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INFORMATION-THEORETIC DETERMINATION OF MINIMAX
RATES OF CONVERGENCE1

By Yuhong Yang and Andrew Barron

Iowa State University and Yale University

We present some general results determining minimax bounds on sta-
tistical risk for density estimation based on certain information-theoretic
considerations. These bounds depend only on metric entropy conditions and
are used to identify the minimax rates of convergence.

1. Introduction. The metric entropy structure of a density class deter-
mines the minimax rate of convergence of density estimators. Here we prove
such results using new direct metric entropy bounds on the mutual informa-
tion that arises by application of Fano’s information inequality in the develop-
ment of lower bounds characterizing the optimal rate. No special construction
is required for each density class.

We here study global measures of loss such as integrated squared error,
squared Hellinger distance or Kullback–Leibler (K-L) divergence in nonpara-
metric curve estimation problems.

The minimax rates of convergence are often determined in two steps. A
good lower bound is obtained for the target family of densities, and a spe-
cific estimator is constructed so that the maximum risk is within a constant
factor of the derived lower bound. For global minimax risk as we are consid-
ering here, inequalities for hypothesis tests are often used to derive minimax
lower bounds, including versions of Fano’s inequality. These methods are used
in Ibragimov and Hasminskii (1977, 1978), Hasminskii (1978), Bretagnolle
and Huber (1979), Efroimovich and Pinsker (1982), Stone (1982), Birgé (1983,
1986), Nemirovskii (1985), Devroye (1987), Le Cam (1986), Yatracos (1988),
Hasminskii and Ibragimov (1990), Yu (1996) and others. Upper bounds on
minimax risk under metric entropy conditions are in Birgé (1983, 1986), Ya-
tracos (1985), Barron and Cover (1991), Van de Geer (1990), Wong and Shen
(1995) and Birgé and Massart (1993, 1994). The focus of the present paper
is on lower bounds determining the minimax rate, though some novel upper
bound results are given as well. Parallel to the development of risk bounds for
global measures of loss are results for point estimation of a density or func-
tionals of the density; see, for example, Farrell (1972), Donoho and Liu (1991),
Birgé and Massart (1995).
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In its original form, Fano’s inequality relates average probability of error
in a multiple hypothesis test to the Shannon mutual information for a joint
distribution of parameter and random sample [Fano (1961); see also Cover and
Thomas (1991), pages 39 and 205]. Beginning with Fano, this inequality has
been used in information theory to determine the capacity of communication
channels. Ibragimov and Hasminskii (1977, 1978) initiated the use of Fano’s
inequality in statistics for determination of minimax rates of estimation for
certain classes of functions. To apply this technique, suitable control of the
Shannon information is required. Following Birgé (1983), statisticians have
stated and used versions of Fano’s inequality where the mutual information
is replaced by a bound involving the diameter of classes of densities using
the Kullback–Liebler divergence. For success of this tactic to obtain lower
bounds on minimax risk, one must make a restriction to small subsets of the
function space and then establish the existence of a packing set of suitably
large cardinality. As Birgé (1986) points out, in that manner, the use of Fano’s
inequality is similar to the use of Assouad’s lemma. As it is not immediately
apparent that such local packing sets exist, these techniques have been applied
on a case by case basis to establish minimax rates for various function classes
in the above cited literature.

In this paper we provide two means by which to reveal minimax rates from
global metric entropies. The first is by use of Fano’s inequality in its original
form together with suitable information inequalities. This is the approach we
take in Sections 2 through 6 to get minimax bounds for various measures of
loss. The second approach we take in Section 7 shows that global metric en-
tropy behavior implies the existence of a local packing set satisfying conditions
for the theory of Birgé (1983) to be applicable.

Thus we demonstrate for nonparametric function classes (and certain mea-
sures of loss) that the minimax convergence rate is determined by the global
metric entropy over the whole function class (or over large subsets of it). The
advantage is that the metric entropies are available in approximation theory
for many function classes [see, e.g., Lorentz, Golitzchek and Makovoz (1996)].
It is no longer necessary to uncover additional local packing properties on a
case by case basis.

The following proposition is representative of the results obtained here. Let
� be a class of functions and let d�f�g� be a distance between functions [we
require d�f�g� nonnegative and equal to zero for f = g, but we do not require
it to be a metric]. LetN�ε�� � be the size of the largest packing set of functions
separated by at least ε in � , and let εn satisfy ε2n = M�εn�/n, where M�ε� =
logN�ε�� � is the Kolmogorov ε-entropy and n is the sample size. Assume the
target class � is rich enough to satisfy lim inf ε→0 M�ε/2�/M�ε� > 1 [which
is true, e.g., if M�ε� = �1/ε�r κ�ε� with r > 0 and κ�ε/2�/κ�ε� → 1 as ε → 0].
This condition is satisfied in typical nonparametric classes.

For convenience, we will use the symbols � and �, where an � bn means
bn = O�an�, and an � bn means both an � bn and bn � an. Probability densities
are taken with respect to a finite measure µ in the following proposition.
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Proposition 1. In the following cases, the minimax convergence rate is
characterized by metric entropy in terms of the critical separation εn as follows:

min
f

max
f∈�

Efd
2�f� f̂� � ε2n�

(i) � is any class of density functions bounded above and below 0 < C ≤
f ≤ C for f ∈ � . Here d2�f�g� is either integrated squared error

∫ �f�x� −
g�x��2 dµ, squared Hellinger distance or Kullback–Leibler divergence.

(ii) � is a convex class of densities with f ≤ C for f ∈ � and there exists
at least one density in � bounded away from zero and d is the L2 distance.

(iii) � is any class of functions f with � f �≤ C for f ∈ � for the regression
model Y = f�X� + ε�X and ε are independent X ∼ PX and ε ∼ Normal
�0� σ2�� σ > 0 and d is the L2�PX� norm.

From the above proposition, the minimax L2 risk rate is determined by the
metric entropy alone, whether the densities can be zero or not. For Hellinger
and Kullback–Leibler (K-L) risk, we show that by modifying a nonparametric
class of densities with uniformly bounded logarithms to allow the densities
to approach zero or even vanish in some unknown subsets, the minimax rate
may remain unchanged compared to that of the original class.

Now let us outline roughly the method of lower bounding the minimax risk
using Fano’s inequality. The first step is to restrict attention to a subset S0 of
the parameter space where minimax estimation is nearly as difficult as for the
whole space and, moreover, where the loss function of interest is related locally
to the K-L divergence that arises in Fano’s inequality. (For example, the subset
can in some cases be the set of densities with a bound on their logarithms.)
As we shall reveal, the lower bound on the minimax rate is determined by the
metric entropy of the subset.

The proof technique involving Fano’s inequality first lower bounds the mini-
max risk by restricting to as large as possible a finite set of parameter values
�θ1� � � � � θm� in S0 separated from each other by an amount εn in the distance
of interest. The critical separation εn is the largest separation such that the
hypotheses �θ1� � � � � θm� are nearly indistinguishable on the average by tests
as we shall see. Indeed, Fano’s inequality reveals this indistinguishability in
terms of the K-L divergence between densities pθj

�x1� � � � � xn� = ∏n
i=1 pθj

�xi�
and the centroid of such densities q�x1� � � � � xn� = �1/m�∑m

j=1 pθj
�x1� � � � � xn�

[which yields the Shannon mutual information I�#�X1� � � � �Xn� between θ
and X1� � � � �Xn with a uniform distribution on θ in �θ1� � � � � θm�]. Here the
key question is to determine the separation such that the average of this K-L
divergence is small compared to the distance logm that would correspond to
maximally distinguishable densities (for which θ is determined by Xn). It is
critical here that K-L divergence does not have a triangle inequality between
the joint densities. Indeed, covering entropy properties of the K-L divergence
(under the conditions of the proposition) show that the K-L divergence from
every pθj

�x1� � � � � xn� to the centroid is bounded by the right order 2nε2n,
even though the distance between two such pθj

�x1� � � � � xn� is as large as nβ
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where β is the K-L diameter of the whole set �pθ1
� � � � � pθm

�. The proper con-
vergence rate is thus identified provided the cardinality of the subset m is
chosen such that nε2n/ logm is bounded by a suitable constant less than 1.
Thus εn is determined by solving for nε2n/M�εn� equal to such a constant,
where M�ε� is the metric entropy (the logarithm of the largest cardinality of
an ε-packing set). In this way, the metric entropy provides a lower bound on
the minimax convergence rate.

Applications of Fano’s inequality to density estimation have used the K-L
diameter nβ of the set �pn

θ1
� � � � � pn

θm
� [see, e.g., Birgé (1983)] or similar rough

bounds [such as nI�#�X1� as in Hasminskii (1978)] in place of the average
distance of pn

θ1
� � � � � pn

θm
from their centroid. In that theory, to obtain a suit-

able bound, a statistician needs to find if possible a sufficiently large subset
�θ1� � � � � θm� for which the diameter of this subset (in the K-L sense) is of the
same order as the separation between closest points in this subset (in the cho-
sen distance). Apparently, such a bound is possible only for subsets of small
diameter. Thus by that technique, knowledge is needed not only of the met-
ric entropy but also of special localized subsets. Typical tools for smoothness
classes involve perturbations of densities parametrized by vertices of a hyper-
cube. While interesting, such involved calculations are not needed to obtain
the correct order bounds. It suffices to know or bound the metric entropy of
the chosen set S0. Our results are especially useful for function classes whose
global metric entropies have been determined but local packing sets have not
been identified for applying Birgé’s theory (e.g., general linear and sparse ap-
proximation sets of functions in Sections 4 and 5, and neural network classes
in Section 6).

It is not our purpose to criticize the use of hypercube-type arguments in
general. In fact, besides the success of such methods mentioned above, they
are also useful in other applications such as determining the minimax rates
of estimating functionals of densities [see, e.g., Bickel and Ritov (1988), Birgé
and Massart (1995) and Pollard (1993)] and minimax rates in nonparametric
classification [Yang (1999b)].

The density estimation problem we consider is closely related to a data
compression problem in information theory (see Section 3). The relationship
allows us to obtain both upper and lower bounds on the minimax risk from
upper-bounding the minimax redundancy of data compression, which is re-
lated to the global metric entropy.

Le Cam (1973) pioneered the use of local entropy conditions in which con-
vergence rates are characterized in terms of the covering or packing of balls
of radius ε by balls of radius ε/2, with subsequent developments by Birgé and
others, as mentioned above. Such local entropy conditions provide optimal con-
vergence rates in finite-dimensional as well as infinite-dimensional settings.
In Section 7, we show that knowledge of global metric entropy provides the
existence of a set with suitable local entropy properties in infinite-dimensional
settings. In such cases, there is no need to explicitly require or construct such
a set.
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The paper is divided into 7 sections. In Section 2, the main results are
presented. Applications in data compression and regression are given in Sec-
tion 3. In Sections 4 and 5, results connecting linear approximation and mini-
max rates, sparse approximation and minimax rates, respectively, are given.
In Section 6, we illustrate the determination of minimax rates of convergence
for several function classes. In Section 7, we discuss the relationship between
the global entropy and local entropy. The proofs of some lemmas are given in
the Appendix.

