk2ε
√
n�1− ρ�

)

≤ P
(∣∣∣∣ n∑

i=1

�Ui −E�Ui��
∣∣∣∣ ≥ ρk2ε

√
n�1− ρ1�

)
≤ 2 exp�− 1

2cρ
k2ε

√
n�1− ρ2�� ≤ 2 exp�−bρk2

√
nε��

for some b > 0.
Therefore, we have a bound for (A.7) as

P

(
sup


�
≤'n��∈D
max
m≤n

∣∣∣∣ m∑
i=1

Wi�����
∣∣∣∣ ≥ √

nε

)
≤ 4J2

1 exp
(
− �aC1'n�−1ε2

)
+4

k1∑
t=2

�J1 · · ·Jt�2 exp�−bρ2t−2Mt−1'−1
n ε

2�

+4
k2+1∑
t=k1+1

�J1 · · ·Jt�2 exp�−b√nρt−1ε��

(A.11)

where we use the convention Jk2+1 = 1.
Our choices of Jt imply that the first term on the right-hand side of (A.11)

is bounded by exp�−�a1C1'n�−1ε2� for any a1 > a > 2.
Since ρ2M → ∞, the second term on the right-hand side of (A.11) is of

smaller order than exp�−�a1C1'n�−1ε2� as n→∞.
For the last term in (A.11), we use (A.6) and (A.3). For any k1 ≤ t ≤ k2, we

have

√
nερt � ε2'−1

n M
k1−1ρt+k1−1 � ε2'−1

n

(
Mwρ

)t+k1−1
�

where

w = 3ν
21ν + 6

≤ min
k1≥4

k1 − 1
4k1 + 5+ 6/ν
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Therefore, we bound the last sum of (A.11) by

4
k2+1∑
t=k1+1

�J1 · · ·Jt�2 exp�−b√nρt−1ε�

≤ 4
k2∑
t=k1

�J1 · · ·Jt+1�2 exp
(
− bε2'−1

n

(
Mwρ

)t+k1−1)
� exp

(
− �a1C1'n�−1ε2

)
	

Putting things together, we have proved that (A.11) is bounded by C exp
�−�a1C1'n�−1ε2� for any a1 > 2, where C is a constant that may depend
on a1.

Finally, we add some remarks on the proofs for the other two cases. In case
(ii), without loss of generality, we may assume that ε→∞, for otherwise the
result becomes trivial if we choose a large constant Ca. As for case (iii), we
only need one chain in the proof, that is, we only need to select ��j��8� j� 8 =
1�2� 	 	 	 � J� 	 such that for any 
�
 ≤ 'n and � ∈ D, there are j and 8 satisfying


�− �j
 + 
�− �8
 ≤ n−B	
By our assumptions, we can do so with J ≤ K'pn2pB and thus logJ = o�n�.
Also, we have

n∑
i=1

E sup

�−�j
+
�−�8
≤n−B

∣∣Wi����� −Wi��j��8�
∣∣ = o�n�	

The rest of the proof is similar to that for case (i). The proof of Lemma 3.2
ends here. ✷

We now prove Lemma 3.3. First, it is clear that the set of solutions to (3.8)
is a nonempty convex set in Rp. Let �0 be one solution. Suppose that max�

min�∈Sp�W��� + ����′�� = d0, and G = �� ∈ Sp:W��� + ����′�0 = d0	. By
condition (W1), d0 is finite almost surely. We now have the following lemma.

Lemma A.1. There does not exist 1 ∈ Sp such that 1′���� > 0 for all � ∈ G.

Proof. Here ���� is continuous and G is a closed set. If the conclusion of
Lemma A.1 is not true, then there is a vector 1 such that δ = inf �∈G 1′���� > 0
as G is obviously a compact set. Set H = �� ∈ Sp:1′���� > δ/2	. Clearly,
Hc ∩Sp is a closed set and Hc ∩G is empty.

Let d1 = max�∈Hc∩Sp 1′���� ∈ �0�∞� and d2 = min�∈Hc∩Sp�W��� +
����′�0� > d0. Consider the function

Q��� =W��� + ����′�0 + t����′1�
with t = �d2−d0�/�2d1�. If � ∈Hc∩Sp, then Q��� ≥ d2− td1 = �d0+d2�/2 >
d0	 If � ∈ H, then Q��� ≥ d0 + tδ/2 > d0. These inequalities show that the
solution should not be �0. The contradiction proves the lemma. ✷
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Now we shall show that the solution to (3.8) is unique by establishing a set
of linear equations that any solution to (3.8) must satisfy.