2. Main results. Suppose we have a collection of densities �pθ: θ ∈ #�
defined on a measurable space � with respect to a σ-finite measure µ. The
parameter space # could be a finite-dimensional space or a nonparametric
space (e.g., the class of all densities). Let X1�X2� � � � �Xn be an i.i.d. sample
from pθ� θ ∈ #. We want to estimate the true density pθ or θ based on the
sample. The K-L loss, the squared Hellinger loss, the integrated squared error
and some other losses will be considered in this paper. We determine minimax
bounds for subclasses �pθ: θ ∈ S�� S ⊆ #. When the parameter is the density
itself, we may use f and � in place of θ and S, respectively. Our technique
is most appropriate for nonparametric classes (e.g., monotone, Lipschitz, or
neural net; see Section 6).

Let S be an action space for the parameter estimates with S ⊆ S ⊆ #.
An estimator θ̂ is then a measurable mapping from the sample space of
X1�X2� � � � �Xn to S. Let Sn be the collection of all such estimators. For non-
parametric density estimation, S = # is often chosen to be the set of all
densities or some transform of the densities (e.g., square root of density). We
consider general loss functions d, which are mappings from S×S to R+ with
d�θ� θ� = 0 and d�θ� θ′� > 0 for θ �= θ′. We call such a loss function a distance
whether or not it satisfies properties of a metric.

The minimax risk of estimating θ ∈ S with action space S is defined as

rn = min
θ̂∈Sn

max
θ∈S

Eθd
2�θ� θ̂��

Here “min” and “max” are understood to be “inf” and “sup,” respectively, if the
minimizer or maximizer does not exist.

Definition 1. A finite set Nε ⊂ S is said to be an ε-packing set in S with
separation ε > 0, if for any θ� θ′ ∈ Nε� θ �= θ′, we have d�θ� θ′� > ε. The
logarithm of the maximum cardinality of ε-packing sets is called the packing
ε-entropy or Kolmogorov capacity of S with distance function d and is denoted
Md�ε�.

Definition 2. A set Gε ⊂ S is said to be an ε-net for S if for any θ̃ ∈ S,
there exists a θ0 ∈ Gε such that d�θ̃� θ0� ≤ ε. The logarithm of the minimum
cardinality of ε-nets is called the covering ε-entropy of S and is denoted Vd�ε�.
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From the definitions, it is straightforward to see that Md�ε� and Vd�ε�
are nonincreasing in ε and Md�ε� is right continuous. These definitions are
slight generalizations of the metric entropy notions introduced by Kolmogorov
and Tihomirov (1959). In accordance with common terminology, we informally
call these ε-entropies “metric” entropies even when the distance is not a met-
ric. One choice is the square root of the Kullback–Leibler (K-L) divergence
which we denote by dK, where d2

K�θ� θ′� = D�pθ�pθ′ � = ∫
pθ log�pθ/pθ′ �dµ.

Clearly dK�θ� θ′� is asymmetric in its two arguments, so it is not a met-
ric. Other distances we consider include the Hellinger metric dH�θ� θ′� =(∫ (√

pθ − √
pθ′
)2

dµ
)1/2

and the Lq�µ� metric dq�θ� θ′� = �∫ �pθ − pθ′ �q dµ�1/q
for q ≥ 1. The Hellinger distance is upper bounded by the square root of the K-
L divergence, that is, dH�θ� θ′� ≤ dK�θ� θ′�. We assume the distance d satisfies
the following condition.

Condition 0 (Local triangle inequality). There exist positive constants
A ≤ 1 and ε0 such that for any θ� θ′ ∈ S� θ̃ ∈ S, if max

(
d�θ� θ̃�� d�θ′� θ̃�

)
≤ ε0,

then d�θ� θ̃� + d�θ′� θ̃� ≥ Ad�θ� θ′��

Remarks. (i) If d is a metric on #, then the condition is always satisfied
with A = 1 for any S ⊆ #.

(ii) For dK, the condition is not automatically satisfied. It holds when S is
a class of densities with bounded logarithms and S ⊆ # is any action space,
including the class of all densities. It is also satisfied by regression families
as considered in Section 3. See Section 2.3 for more discussion.

When Condition 0 is satisfied, the packing entropy and covering entropy
have the simple relationship for ε ≤ ε0� Md�2ε/A� ≤ Vd�ε� ≤ Md�Aε�.

We will obtain minimax results for such general d and then special re-
sults will be given with several choices of d: the square root K-L divergence,
Hellinger distance and Lq distance. We assume Md�ε� < ∞ for all ε >
0. The square root K-L, Hellinger and Lq packing entropies are denoted
MK�ε��MH�ε� and Mq�ε�, respectively.

2.1. Minimax risk under a global entropy condition. Suppose a good up-
per bound on the covering ε-entropy under the square root K-L divergence
is available. That is, assume VK�ε� ≤ V�ε�. Ideally, VK�ε� and V�ε� are of
the same order. Similarly, let M�ε� ≤ Md�ε� be an available lower bound on
ε-packing entropy with distance d, and ideally, M�ε� is of the same order as
Md�ε�. Suppose V�ε� and M�ε� are nonincreasing and right-continuous func-
tions. To avoid a trivial case (in which S is a small finite set), we assume
M�ε� > 2 log 2 for ε small enough. Let εn (called the critical covering radius)
be determined by

ε2n = V�εn�/n�

The trade-off here between V�ε�/n and ε2 is analogous to that between the
squared bias and variance of an estimator. As will be shown later, 2ε2n is an
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upper bound on the minimax K-L risk. Let εn�d be a separation ε such that

M�εn�d� = 4nε2n + 2 log 2�

We call εn�d the packing separation commensurate with the critical covering
radius εn. This ε2n�d determines a lower bound on the minimax risk.

In general, the upper and lower rates ε2n and ε2n�d need not match. Condi-
tions under which they are of the same order are explored at the end of this
subsection and are used in Section 2.2 to identify the minimax rate for L2
distance and in Sections 2.3 and 2.4 to relate the minimax K-L risk to the
minimax Hellinger risk and the Hellinger metric entropy.

Theorem 1 (Minimax lower bound). Suppose Condition 0 is satisfied for
the distance d. Then when the sample size n is large enough such that εn�d ≤
2ε0, the minimax risks for estimating θ ∈ S satisfies

min
θ̂

max
θ∈S

Pθ�d�θ� θ̂� ≥ �A/2�εn�d� ≥ 1/2

and consequently,

min
θ̂

max
θ∈S

Eθd
2�θ� θ̂� ≥ �A2/8�ε2n�d�

where the minimum is over all estimators mapping from � n to S.

Proof. Let Nεn�d
be an εn�d-packing set with the maximum cardinality

in S under the given distance d and let Gεn
be an εn-net for S under dK.

For any estimator θ̂ taking values in S, define θ̃ = argminθ′∈Nεn�d
d�θ′� θ̂� (if

there are more than one minimizer, choose any one), so that θ̃ takes values in
the finite packing set Nεn�d

. Let θ be any point in Nεn�d
. If d�θ� θ̂� < Aεn�d/2,

then max
(
d�θ� θ̂�� d�θ̃� θ̂�) < Aεn�d/2 ≤ ε0 and hence by Condition 0� d�θ� θ̂�+

d�θ̃� θ̂� ≥ Ad�θ� θ̃�, which is at least Aεn�d if θ �= θ̃. Thus if θ �= θ̃, we must
have d�θ� θ̂� ≥ Aεn�d/2, and

min
θ̂

max
θ∈S

Pθ�d�θ� θ̂� ≥ �A/2�εn�d
� ≥min

θ̂
max

θ∈Nεn�d

Pθ�d�θ� θ̂� ≥ �A/2�εn�d�

=min
θ̂

max
θ∈Nεn�d

Pθ

(
θ �= θ̃

)
≥min

θ̂

∑
θ∈Nεn�d

w�θ�Pθ

(
θ �= θ̃

)
=min

θ̂
Pw

(
θ �= θ̃

)
�

where in the last line, θ is randomly drawn according to a discrete prior
probability w restricted to Nεn�d

, and Pw denotes the Bayes average prob-

ability with respect to the prior w. Moreover, since �d�θ� θ̂��� is not less than
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��A/2�εn�d��1�θ �=θ̃�, taking the expected value it follows that for all � > 0,

min
θ̂

max
θ∈S

Eθd
� �θ� θ̂� ≥ ��A/2�εn�d�� min

θ̂
Pw

(
θ �= θ̃

)
�

By Fano’s inequality [see, e.g., Fano (1961) or Cover and Thomas (1991),
pages 39 and 205], with w being the discrete uniform prior on θ in the packing
set Nεn�d

, we have

Pw

(
θ �= θ̃

) ≥ 1− I�#�Xn� + log 2
log �Nεn�d

� �(1)

where I�#�Xn� is Shannon’s mutual information between the random pa-
rameter and the random sample, when θ is distributed according to w. This
mutual information is equal to the average (with respect to the prior) of
the K-L divergence between p�xn�θ� and pw�xn� = ∑

θ w�θ�p�xn�θ�, where
p�xn�θ� = pθ�xn� = ∏n

i=1 pθ�xi� and xn = �x1� � � � � xn�. It is upper bounded by
the maximum K-L divergence between the product densities p�xn�θ� and any
joint density q�xn� on the sample space � n. Indeed,

I�#�Xn�=∑
θ

w�θ�
∫

p�xn�θ� log�p�xn�θ�/pw�xn��µ�dxn�

≤∑
θ

w�θ�
∫

p�xn�θ� log�p�xn�θ�/q�xn��µ�dxn�

≤ max
θ∈Nεn�d

D
(
PXn�θ�QXn

)
�

The first inequality above follows from the fact that the Bayes mixture
density pw�xn� minimizes the average K-L divergence over choices of
densities q�xn� [any other choice yields a larger value by the amount∫
pw�xn� log�pw�xn�/q�xn��µ�dxn� > 0]. We have w uniform on Nεn�d

. Now
choose w1 to be the uniform prior on Gεn

and let q�xn� = pw1
�xn� =∑

θ w1�θ�p�xn�θ� and QXn be the corresponding Bayes mixture density and
distribution, respectively. Because Gεn

is an εn-net in S under dK, for each
θ ∈ S, there exists θ̄ ∈ Gεn

such that D�pθ�pθ̄� = d2
K�θ� θ̄� ≤ ε2n. Also by

definition, log �Gεn
� ≤ VK�εn�. It follows that

D
(
PXn�θ�QXn

)=E log
p�Xn�θ�

�1/�Gεn
��∑θ′∈Gεn

p�Xn�θ′�

≤E log
p�Xn�θ�

�1/�Gεn
��p�Xn�θ̄�

= log �Gεn
� + D

(
PXn�θ�PXn�θ̄

)
≤V�εn� + nε2n�

(2)

Thus, by our choice of εn�d� �I�#�Xn� + log 2�/ log �Nεn�d
� ≤ 1/2. The conclu-

sion follows. This completes the proof of Theorem 1. ✷
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Remarks. (i) Up to inequality (1), the development here is standard. Pre-
vious use of Fano’s inequality for minimax lower bound takes one of the follow-
ing weak bounds on mutual information: I�#�Xn� ≤ nI�#�X1� or I�#�Xn� ≤
n maxθ� θ′∈# D�PX1�θ�PX1�θ′ � [see, e.g., Hasminskii (1978) and Birgé (1983), re-
spectively]. An exception is work of Ibragimov and Hasminskii (1978) where
a more direct evaluation of the mutual information for Gaussian stochastic
process models is used.