Proof of Lemma 3.3. As in the proof of Lemma A.1, let �0 be a solution,
and the minimum over � in (3.8) is achieved at some �∗ ∈ Sp so that W��∗� +
���∗�′�0 = d0. By Lemma A.1, there are at least three different �∗ ∈ Sp in the
set G. For otherwise, Lemma A.1 fails, because of (W1), by choosing 1 = −�∗
if G contains only one vector or 1 = −��∗1 + �∗2�/
�∗1 + �∗2
 if G contains two
vectors. This vector 1 is well defined since no pair of vectors in G can be in
the opposite directions thanks to (W3). Also implied by (W3) is that we can
always choose �∗ ∈ G such that it is not parallel to �.

At this �∗, consider the arc � = ��∗ + t1�/
�∗ + t1
 as t varies for any
direction 1 with 1′�∗ = 0. Since �∗ is a minimizing point for W��� + ����′�0
and the function is continuous, there must exist sequences tk ↑ 0 and sk ↓ 0
such that at least one sequence is strictly monotone and

W��∗ + tk1� + ���∗ + tk1�′�0 =W��∗ + sk1� + ���∗ + sk1�′�0	

Since ���� is differentiable, we know that along the sequence k→∞,

lim
k→∞

W��∗ + tk1� −W��∗ + sk1�
tk − sk

= ξl��∗�

exists and is equal to �limk→∞����∗ + tk1� − ���∗ + sk1��/�tk − sk��′�0. That
is,

ξl��∗� = �1′D�∗ ��0(A.12)

for any direction 1 orthogonal to �∗. By (W2) and the fact that �∗′D�∗ = 0,
�1′D�∗	 spans the �p− 1�-dimensional subspace orthogonal to �∗.

Lemma A.1 implies that there exists another �̃ ∈ G not parallel to �∗ such
that W�̃�� + ��̃��′�0 =W��∗� + ���∗�′�0. This gives another equation,

W�̃�� −W��∗� = ���̃�� − ���∗��′�0	(A.13)

By (W1), ���̃��−���∗��′�∗ �= 0, so ��̃��−���∗� is not in the space of �1:1′�∗ =
0	. This means that (A.12) and (A.13) put together include p linearly inde-
pendent equations and they uniquely determine �0.

Conditions (W1) and (W3) are trivial for the above defined

���� = −2f�0�E�sgn�w′��w		
Thus, to complete the proof of Theorem 3.1, we only need to verify that con-
dition (W2) is satisfied, which is shown in the following lemma.

Lemma A.2. Let �′ = �γ0��
′
1� ∈ Sp with 
�1
 �= 0 and let B be a �p −

1� × �p− 1� orthonormal matrix with �1/
�1
 as its first column. Assume that
FB�y0�y1�, the c.d.f. of B′x �= �y0�y

′
1�′, is continuously differentiable with
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respect to y0 with derivative ḞB�y0�y1�. Then, the derivative matrix of ���� is
given by

D� = −4f�0�
�1
−1
∫
�1�y′B′�′�1�y′B′�ḞB�−γ0/
�1
� dy1��

where y1 ∈ Rp−2 and y = �−γ0/
�1
�y′1�′. Consequently, the directional deriva-
tive of ���� along the direction 1 ∈ Sp is equal to 1′D�.

It is seen from Lemma A.2 that D� is well defined if � is not parallel to
� = �1�0� 	 	 	 �0�′. Now, we verify that D� satisfies condition (W2) of Lemma
3.3. First, we note that D�� = 0 holds for any � not parallel to � since �′1B =
�
�1
�0� 	 	 	 �0� implies that �1�y′B′�� = 0. Conversely, if D�1 = 0 for some
1 ∈ Sp, then 1′D�1 = 0, which, together with the expression ofD�, implies that
�1�y′B′�1 = 0 for almost all y = �−γ0/
�1
�y′1� with y1 ∈ Rp−2. Partitioning

1′ = �l0�1′1� and B = ��1/
�1

			B1�, we get

l0 − �1′1�1/
�1
�γ0 + y′1B
′
111 = 0	

Since y1 runs over p − 2 linearly independent vectors in Rp−2, we obtain
l0 = �1′1�1/
�1
�γ0 and 1′1B1 = 0. Since B is orthogonal, we get 11 = c�1 for
some c ∈ R, and hence l0 = c�0. Therefore, 1 must be parallel to �. Putting
things together, we see that D� has rank p − 1 and the set �1′D�:1′� = 0	
forms a �p−1�-dimensional linear space orthogonal to �. This shows condition
(W2) and completes the proof of Theorem 3.1. ✷

Now, let us prove Lemma A.2.

Proof of Lemma A.2. For brevity, we suppress the constant factor 2f�0�
from the definition of �. We take any direction 1 such that 1′ = �l0�1′1� ∈ Sp.

Consider

���+ tl� − ���� =
( ∫

w′�>0
−
∫
w′��+t1�>0

)
wG�dx�

−
( ∫

w′�<0
−
∫
w′��+t1�<0

)
wG�dx�

�= '1�t� − '2�t��
where G�·� is the distribution of x.

Note that w′ = �1�x′�. Use change of variables x = B�y0�y
′
1�′ with the

orthogonal matrix B whose first column is �1/
�1
. Then y0 = �′1x/
�1
. Let
1′1B = �a0�a

′
1� ∈ R×Rp−2. We have

'1�t� �=
( ∫

w′�>0
−
∫
w′��+t1�>0

)
wG�dx�

=
( ∫

γ0+�′1x>0
−
∫
γ0+tl0+�′1x+t1′1x>0

)
�1�x′�′G�dx�

= −
∫ −γ0/
�1


−�γ0+tl0+ta′1y1�/�
�1
+ta0�
�1�y′B�FB�dy0� dy1�	
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It then follows that

lim
t→0

'1�t�
t

= −
∫ −a0γ0 + l0
�1
 + a′1y1
�1



�1
2
�1�y′B�′ḞB�−γ0/
�1
� dy1�

with y′ = �−γ0/
�1
�y′1�. This is equivalent to

lim
t→0

'1�t�
t

= −
�1
−1
[ ∫

�1�y′B�′�1�y′B�ḞB�−γ0/
�1
� dy1�
]
1	

Similarly, one can show that

lim
t→0

'2�t�
t

= 
�1
−1
[ ∫

�1�y′B�′�1�y′B�ḞB�−γ0/
�1
� dy1�
]
1	

The proof of Lemma A.2 is then complete. ✷

Proof of Theorem 3.2. Since �̂n → 0, there exists a sequence of con-
stants 'n → 0 such that lim supn→∞ �̂n/'n ≤ 1 almost surely. We only need
to consider 
�
 ≤ 'n. Applications of Lemma 3.2 yield

lim sup sup
�∈Sp

∣∣∣∣ 1√
2n log log n

n∑
i=1

sgn�ei�sgn�w′
i��
∣∣∣∣ ≤ 1 a.s.

and

1√
n log logn

n∑
i=1

sgn�ei −w′
i��sgn�w′

i��

=
√

n

log log n
E sgn�e−w′��sgn�w′��

+ 1√
n log log n

n∑
i=1

sgn�ei�sgn�w′
i�� + o�1� a.s.�

uniformly in � ∈ Sp. By (3.6), there exist c > 0 and η�c� > 0 such that

inf
�
E sgn�e−w′��sgn�w′�� ≤ −η�c�ζn

whenever 
�
 ≥ ζn/
√
n. Thus, there exists K < ∞ such that 
�
 > ζn =

K
√

log log n/n implies

inf
�

1√
n log log n

n∑
i=1

sgn�ei −w′
i��sgn�w′

i�� < 0

for sufficiently large n. Similarly to the arguments in Section 2, we see that
the estimate must satisfy 
�̂n
 ≤K

√
log log n/n almost surely.

The second conclusion of Theorem 3.2 follows by noticing that, under (C3),

inf
�
E sgn�e−w′��sgn�w′�� ≤ −2f�0�
�
 inf

�∈Sp
Ew′��1+ o�1��	 ✷
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