(ii) Our use of the improved bound is borrowed from ideas in universal
data compression for which I�#�Xn� represents the Bayes average redun-
dancy and maxθ∈S D�PXn�θ�PXn� represents an upper bound on the minimax
redundancy Cn = minQXn maxθ∈S D�PXn�θ�QXn� = maxw Iw�θ�Xn�, where
the maximum is over priors supported on S. The universal data compres-
sion interpretations of these quantities can be found in Davisson (1973) and
Davisson and Leon-Garcia (1980) [see Clarke and Barron (1994), Yu (1996),
Haussler (1997) and Haussler and Opper (1997) for some of the recent work
in that area]. The bound D�PXn�θ�PXn� ≤ V�εn� + nε2n has roots in Barron
[(1987), page 89], where it is given in a more general form for arbitrary priors,
that is D�PXn�θ�PXn� ≤ log 1/w��θ� ε� + nε2, where �θ� ε = �θ′:D�pθ�pθ′ � ≤
ε2� and PXn has density pw�xn� = ∫

p�xn�θ�w�dθ�. The redundancy bound
V�εn� + nε2n can also be obtained from use of a two-stage code of length
log �Gεn

� +minθ′∈Gεn
log 1/p�xn�θ′� [see Barron and Cover (1991), Section V].

(iii) From inequality (1), the minimax risk is bounded below by a constant
times ε2n�d�1 − �Cn + log 2�/Kn�, where Cn = maxw Iw�#�Xn� is the Shannon
capacity of the channel �p�xn�θ�� θ ∈ S� and Kn = log �Nεn�d

� is the Kol-
mogorov εn�d-capacity of S. Thus ε2n�d lower bounds the minimax rate pro-
vided the Shannon capacity is less than the Kolmogorov capacity by a fac-
tor less than 1. This Shannon–Kolmogorov characterization is emphasized by
Ibragimov and Hasminskii (1977, 1978).

(iv) For applications, the lower bounds may be applied to a subclass of
densities �pθ: θ ∈ S0� �S0 ⊂ S� which may be rich enough to characterize the
difficulty of the estimation of the densities in the whole class yet is easy enough
to check the conditions. For instance, if �pθ: θ ∈ S0� is a subclass of densities
that have support on a compact space and � logpθ�∞ ≤ T for all θ ∈ S0, then
the square root K-L divergence, Hellinger distance and L2 distance are all
equivalent in the sense that each of them is both upper bounded and lower
bounded by multiples of each other.

We now turn our attention to obtaining a minimax upper bound. We use a
uniform prior w1 on the ε-net Gεn

for S under dK. For n = 1�2� � � � � let

p�xn� = ∑
θ∈Gεn

w1�θ�p�xn�θ� = 1
�Gεn

�
∑

θ∈Gεn

p�xn�θ�

be the corresponding mixture density. Let

p̄�x� = n−1
n−1∑
i=0

p̂i�x�(3)
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be the density estimator constructed as a Cesaro average of the Bayes pre-
dictive density estimators p̂i�x� = p�Xi+1�Xi� evaluated at Xi+1 = x, which
equal p�Xi�x�/p�Xi� for i > 0 and p̂i�x� = p�x� = �1/�Gεn

��∑θ∈Gεn
p�x�θ� for

i = 0. Note that p̂i�x� is the average of p�x�θ� with respect to the posterior
distribution p�θ�Xi� on θ ∈ Gεn

.

Theorem 2 (Upper bound). Let V�ε� be an upper bound on the covering
entropy of S under dK and let εn satisfy V�εn� = nε2n. Then

min
p̂

max
θ∈S

EθD�pθ�p̂� ≤ 2ε2n�

where the minimization is over all density estimators. Moreover, if Condition
0 is satisfied for a distance d and A0d

2�θ� θ′� ≤ d2
K�θ� θ′� for all θ� θ′ ∈ S,

and if the set Sn of allowed estimators (mappings from Xn to S) contains p̄
constructed in (3) above, then when εn�d ≤ 2ε0,

�A0A/8�ε2n�d ≤ A0 min
θ̂∈Sn

max
θ∈S

Eθd
2�θ� θ̂� ≤ min

θ̂∈Sn

max
θ∈S

Eθd
2
K�θ� θ̂� ≤ 2ε2n�

The condition that Sn contains p̄ in Theorem 2 is satisfied if �pθ: θ ∈ S� is
convex (because p̄ is a convex combination of densities pθ). In particular, this
holds if the action space S is the set of all densities on � . In which case,
when d is a metric the only remaining condition needed for the second set of
inequalities isA0d

2�θ� θ′� ≤ d2
K�θ� θ′� for all θ� θ′. This is satisfied by Hellinger

distance and L1 distance (with A0 = 1 and A0 = 1/2, respectively). When d is
the square root K-L divergence, Condition 0 restricts the family pθ: θ ∈ S (e.g.,
to consist of densities with uniformly bounded logarithms), though it remains
acceptable to let the action space S consist of all densities.

Proof. By convexity and the chain rule [as in Barron (1987)],

EθD�pθ�p̄� ≤Eθ

(
n−1∑n−1

i=0 D�PXi+1�θ�PXi+1�Xi�)
=n−1∑n−1

i=0 E log
p�Xi+1�θ�
p�Xi+1�Xi�

=n−1E log
p�Xn�θ�
p�Xn�

=n−1D
(
PXn�θ�PXn

)
≤n−1�V�εn� + nε2n� = 2ε2n�

(4)

where the last inequality is as derived as in (2). Combining this upper bound
with the lower bound from Theorem 1, this completes the proof of Theorem 2.

✷

If ε2n�d and 2ε2n converge to 0 at the same rate, then the minimax rate of
convergence is identified by Theorem 2. For ε2n�d and ε2n to be of the same
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order, it is sufficient that the following two conditions hold (for a proof of this
simple fact, see Lemma 4 in the Appendix).

Condition 1 (Metric entropy equivalence). There exist positive constants
a� b and c such that when ε is small enough, M�ε� ≤ V�bε� ≤ cM�aε�.

Condition 2 (Richness of the function class). For some 0 < α < 1�

lim inf
ε→0

M�αε�/M�ε� > 1�

Condition 1 is the equivalence of the entropy structure under the square
root K-L divergence and under d distance when ε is small (as is satisfied,
for instance, when all the densities in the target class are uniformly bounded
above and away from 0 and d is taken to be Hellinger distance or L2 distance).
Condition 2 requires the density class to be large enough, namely, M�ε� ap-
proaches ∞ at least polynomially fast in 1/ε as ε → 0, that is, there exists
a constant δ > 0 such that M�ε� � ε−δ. This condition is typical of nonpara-
metric function classes. It is satisfied in particular if M�ε� can be expressed
as M�ε� = ε−rκ�ε�, where r > 0 and κ�αε�/κ�ε� → 1 as ε → 0. In most
situations, the metric entropies are known only up to orders, which makes it
generally not tractable to check lim inf ε→0 Md�αε�/Md�ε� > 1 for the exact
packing entropy function. That is why Condition 2 is stated in terms of a pre-
sumed known bound M�ε� ≤ Md�ε�. Both Conditions 1 and 2 are satisfied if,
for instance, M�ε� � V�ε� � ε−rκ�ε� with r and κ�ε� as mentioned above.

Corollary 1. Assume Condition 0 is satisfied for a distance d satisfying
A0d

2�θ� θ′� ≤ d2
K�θ� θ′� in S and assume �pθ: θ ∈ S� is convex. Under Condi-

tions 1 and 2, we have

min
θ̂∈Sn

max
θ∈S

Eθd
2�θ� θ̂� � ε2n�

where εn is determined by the equation Md�εn� = nε2n. In particular, if µ is
finite and supθ∈S � logpθ�∞ < ∞ and Condition 2 is satisfied, then

min
θ̂∈Sn

max
θ∈S

Eθd
2
K�θ� θ̂� � min

θ̂∈Sn

max
θ∈S

Eθd
2
H�θ� θ̂� � min

θ̂∈Sn

max
θ∈S

Eθ�pθ − pθ̂�22 � ε2n�

where εn satisfies M2�εn� = nε2n or MH�εn� = nε2n.

Corollary 1 is applicable for many smooth nonparametric classes as we shall
see. However, for not very rich classes of densities (e.g., finite-dimensional
families or analytical densities), the lower bound and the upper bound de-
rived in the above way do not converge at the same rate. For instance, for a
finite-dimensional class, both MK�ε� and MH�ε� may be of order log�1/ε�m
for some constant m ≥ 1, and then εn and εn�H are not of the same order with
εn � √�log n�/n and εn�H = o�1/√n�. For smooth finite-dimensional mod-
els, the minimax risk can be solved using some traditional statistical meth-
ods (such as Bayes procedures, Cramér–Rao inequality, Van Tree’s inequality,
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etc.), but these techniques require more than the entropy condition. If local
entropy conditions are used instead of those on global entropy, results can be
obtained suitable for both parametric and nonparametric families of densities
(see Section 7).

2.2. Minimax rates under L2 loss. In this subsection, we derive minimax
bounds for L2 risk without requiring K-L covering entropy.

Let � be a class of density functions f with respect to a probability measure
µ on a measurable set � such as [0,1]. (Typically � will be taken to be
a compact set, though it need not be; we assume only that the dominating
measure µ is finite, then normalized to be a probability measure.) Let the
packing entropy of � be Mq�ε� under the Lq�µ� metric.

To derive minimax upper bounds, we derive a lemma that relates L2 risk
for densities that may be zero to the corresponding risk for densities bounded
away from zero.

In addition to the observed i.i.d sample X1�X2� � � � �Xn from f, let
Y1�Y2� � � �Yn be a sample generated i.i.d from the uniform distribution on
� with respect to µ (generated independently of X1� � � � �Xn). Let Zi be Xi

or Yi with probability (1/2, 1/2) according to the outcome of Bernoulli(1/2)
random variables Vi generated independently for i = 1� � � � � n. Then Zi has
density g�x� = �f�x� + 1�/2. Clearly the new density g is bounded below
(away from 0), whereas the family of the original densities need not be. Let
�̃ = �g:g = �f + 1�/2� f ∈ � � be the new density class.

Lemma 1. The minimax L2 risks of the two classes � and �̃ have the
following relationship:

min
f̂

max
f∈�

EXn�f − f̂�22 ≤ 4min
ĝ

max
g∈�̃

EZn�g − ĝ�22�

where the minimization on the left-hand side is over all estimators based on
X1� � � � �Xn and the minimization on the right-hand side is over all estimators
based on n independent observations from g. Generally, for q ≥ 1 and q �= 2,
we have

min
f̂

max
f∈�

EXn�f − f̂�q
q ≤ 4qmin

ĝ
max
g∈�̃

EZn�g − ĝ�q
q�

Proof. We change the estimation of f to another estimation problem and
show that the minimax risk of the original problem is upper bounded by the
minimax risk of the new class. From any estimator in the new class (e.g., a
minimax estimator), an estimator in the original problem is determined for
which the risk is not greater than a multiple of the risk in the new class.

Let g̃ be any density estimator of g based on Zi� i = 1� � � � n. Fix q ≥ 1.
Let ĝ be the density that minimizes �h − g̃�q over functions in the set � =
�h:h�x� ≥ 1/2�

∫
h�x�dµ = 1�. (If the minimizer does not exist, then one can

choose ĝε within ε of the infimum and proceed similarly as follows and finally
obtain the same general upper bound in Lemma 1 by letting ε → 0.) Then
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by the triangle inequality and because g ∈ � � �g − ĝ�q
q ≤ 2q−1�g − g̃�q

q +
2q−1�ĝ − g̃�q

q ≤ 2q�g − g̃�q
q. For q = 2, this can be improved to �g − ĝ�2 ≤

�g − g̃�2 by Hilbert space convex analysis [see, e.g., Lemma 9 in Yang and
Barron (1997)]. We now focus on the proof of the assertion for the L2 case.
The proof for general Lq is similar. We construct a density estimator for f.
Note that f�x� = 2g�x� − 1, let f̂rand�x� = 2ĝ�x� − 1. Then f̂rand�x� is a
nonnegative and normalized probability density estimator and depends on
X1� � � � �Xn�Y1� � � � �Yn and the outcomes of the coin flips V1� � � � �Vn. So it is
a randomized estimator. The squared L2 loss of f̂rand is bounded as follows:∫ (

f�x� − f̂rand�x�
)2

dµ =
∫

�2g�x� − 2ĝ�x��2 dµ ≤ 4�g − g̃�22�

To avoid randomization, we may replace f̂rand�x� with its expected value over
Y1� � � � �Yn and coin flips V1� � � � �Vn to get f̂�x� with

EXn�f − f̂�22 = EXn�f − EYn�Vnf̂rand�22
≤ EXnEYn�Vn�f − f̂rand�22
= EZn�f − f̂rand�22
≤ 4EZn�g − g̃�22�

where the first inequality is by convexity and the second identity is because
f̂rand depends on Xn�Yn�Vn only through Zn. Thus maxf∈� EXn�f − f̂�22 ≤
4 maxg∈�̃ EZn�g − g̃�22. Taking the minimum over estimators g̃ completes
the proof of Lemma 1. ✷

Thus the minimax risk of the original problem is upper bounded by the
minimax risk on �̃ . Moreover, the ε-entropies are related. Indeed, since
��f1 + 1�/2 − �f2 + 1�/2�2 = �1/2��f1 − f2�2, for the new class �̃ , the
ε-packing entropy under L2 is M̃2�ε� = M2�2ε�.

Now we give upper and lower bounds on the minimax L2 risk. Let us first
get an upper bound. For the new class, the square root K-L divergence is upper
bounded by multiples of L2 distance. Indeed, for densities g1� g2 ∈ �̃ ,

D�g1�g2� ≤
∫ �g1 − g2�2

g2
dµ ≤ 2

∫
�g1 − g2�2 dµ�

where the first inequality is the familiar relationship between K-L di-
vergence and chi-square distance, and the second inequality follows be-
cause g2 is lower bounded by 1/2. Let ṼK�ε� denote the dK covering
entropy of �̃ . Then ṼK�ε� ≤ M̃2�ε/

√
2� = M2�

√
2ε�. Let εn be cho-

sen such that M2�
√
2εn� = nε2n. From Theorem 2, there exists a den-

sity estimator ĝ0 such that maxg∈�̃ EZnD�g�ĝ0� ≤ 2ε2n. It follows that
maxg∈�̃ EZnd2

H�g� ĝ0� ≤ 2ε2n and maxg∈�̃ EZn�g − ĝ0�21 ≤ 8ε2n. Conse-
quently, by Lemma 1, minf̂ maxf∈� EXn�f − f̂�1 ≤ 8

√
8εn. To get a good

estimator in terms of L2 risk, we assume supf∈� �f�∞ ≤ L < ∞. Let ĝ be
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the density in �̃ that is closest to ĝ0 in Hellinger distance. Then by triangle
inequality,

max
g∈�̃

EZnd2
H�g� ĝ� ≤ 2max

g∈�̃
EZnd2

H�g� ĝ0� + 2max
g∈�̃

EZnd2
H�ĝ� ĝ0�

≤ 4max
g∈�̃

EZnd2
H�g� ĝ0� ≤ 8ε2n�

Now because both �g�∞ and �ĝ�∞ are bounded by �L + 1�/2,∫
�g − ĝ�2 dµ =

∫ (√
g −

√
ĝ
)2(√

g +
√

ĝ
)2

dµ ≤ 2�L + 1�d2
H�g� ĝ��

Thus maxg∈�̃ EZn�g − ĝ�22 ≤ 16�L + 1�ε2n. Using Lemma 1 again, we have
an upper bound on the minimax squared L2 risk. The action space S consists
of all probability densities.

Theorem 3. Let M2�ε� be the L2 packing entropy of a density class � with

respect to a probability measure. Let εn satisfy M2�
√
2εn� = nε2n. Then

min
f̂

max
f∈�

EXn�f − f̂�1 ≤ 8
√
8εn�

If in addition, supf∈� �f�∞ ≤ L < ∞, then

min
f̂

max
f∈�

Ef�f − f̂�22 ≤ 256�L + 1�ε2n�

The above result upper bounds the minimax L1 risk and L2 risk (under
supf∈� �f�∞ < ∞ for L2) using only the L2 metric entropy.

Using the relationship between Lq norms, namely, �f− f̂�q ≤ �f − f̂�2 for
1 ≤ q < 2, under supf∈� �f�∞ < ∞, we have

min
f̂

max
f∈�

EXn�f − f̂�2q � ε2n for 1 ≤ q ≤ 2�

To get a minimax lower bound, we use the following assumption, which
is satisfied by many classical classes such as Besov, Lipschitz, the class of
monotone densities and more.

Condition 3. There exists at least one density f∗ ∈ � with minx∈�
f∗�x� = C > 0 and a positive constant α ∈ �0�1� such that �0 =
��1 − α�f∗ + αg:g ∈ � � ⊂ � .

For a convex class of densities, Condition 3 is satisfied if there is at least
one density bounded away from zero. Under Condition 3, the subclass �0 has
L2 packing entropy M0

2�ε� = M2�ε/α� and for two densities f1 and f2 in �0,

D�f1�f2� ≤
∫ �f1 − f2�2

f2
dµ ≤ 1

�1 − α�C
∫

�f1 − f2�2 dµ�

Thus applying Theorem 1 on �0, and then applying Theorem 2, we have the
following conclusion.
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Theorem 4. Suppose Condition 3 is satisfied. Let M2�ε� be the L2 packing
entropy of a density class � with respect to a probability measure, let ε̄n satisfy
M2�

√�1 − α�Cε̄n/α� = nε̄2n and εn be chosen such that M2�εn/α� = 4nε̄2n +
2 log 2. Then

min
f̂

max
f∈�

EXn�f − f̂�22 ≥ ε2n/8�

Moreover, if the class � is rich using the L2 distance (Condition 2), then with
εn determined by M2�εn� = nε2n:

(i) If M2�ε� � M1�ε� holds, then minf̂ maxf∈� EXn�f − f̂�1 � εn.

(ii) If supf∈� �f�∞ < ∞, then minf̂maxf∈� EXn�f − f̂�22 � ε2n.

Using the relationship between L2 and Lq�1 ≤ q < 2� distances and ap-
plying Theorem 1, we have the following corollary.

Corollary 2. Suppose � is rich using both the L2 distance and the Lq

distance for some q ∈ �1�2�. Assume Condition 3 is satisfied. Let εn�q satisfy

Mq�εn�q� = nε2n. Then

ε2n�q � min
f̂

max
f∈�

EXn�f − f̂�2q � ε2n�

If the packing entropies under L2 and Lq are equivalent (which is the
case for many familiar nonparametric classes; see Section 6 for examples),
then the above upper and lower bounds converge at the same rate. Gener-
ally for a uniformly upper bounded density class � on a compact set, be-
cause

∫ �f − g�2 dµ ≤ ��f + g�∞� ∫ �f − g�dµ, we know M1�ε� ≤ M2�ε� ≤
M1�ε2/ sup� �f�∞�. Then the corresponding lower bound for L1 risk may vary
from εn to ε2n depending on how different the two entropies are [see also Birgé
(1986)].

2.3. Minimax rates under K-L and Hellinger loss. For the square root K-
L divergence, Condition 0 is not necessarily satisfied for general classes of
densities. When it is not satisfied (for instance, if the densities in the class
have different supports), the following lemma is helpful to lower bound as well
as upper bound the K-L risk involving only the Hellinger metric entropy by
relating it to the covering entropy under dK.

We consider estimating a density defined on � with respect to a measure
µ with µ�� � = 1 for the rest of this section and Section 2.3.

Lemma 2. For each probability density g, positive T and 0 < ε ≤ √
2, there

exists a probability density g̃ such that for every density f with �f�∞ ≤ T and
dH�f�g� ≤ ε, the K-L divergence D�f�g̃� satisfies

D�f�g̃� ≤ 2
(
2 + log

(
9T/4ε2

))(
9 + 8�8T − 1�2

)
ε2�
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Bounds analogous to Lemma 2 are in Barron, Birgé and Massart [(1999),
Proposition 1], Wong and Shen [(1995), Theorem 5]. A proof of this lemma is
given in the Appendix.

We now show how Lemma 2 can be used to give rates of convergence un-
der Hellinger and K-L loss without forcing the density to be bounded away
from zero. Let � be a density class with �f�∞ ≤ T for each f ∈ � . As-
sume, for simplicity, that the metric entropy MH�ε� under dH is of order
ε−1/α for some α > 0. Then by replacing each g in a Hellinger covering
with the associated g̃, Lemma 2 implies that we obtain a dK covering with
VK�ε� � (�log�1/ε��1/2/ε)1/α and we obtain the associated upper bound on the
K-L risk from Theorem 2. For the lower bound, use the fact that dK is no
smaller than the Hellinger distance for which we have the packing entropy.
(Note that the dK packing entropy, which may be infinity, may not be used
here since Condition 0 is not satisfied.) Consequently, from Theorem 1 and
Theorem 2, we have

�n log n�−2α/�2α+1� � min
f̂

max
f∈�

Ed2
H�f� f̂� ≤ min

f̂
max
f∈�

ED�f�f̂�

� n−2α/�2α+1��log n�1/�2α+1��

Here, the minimization is over all estimators, f̂; that is, S is the class of all
densities.

Thus even if the densities in � may be 0 or near 0, the minimax K-L risk
is within a logarithmic factor of the squared Hellinger risk. See Barron, Birgé
and Massart (1999) for related conclusions.

2.4. Some more results for risks when densities may be 0. In this section,
we show that by modifying a nonparametric class of densities with uniformly
bounded logarithms to allow the densities to approach zero at some points or
even vanish in some subsets, the minimax rates of convergence under K-L and
Hellinger (and L2) may remain unchanged compared to that of the original
class. Densities in the new class are obtained from the original nonparametric
class by multiplying by members in a smaller class (often a parametric class)
of functions that may be near zero. The result is applicable to the following
example.

Example. (Densities with support on unknown set of k intervals.) Let � =
�h�x� · ∑k−1

i=0 bi+11�ai ≤x<ai+1�/c:h ∈ � � 0 = a0 < a1 < a2 < · · · < ak =
1�
∑k−1

i=0 bi+1�ai+1 − ai� ≥ γ1 and 0 ≤ bi ≤ γ2� 1 ≤ i ≤ k� (c is the nor-
malizing constant). Here � is a class of functions with uniformly bounded
logarithms, k is a positive integer, γ1 and γ2 are positive constants. The con-
stants γ1 and γ2 force the densities in � to be uniformly upper bounded. These
densities may be 0 on some intervals and arbitrarily close to 0 on others.

Note that if the densities in � are continuous, then the densities in � have
at most k − 1 discontinuous points. For instance, if � is a Lipschitz class,
then the functions in � are piecewise Lipschitz.
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Somewhat more generally, let � be a class of nonnegative functions satis-
fying �g�∞ ≤ C and

∫
gdµ ≥ c for all g ∈ � . Though the g’s are nonnegative,

they may equal zero on some subsets. Suppose 0 < c ≤ h ≤ C < ∞ for all
h ∈ � . Consider a class of densities with respect to µ:

� =
{
f�x� = h�x�g�x�∫

h�x�g�x�dµ
· h ∈ � � g ∈ �

}
�

Let �̃ = �g̃ = g/
∫
gdµ:g ∈ �� be the density class corresponding to �

and similarly define �̃ . Let M2�ε�� � be the packing entropy of � under L2
distance and let VK�ε�� � and VK�ε� �̃ � be covering entropies as defined in
Section 2 of � and �̃ , respectively, under dK. The action space S consists of
all probability densities.

Theorem 5. Suppose VK�ε� �̃ � ≤ A1M2�A2ε�� � for some positive con-
stants A1�A2 and suppose the class � is rich in the sense that lim inf ε→0
M2�αε�� �/M2�ε�� � > 1 for some 0 < α < 1. If � contains a constant func-
tion, then

min
f̂

max
f∈�

EfD�f�f̂� � min
f̂

max
f∈�

Efd
2
H�f� f̂� � min

f̂
max
f∈�

Ef�f − f̂�22 � ε2n�

where εn is determined by M2�εn�� � = nε2n.

The result basically says that if �̃ is smaller than the class � in an ε-
entropy sense, then for the new class, being 0 or close to 0 due to � does
not hurt the K-L risk rate. To apply the result, we still need to bound the
covering entropy of �̃ under dK. One approach is as follows. Suppose the
Hellinger metric entropy of �̃ satisfies MH�ε/ log�1/ε�� �̃ � � M2�Aε�� � for
some constant A > 0. From Lemma 2, VK�ε� �̃ � ≤ MH�A′ε/ log�1/ε�� �̃ � for
some constant A′ > 0 when ε is sufficiently small (note that the elements g̃ of
the cover from Lemma 2 are not necessarily in � though they are in the set
S of all probability densities). Then we have VK�ε� �̃ � � M2�AA′ε�� �. This
covers the example above (for which case, � is a parametric family) and it even
allows � to be almost as large as � . An example is � = �h: log h ∈ Bα

σ�q�C��
and � = �g:g ∈ Bα′

σ ′� q′ �C�� g ≥ 0 and
∫
gdµ = 1� with α′ bigger than but

arbitrarily close to α (for a definition of Besov classes, see Section 6). Note that
here the density can be 0 on infinitely many subintervals. Other examples are
given in Yang and Barron (1997).

Proof. By Theorem 2, we have minf̂maxf∈� EfD�f�f̂� � ε̃2n, where ε̃n

satisfiesVK�ε̃n�� � = nε̃2n. Under the entropy condition that �̃ is smaller than
� , it can be shown that VK�ε�� � ≤ Ã1M2�Ã2ε�� � for some constants Ã1

and Ã2 [see Yang and Barron (1997) for details]. Then under the assumption
of the richness of � , we have ε̃n = O�εn�. Thus ε2n upper bounds the minimax
risk rates under both d2

K and d2
H. Because � contains a constant function,

�̃ is a subset of � . Since the log-densities in �̃ are uniformly bounded, the
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L2 metric entropies of � and �̃ are of the same order. Thus taking S0 = �̃ ,
the lower bound rate under K-L or squared Hellinger or square L2 distance
is of order ε2n by Corollary 1. Because the densities in � are uniformly upper
bounded, the L2 distance between two densities in � is upper bounded by
a multiple of the Hellinger distance and dK. Thus under the assumptions in
the theorem, the L2 metric entropy of � satisfies M2�ε�� � ≤ VK�Aε�� � �
M2�A′ε�� � for some positive constants A and A′. Consequently, the minimax
L2 risk is upper bounded by order ε2n by Theorem 3. This completes the proof
of Theorem 5. ✷

3. Applications in data compression and regression. Two cases
when the K-L divergence plays a direct role include data compression, where
total K-L divergence provides the redundancy of universal codes, and regres-
sion with Gaussian errors where the individual K-L divergence between two
Gaussian models is the customary squared L2 distance. A small amount of
additional work is required in the regression case to convert a predictive den-
sity estimator into a regression estimator via a minimum Hellinger distance
argument.

3.1. Data compression. Let X1� � � � �Xn be an i.i.d. sample of discrete ran-
dom variables from pθ�x�� θ ∈ S. Let qn�x1� � � � xn� be a density (probability
mass) function. The redundancy of the Shannon code using density qn is the
difference of its expected codelength and the expected codelength of the Shan-
non code using the true density pθ�x1� � � � � xn�, that is, D�pn

θ�qn�. Formally,
we examine the minimax properties of the game with loss D�pn

θ�qn� for con-
tinuous random variables also. In that case, D�pn

θ�qn� corresponds to the
redundancy in the limit of fine quantization of the random variable [see, e.g.,
Clarke and Barron (1990), pages 459 and 460].

The asymptotics of redundancy lower bounds have been considered by Ris-
sanen (1984), Clarke and Barron (1990, 1994), Rissanen, Speed and Yu (1992)
and others. These results were derived for smooth parametric families or a
specific smooth nonparametric class. We here give general redundancy lower
bounds for nonparametric classes. The key property revealed by the chain rule
is the relationship between the minimax value of the game with lossD�pn

θ�qn�
and the minimax cumulative K-L risk,

min
qn

max
θ∈S

D�pn
θ�qn� = min

�p̂i�n−1
i=0

max
θ∈S

n−1∑
i=0

EθD�pθ�p̂i��

where the minimization on the left is over all joint densities qn�x1� � � � � xn�
and the minimization on the right is over all sequences of estimators p̂i based
on samples of size i = 0�1� � � � � n−1 (for i = 0, it is any fixed density). Indeed,
one has D�pn

θ�qn� = ∑n−1
i=0 EθD�pθ�p̂i� when qn�x1� � � � � xn� = ∏n−1

i=0 p̂i�xi+1�
[cf. Barron and Hengartner (1998)]. Let Rn = minqn∈8n

maxθ∈S D�pn
θ�qn� be

the minimax total K-L divergence and let rn = minp̂n∈�n
maxθ∈S EθD�pθ�p̂�
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be the individual minimax K-L risk. Then

nrn−1 ≤ Rn ≤
n−1∑
i=0

ri�(5)

Here the first inequality rn−1 ≤ n−1Rn follows from noting that as in (4),
for any joint density qn on the sample space of X1� � � � �Xn, there exists an
estimator p̂ such that EθD�pθ�p̂� ≤ n−1D�pn

θ�qn� for all θ ∈ S. The second
inequality Rn ≤ ∑n−1

i=0 ri is from the fact that the maximum (over θ in S) of
the sum of risks is not greater than the sum of the maxima.

In particular, we see that rn � Rn/n when rn � n−1∑n−1
i=0 ri. Effectively, this

means that the minimax individual K-L risk and 1/n times minimax total K-
L divergence match asymptotically when rn converges at a rate sufficiently
slower than 1/n (e.g., n−p with 0 < ρ < 1�.

Now let d�θ� θ′� be a metric on S and assume that �pθ: θ ∈ S� contains
all probability densities on � . Let Md�ε� be the packing entropy of S un-
der d and let V�ε� be an upper bound on the covering entropy VK�ε� of
S under dK. Choose εn such that ε2n = V�εn�/n and choose εn�d such that
Md�εn�d� = 4nε2n + 2 log 2. Based on Theorem 1, (2) and inequality (5), we
have the following result.

Corollary 3. Assume that D�pθ�pθ′ � ≥ A0d
2�θ� θ′� for all θ� θ′ ∈ S. Then

we have

�A0/8�nε2n�d ≤ min
qn

max
θ∈S

D�pn
θ�qn� ≤ 2nε2n�

where the minimization is over all densities on � n.

Two choices that satisfy the requirements are the Hellinger distance and
the L1 distance.

When interest is focused on the cumulative K-L risk (or on the individual
risk rn in the case that rn � n−1∑n−1

i=0 ri�, direct proof of suitable bounds are
possible without the use of Fano’s inequality. See Haussler and Opper (1997)
for new results in that direction. Another proof using an idea of Rissanen
(1984) is in Yang and Barron (1997).

3.2. Application in nonparametric regression. Consider the regression
model

yi = u�xi� + εi� i = 1� � � � n�

Suppose the errors εi� 1 ≤ i ≤ n, are i.i.d. with the Normal�0� σ2� distribution.
The explanatory variables xi� 1 ≤ i ≤ n, are i.i.d. with a fixed distribution P.
The regression function u is assumed to be in a function class �. For this
case, the square root K-L divergence between the joint densities of �X�Y� in
the family is a metric. Let �u − v�2 = �∫ �u�x� − v�x��2 dP�1/2 be the L2�P�
distance with respect to the measure induced by X. Let M2�ε� and simi-
larly for q ≥ 1 let Mq�ε� be the ε-packing entropy under L2�P� and Lq�P�,



MINIMAX RATES OF CONVERGENCE 1583

respectively. Assume M2�ε� and Mq�ε� are both rich (in accordance with Con-
dition 2). Choose εn such that M2�εn� = nε2n. Similarly let εn�q be determined
by Mq�εn�q� = nε2n.

Theorem 6. Assume supu∈� �u�∞ ≤ L. Then

min
û

max
u∈�

E�u − û�22 � ε2n�

For the minimax Lq�P� risk, we have

min
û

max
u∈�

E�u − û�q � εn�q�

If further, M2�ε� � Mq�ε� for 1 ≤ q < 2, then for the Lq�P� risk, we have

min
û

max
u∈�

E�u − û�q � εn�

Proof. With no loss of generality, suppose thatPX has a density h�x� with
respect to a measure λ. Let pu�x�y� = �2πσ2�−1/2 exp �−�y − u�x��2/2σ2�h�x�
denote the joint density of �X�Y� with regression function u. Then
D�pu�pv� = �1/2σ2�E��Y − u�X��2 − �Y − v�X��2� reduces as is well
known to �1/2σ2� ∫ �u�x� − v�x��2h�x�dλ, so that dK is equivalent to the
L2�P� distance. The lower rates then follow from Theorem 1 together with
the richness assumption on the entropies.

We next determine upper bounds for regression by specializing the bound
from Theorem 2. We assume �u�∞ ≤ L uniformly for u ∈ �. Theorem 2
provides a density estimator p̂n such that maxu∈� ED�pu�p̂n� � 2ε2n. It fol-
lows that maxu∈� Ed2

H�pu� p̂n� � 2ε2n. [A similar conclusion is available in
Birgé (1986), Theorem 3.1.] Here we take advantage of the fact that when the
density h�x� is fixed, p̂n�x�y� takes the form of h�x�ĝ�y�x�, where ĝ�y�x� is
an estimate of the conditional density of y given x (it happens to be a mix-
ture of Gaussians using a posterior based on a uniform prior on ε-nets). For
given x and �Xi�Yi�ni=1, let ũn�x� be the minimizer of the Hellinger distance
dH�ĝn�·�x�� φz� between ĝn�y�x� and the normal φz�y� density with mean z
and the given variance over choices of z with �z� ≤ L. Then ũn�x� is an es-
timator of u�x� based on �Xi�Yi�ni=1. By the triangle inequality, given x and
�Xi�Yi�ni=1,

dH

(
φu�x�� φũn�x�

)≤dH

(
φu�x�� ĝn�·�x�)+ dH

(
φũn�x�� ĝn�·�x�)

≤2dH

(
φu�x�� ĝn�·�x�)�

It follows that maxu∈� Ed2
H�pu�pũn

� ≤ 4 maxu∈� Ed2
H�pu� p̂n� � 8ε2n. Now

Ed2
H�pu�pũn

� = 2E
∫
h�x�(1 − exp �−�u�x� − ũn�x��2/8σ2�)dλ. The concave

function �1− e−v� is above the chord �v/B��1− e−B� for 0 ≤ v ≤ B. Thus using
v = �u�x� − ũn�x��2/8σ2 and B = L2/2σ2, we obtain

max
u∈�

E
∫

�u�x� − ũn�x��2h�x�dλ

≤ 2L2�1− exp�−L2/2σ2��−1 max
u∈�

Ed2
H�pu�pũ� � ε2n�
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This completes the proof of Theorem 6. ✷

4. Linear approximation and minimax rates. In this section, we ap-
ply the main results and known metric entropy to give a general conclusion on
the relationship between linear approximation and minimax rates of conver-
gence. A more general and detailed treatment is in Yang and Barron (1997).

Let C = �φ1 = 1� φ2 � � � � φk� � � �� be a fundamental sequence in L2�0�1 d
(that is, linear combinations are dense in L2�0�1 d�. Let D = �γ0� � � � � γk� � � ��
be a decreasing sequence of positive numbers for which there exist 0 < c′ <
c < 1 such that

c′γk ≤ γ2k ≤ cγk�(6)

as is true for γk ∼ k−α and also for γk ∼ k−α�log k�β� α > 0� β ∈ R. Let
η0�f� = �f�2 and ηk�f� = min�ai� �f−∑k

i=1 aiφi�2 for k ≥ 1 be the kth degree
of approximation of f ∈ L2�0�1 d by the system C. Let � �D�C� be all functions
in L2�0�1 d with the approximation errors bounded by D; that is,

� �D�C� = �f ∈ L2�0�1 d:ηk�f� ≤ γk� k = 0�1� � � ���
They are called the full approximation sets. Lorentz (1966) gives metric en-
tropy bounds on these classes (actually in more generality than stated here)
and the bounds are used to derive metric entropy orders for a variety of func-
tion classes including Sobolev classes.

Suppose the functions in � �D�C� are uniformly bounded, that is,
supg∈� �D�C� �g�∞ ≤ ρ for some positive constant ρ. Let �̃ �D�C� be all
the probability density functions in � �D�C�. When γ0 is large enough, the
L2 metric entropies of �̃ �D�C� and � �D�C� are of the same order. Let kn be
chosen such that γ2k � k/n.

Theorem 7. The minimax rate of convergence for a full approximation set
of functions is determined simply as follows:

min
f̂

max
f∈�̃ �D�C�

E�f − f̂�22 � kn/n�

A similar result holds for regression. Note that there is no special requirement
on the bases C (they may even not be continuous). For such a case, it seems
hard to find a local packing set for the purpose of directly applying the lower
bounding results of Birgé (1983).

The conclusion of the theorem follows from Theorem 4. Basically, from
Lorentz, the metric entropy of � �D�C� is order kε = inf�k:γk ≤ ε� and
� �D�C� is rich in L2 distance. As a consequence, εn determined by M�εn� �
nε2n also balances γ2k and k/n.

As an illustration, for a system C, consider the functions that can be ap-
proximated by the linear system with polynomially decreasing approximation
error γk ∼ k−α� α > 0. Then minf̂maxf∈�̃ �D�C� E�f − f̂�22 � n−2α/�1+2α�. Simi-
larly we have rate n−2α/�1+2α� �log n�−2β/�1+2α� if γk ∼ k−α �log k�β.
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As we have seen, the optimal convergence rate in this full approximation
setting is of the same order as mink�γ2k + k/n�, which we recognize as the fa-
miliar bias-squared plus variance trade-off for mean squared error. Indeed, for
regression as in Section 3, with yi = u�xi� + εi� u ∈ � �D�C�, approximation
systems yield natural and well-known estimates that achieve this rate. This
trade-off is familiar in the literature [see, e.g., Cox (1988) for least squares
regression estimates, Cenov (1982) or Barron and Sheu (1991), for maximum
likelihood log-density estimates, and Birgé and Massart (1996) for projective
density estimators and other contrasts].

The best rate kn is of course, unknown in applications, suggesting the need
of a good model selection criterion to choose a suitable size model to balance the
two kinds of errors automatically based on data. For recent results on model
selection, see for instance, Barron, Birgé, and Massart (1999) and Yang and
Barron (1998). There knowledge of the optimal convergence rates for various
situations is still of interest, because it permits one to gauge the extent to
which an automatic procedure adapts to multiple function classes.

To sum up this section, if a function class � is contained in � �D�C� and
contains � �D′�C′� for some pair of fundamental sequences C and C′ for which
the γk� γ

′
k sequences yield εn � ε′

n, then εn provides the minimax rate for �
and moreover (under the conditions discussed above) minimax optimal esti-
mates are available from suitable linear estimates. However, some interesting
function classes do not permit linear estimators to be minimax rate optimal
[see Nemirovskii (1985), Nemirovskii, Polyak and Tsybakov (1985), Donoho,
Johnstone, Kerkyacharian and Picard (1996)]. Lack of a full approximation
set characterization does not preclude determination of the metric entropy by
other approximation-theoretic means in specific cases as will be seen in the
next two sections.

5. Sparse approximations and minimax rates. In the previous sec-
tion, full approximation sets of functions are defined through linear approx-
imation with respect to a given system C. There, to get a given accuracy of
approximation δ, one uses the first kδ basis functions with kδ = min�i:γi ≤ δ�.
This choice works for all g ∈ � �D�C� and these basis functions are needed
to get the accuracy δ for some g ∈ � �D�C�. For slowly converging sequences
γk, very large kδ is needed to get accuracy δ. This phenomenon occurs espe-
cially in high-dimensional function approximation. For instance, if one uses
full approximation with any chosen basis for a d-dimensional Sobolev class
with all α �α ≥ 1� partial derivatives well behaved, the approximation error
with k terms can not converge faster than k−α/d. It then becomes of interest
to examine approximation using manageable size subsets of terms sparse in
comparison to the total that would be needed with full approximation. We
next give minimax results for some sparse function classes.

Let C and D be as in the previous section. Let Ik > k� k ≥ 1 be a given
nondecreasing sequence of integers satisfying lim inf Ik/k = ∞�I0 = 0� and
let 	 = �I1� I2� � � ��. Let η̃k�g� = minl1≤I1�����lk≤Ik

min�ai� �g −∑k
i=1 aiφli

�2 be
called the kth degree of sparse approximation of g ∈ L2�0�1 d by the system
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C. Here for k = 0, there is no approximation and η̃0�g� = �g�2. The kth term
used to approximate g is selected from Ik basis functions. Let 
 �D�C� =

 �D�C�	 � be all functions in L2�0�1 d with the sparse approximation errors
bounded by D, that is,


 �D�C� = �g ∈ L2�0�1 d: η̃k�g� ≤ γk� k = 0�1� � � ���
We call it a sparse approximation set of functions (for a fixed choice of 	 ).
Larger Ik’s provide considerable more freedom of approximation.

In terms of metric entropy, a sparse approximation set is not much larger
than the corresponding full approximation set � �D�C� it contains. Indeed,
as will be shown, its metric entropy is larger by at most a logarithmic factor
under the condition Ik ≤ kτ for some possibly large τ > 1. If full approximation
is used instead to approximate a sparse approximation set, one is actually
approximating a class with a much larger metric entropy than 
 �D�C� if Ik

is much bigger than k [see Yang and Barron (1997)].
For a class of examples, let H be a class of functions uniformly bounded by

v with a L2 ε-cover of cardinality of order �1/ε�d′
[metric entropy d′ log�1/ε�]

for some positive constant d′. Let �H be the closure of its convex hull. For
k ≥ 1, let ϕIk−1+1� � � � � ϕIk

in C be the members of a v/�2k1/2�—cover of H. Here

Ik − Ik−1 is of order kd′/2. Then �H ⊂ 
 �D�C� with γk = 4v/k1/2. That is, the
closure of the convex hull of the class can be uniformly sparsely approximated
by a system consisting of suitably chosen members in the class at rate k−1/2

with k sparse terms out of about kd′/2 many candidates. This containment
result, �H ⊂ 
 �D�C�, can be verified using greedy approximation [see Jones
(1992) or Barron (1993), Section 8], which we omit here. A specific example of
H is �σ�ax + b�:a ∈ �−1�1 d� b ∈ R�, where σ is a fixed sigmoidal function
satisfying a Lipschitz condition such as σ�z� = �ez−1�/�ez+1�, or a sinusoidal
function σ�z� = sin�z�. For metric entropy bounds on �H, see Dudley (1987),
with refinements in Ball and Pajor (1990).

Now let us prove metric entropy bounds on 
 �D�C�. Because � �D�C� ⊂

 �D�C�, the previous lower bound for � �D�C� is a lower bound for 
 �D�C�.
We next derive an upper bound. Let li ≤ Ii� 1 ≤ i ≤ kε be fixed for a mo-
ment. Consider the subset �l1�����lkε

of 
 �D�C� in the span of φl1
� � � � � φlkε

that has approximation errors bounded by γ1� � � � � γkε
using the basis

φl1
� � � � � φlkε

�i.e., g ∈ �l1�����lkε
if and only if g = ∑kε

i=1 a
∗
iφli

for some coeffi-
cients a∗

i and mina1�����am
�g −∑m

i=1 aiφli
�2 ≤ γm for 1 ≤ m ≤ kε). From the

previous section, we know the ε-entropy of �l1�����lkε
is upper bounded by order

kε = inf�k:γk ≤ ε/2�. Based on the construction, it is not hard to see that an
ε/2-net in ∪li ≤Ii�1≤i≤kε

�l1�����lkε
is an ε-net for 
 �D�C�. There are fewer than(lkε

kε

)
many choices of the basis φli

� 1 ≤ i ≤ kε, thus the ε-entropy of 
 �D�C�
is upper bounded by order kε + log

(Ikε

kε

) =O�kε� log�ε−1� under the assumption
Ik ≤ kτ for some τ > 1. As seen in Section 4, if γk ∼ k−α�log k�−β, we have
that kε is of order ε−1/α�log�ε−1��−β/α. Then the metric entropy of 
 �D�C� is
bounded by order ε−1/α�log�ε−1��1−β/α.
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Thus we pay at most a price of a log�ε−1� factor to cover the larger class

 �D�C� with a greater freedom of approximation.

For density estimation, suppose the functions in 
 �D�C� are uniformly up-
per bounded. Let ˜
 �D�C� be all the probability density functions in 
 �D�C�.
When γ0 is large enough, the L2 metric entropies of ˜
 �D�C� and 
 �D�C� are
of the same order. Let εn satisfy nε2n = kεn

log�ε−1
n � and εn satisfy kεn

= nε2n.
Then applying Theorem 3 together with the lower bound on � �D�C�, we have
derived the following result.

Theorem 8. The minimax rate of convergence for a sparse approximation
set satisfies

ε2n � min
f̂

max
f∈ ˜
 �D�C�

E�f − f̂�22 � ε2n�

As a special case, if γk ∼ k−α� α > 0, then

n−2α/�1+2α� � min
f̂

max
f∈ ˜
 �D�C�

E�f − f̂�22 � �n/ log n�−2α/�1+2α��

Note that upper and lower bound rates differ only in a logarithmic factor.
From the proofs of the minimax upper bounds, the estimators there are

constructed based on Bayes averaging over the εn-net of 
 �D�C�. In this
context, it is also natural to consider estimators based on subset selection.
Upper bound results in this direction can be found in Barron, Birgé, and
Massart (1999), Yang (1999a) and Yang and Barron (1998).

A general theory of sparse approximation should avoid requiring an as-
sumption of orthogonality of the basis functions φi� i ≥ 1. In contrast with the
story for full approximation sets where � �D�C� is unchanged by the Gram–
Schmidt process, sparse approximation is not preserved by orthogonalization.
Nonetheless, consideration of those functions that are approximated well by
sparse combinations of orthonormal basis has the advantage that conditions
can be more easily expressed directly in terms of the coefficients. Here we
discuss consequences of Donoho’s treatment (1993) of sparse orthonormal ap-
proximation for minimax statistical risks.

Let �φ1� φ2� � � �� be a given orthonormal basis in L2�0�1 . For 0 < q < 2, let


q�C1�C2� β� =
[ ∞∑
i=1

ξiφi:
∞∑
i=1

�ξi�q ≤ C1 and
∞∑
i=1

�ξi�2 ≤ C2l
−β for all l ≥ 1

]
�

Here C1�C2 and β are positive constants though β may be quite small, for
example, s/d with s smaller than d. The condition

∑∞
i=l �ξi�2 ≤ C2l

−β is used
to make the target class small enough to have convergent estimators in L2
norm. Roughly speaking, the sparsity of the class comes from the condition
that

∑∞
i=1 �ξi�q ≤ C1 which implies that the ith largest coefficient satisfies

�ξ�i��q ≤ C1/i and that selection of the k largest coefficients are sufficient to
achieve a small remaining sum of squares. The condition

∑∞
i=l �ξi�2 ≤ C2l

−β is
used to ensure that it suffices to select the k largest coefficients from the first
Ik = kτ terms with sufficiently large τ.
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The class 
q�C1�C2� β� is a special case of function classes with uncondi-
tional basis. Let � be a uniformly bounded function class and C = �φ1 =
1� φ2� � � �� be an orthonormal basis in L2. The basis C is said to be an un-
conditional for � if for any g = ∑∞

i=1 ξiφi ∈ � , then
∑∞

i=1 ξ̃iφi ∈ � for all
ξ̃ = �ξ̃1� ξ̃2� � � �� with �ξ̃i� ≤ �ξi�. Donoho (1993, 1996) gives results on metric
entropy of these classes and proves that an unconditional basis for a func-
tion class gives essentially best sparse representation of the functions and
shows that simple thresholding estimators are nearly optimal. We here apply
the main theorems on minimax rates in this paper to these sparse function
classes using his metric entropy results.

Let q∗ = q∗�� � = inf�q: supi≥1 i1/q�ξ�i�� < ∞�, where ξ�1�� ξ�2�� � � � are the co-
efficients ordered in decreasing magnitude �ξ�1�� ≥ �ξ�2�� ≥ � � �. This q∗ is called
the sparsity index in Donoho (1993, 1996). Let α∗ = α∗�� � = sup�α:M2�ε� =
O�ε−1/α�� be the optimal exponent of the L2 metric entropy M2�ε� of � . From
Donoho (1996), if � further satisfies the condition

∑∞
i=l �ξi�2 ≤ Cl−β for all

l ≥ 1, then α∗ = 1/q∗ − 1/2, that is, for any 0 < α1 < α∗ < α2� ε−1/α2 �
M2�ε� � ε−1/α1 . Let �C′ = �f:f/C′ ∈ � and f is a density�. Then when C′ is
large enough, �C′ has the same metric entropy order as that of � . Thus under
the same conditions, we have

n−2α2/�2α1+1� � min
f̂

max
f∈�C′

E�f − f̂�22 � n−2α1/�2α1+1�

for any 0 < α1 < α∗ < α2. The first order in the exponent of the minimax risk
is −2α∗/�2α∗ + 1�.

For the special case of 
q�C1�C2� β�, better entropy bounds are available
based on Edmunds and Triebel [(1987), page 141] [see Yang and Barron
(1997)], resulting in a sharper upper rate by n−2α/�2α+1� when β/2 ≥ 1/q−1/2
and by �n/ log n�−2α/�2α+1� when 0 < β/2 < 1/q − 1/2, where α = 1/q − 1/2.

6. Examples. In this section, we demonstrate the applications of the the-
orems developed in the previous sections. As will be seen from the following
examples, once we know the order of metric entropy of a target class, the
minimax rate can be determined right away for many nonparametric classes
without additional work. For results on metric entropy orders of various func-
tion classes, see Lorentz, Golitschek and Makovoz (1996) and references cited
there.

6.1. Ellipsoidal classes in L2. Let �φ1 = 1� φ2� � � � � φk� � � �� be a complete
orthonormal system in L2�0�1 . For an increasing sequence of constants
bk with b1 ≥ 1 and bk → ∞, define an ellipsoidal class � ��bk��C� =
�g = ∑∞

i=1 ξiφi:
∑∞

i=1 ξ
2
i b

2
i ≤ C�. Define m�t� = sup�i: bi ≤ t� and let

l�t� = ∫ t
0 m�t�/t dt. Then from Mitjagin (1961), one knows that the L2 cov-

ering metric entropy of � ��bk��C� satisfies l�1/2ε� ≤ V2�ε� ≤ l�8/ε�. For
the special case with bk = kα �α > 0�, the metric entropy order ε−1/α deter-
mined above was previously obtained by Kolmogorov and Tihomirov (1959)
for the trigonometric basis. [When α > 1 or bk increases suitably fast, the
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entropy rate can also be derived using the results of Lorentz (1966) on full
approximation sets.]

6.2. Classes of functions with bounded mixed differences. As in Temlyakov
(1989), define the function classes Hr

q on πd = �−π�π d having bounded
mixed differences as follows. Let k = �k1� � � � � kd� be a vector of inte-
gers, q ≥ 1, and r = �r1� � � � � rd� with r1 = · · · = rv < rv+1 ≤ · · · ≤
rd. Let Lq�πd� denote the periodic functions on πd with finite norm
�g�Lq�πd� "= �2π�−d

(∫
πd

�g�x��q dx
)1/q. Denote by Hr

q� l the class of functions
g�x� ∈ Lq�πd�� ∫πd

g�x�dxi = 0 for 1 ≤ i ≤ d, and �Ml
tg�x��Lq�πd� ≤∏d

j=1 �tj�rj �l > maxj rj�, where t = �t1� � � � � td� and Ml
t is the mixed lth differ-

ence with step tj in the variable xj, that is, M
l
tg�x� = Ml

td
· · ·Ml

t1
g�x1� � � � � xd�.

From Temlyakov (1989), for r = �r1� � � � � rd� with r1 > 1� 1 ≤ p < ∞ and
1 ≤ q ≤ ∞,

Mp�ε�Hr
q� � �1/ε�1/r1�log 1/ε��1+1/2r1��v−1��

Functions in this class are uniformly bounded.

6.3. Besov classes. Let Mr
h�g�x� = ∑r

k=0

(
r
k

)
�−1�r−kg�x + kh�. Then the

r-th modulus of smoothness of g ∈ Lq�0�1 �0 < q < ∞� or of g ∈ C�0�1 if
q = ∞ is defined by ωr�g� t�q = sup0<h≤t �Mr

h�g� ·��q. Let α > 0, r = �α + 1,
and

�g�Bα
σ�q

= �ωr�g� ·��α�σ =


(∫ ∞

0
�t−αωr�g� t�q�σ

dt

t

)1/σ
� for 0 < σ < ∞,

sup
t>0

t−αωr�g� t�q� for σ = ∞.

Then the Besov norm is defined as �g�Bα
σ�q

= �g�q + �g�Bα
σ q

[see DeVore and
Lorentz (1993)]. Closely related are Triebel or F classes, which can be han-
dled similarly. For definitions and characterizations of Besov (and F) classes
in the d-dimensional case, see Triebel (1975). They include many well-known
function spaces such as Hölder–Zygmund spaces, Sobolev spaces, fractional
Sobolev spaces or Bessel potential spaces and inhomogeneous Hardy spaces.
For 0 < σ� q ≤ ∞�q < ∞ for F� and α > 0, let Bα

σ�q�C� be the collec-
tions of all functions g ∈ Lq�0�1 d such that �g�Bα

σ�q
≤ C. Building on the

conclusions previously obtained for Sobolev classes by Birman and Soloma-
jak (1974), Triebel (1975), with refinements in Carl (1981), showed that for
1 ≤ σ ≤ ∞� 1 ≤ p� q ≤ ∞ and α/d > 1/q − 1/p� Mp�ε�Bα

σ�q�C�� � ε−d/α.

6.4. Bounded variation and Lipschitz classes. The function class BV�C�
consists of all functions g�x� on [0,1] satisfying �g�∞ ≤ C and V�g� "=
sup

∑m
i=1 �g�xi+1� − g�xi�� ≤ C, where the supremum is taken for all finite

sequences x1 < x2 < · · · < xm in [0,1]. For 0 < α ≤ 1, let Lipα� q�C� =
�g " �g�x + h� − g�x��q ≤ Chα and �g�q ≤ C� be a Lipschitz class. When α >

1/q−1/p� 1 ≤ p� q ≤ ∞, the metric entropy satisfiesMp�ε�Lipα� q�C�� � ε−1/α
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[see Birman and Solomajak (1974)]. For the class of functions in BV�C�, with
suitable modification of the value assigned at discontinuity points as in De-
Vore and Lorentz [(1993), Chapter 2] one has Lip1�∞�C� ⊂ BV�C� ⊂ Lip1�1�C�
and since the Lp �1 ≤ p < ∞� metric entropies of Lip1�1�C� and Lip1�∞�C�
are both of order 1/ε, the Lp �1 ≤ p < ∞� metric entropy of BV�C� is also of
order 1/ε.

6.5. Classes of functions with moduli of continuity of derivatives bounded
by fixed functions. Instead of Lipschitz requirements, one may consider
more general bounds on the moduli of continuity of derivatives. Let
Pd�2

r�ω = Pd�2
r�ω�C0�C1� � � � � Cr� be the collection of all functions g on �0�1 d

which have all partial derivatives �Dkg�2 ≤ Ck� �k� = k = 0�1� � � � � r, and the
modulus of continuity in the L2 norm of each rth derivative is bounded by a
function ω. Here ω is any given modulus of continuity [for a definition, see
DeVore and Lorentz (1993), page 41]. Let δ = δ�ε� be defined by the equation
δrω�δ� = ε. Then if r ≥ 1, again from Lorentz (1966), the L2 metric entropy
of Pd�2

r�ω is of order �δ�ε��−d.

6.6. Classes of functions with different moduli of smoothness with respect
to different variables. Let k1� � � � � kd be positive integers and 0 < βi ≤ ki,
1 ≤ i ≤ d. Let k = �k1� � � � � kd� and β = �β1� � � � � βd�. Let V�k� β�C� be the
collection of all functions g on �0�1 d with �g�∞ ≤ C and sup�h� ≤ t �Mki

i� hg�2 ≤
Ctβi , where M

ki

i� h is the kith difference with step h in variable xi. From Lorentz
[(1996), page 921], the L2 metric entropy order of V�k� β�C� is �1/ε�∑d

i=1 β−1
i .

6.7. Classes E
α�k
d �C�. Let E

α�k
d �C� �α > 1/2 and k ≥ 0� be the collection

of periodic functions

g�x1� � � � � xd� =
+∞∑

m1�����md=−∞

(
am1�����md

cos
( d∑
i=1

mixi

)
+ bm1�����md

sin
( d∑
i=1

mixi

))
on �0�2π with

√
a2m1�����md

+ b2m1�����md
≤ C�m1 · · ·md�−α

(
logk�m1 · · ·md� + 1

)
,

where m = max�m�1�. The L2 metric entropy is of order �1/ε�1/�α−1/2�

log�2k+2α�d−1��/�2α−1��1/ε� by Smoljak (1960). Note that for these classes, the
dependence of entropy orders on the input dimension d is only through
logarithmic factors.

6.8. Neural network classes. Let N�C� be the closure in L2�0�1 d of the
set of all functions g:Rd → R of the form g�x� = c0 +∑

i ciσ�vix + bi�, with
�c0� + ∑

i �ci� ≤ C, and �vi� = 1, where σ is a fixed sigmoidal function with
σ�t� → 1 as t → ∞ and σ�t� → 0 as t → −∞. We further require that σ is
either the step function σ∗�t� = 1 for t ≥ 0, and σ∗�t� = 0 for t < 0, or satisfies
the Lipschitz requirement that �σ�t� − σ�t′�� ≤ C1�t − t′� for some C1 and
�σ�t� −σ∗�t�� ≤ C2�t�−γ for some C2 and γ > 0 for all t �= 0. Approximations to
functions in N�C� using k sigmoids achieves L2 error bounded by C/k1/2 [as
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shown in Barron (1993)], and using this approximation bound, Barron [(1994),
page 125] gives certain metric entropy bounds. The approximation error can
not be made uniformly smaller than �1/k�1/2+1/d+δ for δ > 0 as shown in
Barron [(1991), Theorem 3]. Makovoz [(1996), pages 108 and 109] improves
the approximation upper bound to a constant times �1/k�1/2+1/�2d� and uses
these bounds to show that the L2 metric entropy of the class N�C� with either
the step sigmoid or a Lipschitz sigmoid satisfies �1/ε�1/�1/2+1/d� � M2�ε� �
�1/ε�1/�1/2+1/�2d�� log�1/ε�. For d = 2, a better lower bound matches the upper
bound in the exponent �1/ε�4/3 log−2/3�1/ε� � M2�ε� � �1/ε�4/3 log�1/ε�. For
d = 1, N�C� is equivalent to a bounded variation class.

Convergence rates. We give convergence rates for density estimation. Un-
less stated otherwise, attention is restricted to densities in the corresponding
class. Norm parameters of the function classes are assumed to be large enough
so that the restriction does not change the metric entropy order. For regres-
sion, the rates of convergence are the same for each of these function classes
assuming the design density (with respect to Lebesgue measure) is bounded
above and away from zero.

1. Assume the functions in � ��bk��C� are uniformly bounded by C0 and as-
sume that l�t� satisfies lim inf t→0 l�βt�/l�t� > 1 for some fixed constant
β > 1. Let εn be determined by l�1/εn� = nε2n; we have

min
f̂

max
f∈� ��bk��C�

E�f − f̂�22 � ε2n�

Specially, if bk = kα, k ≥ 1 and the basis functions satisfy supk≥1 �φk�∞ <
∞, then when α > 1/2, functions in � ��bk��C� are uniformly bounded.
Then the rate of convergence is n−2α/�2α+1�. See Efroimovich and Pinsker
(1982) for more detailed asymptotics with the trigonometric basis and bk =
kα, see Birgé (1983) for similar conclusions using a hypercube construc-
tion for the trigonometric basis and Barron, Birgé and Massart [(1999),
Section 3] for general ellipsoids.

2. Let H̃r
q�C� = �f = eg/

∫
eg dµ:g ∈ Hr

q�C�� be a uniformly bounded density
class. The metric entropy of H̃r

q�C� is of the same order as for Hr
q�C�. So

for r1 > 1 and 1 ≤ q ≤ ∞, 1 ≤ p ≤ 2, by Corollary 1, we have

min
f̂

max
f∈H̃r

q

E�f − f̂�p � n−r1/�2r1+1��log n��v−1�/2�

For this density class, the minimax risk under K-L divergence or squared
Hellinger distance is also of the same order as that under the squared L2
distance, n−2r1/�2r1+1��log n��v−1�.

3. When α/d > 1/q, the functions in Bα
σ�q�C� are uniformly bounded. For

1 ≤ σ ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ p ≤ 2 and α/d > 1/q,

min
f̂

max
f∈Bα

σ�q�C�
E�f − f̂�2p � n−2α/�2α+d��
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min
f̂

max
f∈Bα

σ�q�C�
E�f − f̂�p � n−α/�2α+d��

When 1/q − 1/2 < α/d ≤ 1/q, some functions in Bα
σ�q�C� are not bounded;

nevertheless, this class has the same order metric entropy as the subclass
Bα

σ�∞�C� with q∗ > d/α which is uniformly bounded. Consequently for C
sufficiently large the metric entropy of class of densities in Bα

σ�q�C� is still
the same order as for Bα

σ�q�C�. From Theorem 4, for L1 risk we have,
when α/d > 1/q − 1/2, the rate is also n−α/�2α+d�. From the monotonic-
ity property of the Lp norm in p, we have for p > 1 and α/d > 1/q − 1/2,
minf̂maxf∈� E�f − f̂�p � n−α/�2α+d�. In particular, when q ≥ 2, the last
two conclusions hold for all α > 0. Donoho, Johnstone, Kerkyacharian and
Picard (1993) obtained suitable minimax bounds for the case of p ≥ q,
α > 1/q. Here we permit smaller α. The rates for Lipschitz classes were
previously obtained by Birgé (1983) and Devroye (1987) (the latter for spe-
cial cases with p = 1). If the log-density is assumed to be in Bα

σ�q�C�, then
by Corollary 1, for α/d > 1/q, the minimax risk under K-L divergence is of
the same order n−2α/�2α+d�, which was previously shown by Koo and Kim
(1996).

4. For 1 ≤ p ≤ 2, the minimax rate for square Lp risk or Lp risk is of order
n−2/3 or n−1/3. Since a class of bounded monotone functions has the same
order metric entropy as a bounded variation class, we conclude immediately
that it has the same minimax rate of convergence. The rate is obtained in
Birgé (1983) by setting up a delicate local packing set for the lower bound.

5. Let εn be chosen such that �δ�εn��−d = nε2n. Then for r ≥ 1, the minimax
square L2 risk is at rate ε2n.

6. Let α−1 = ∑d
i=1 β

−1
i ; then the minimax square L2 risk is at rate n−2α/�2α+1�.

7. The class E
α�k
d �C� is uniformly bounded when α > 1. Then

min
f̂

max
f∈E

α�k
d �C�

E�f − f̂�22 � n−�α−1/2�/α log�k+α�d−1��/α n�

8. We have upper and lower rates

n−�1+2/d�/�2+1/d� �log n�−�1+1/d��1+2/d��2+1/d� �min
f̂

max
f∈N�C�

E�f − f̂�22

��n/ log n�−�1+1/d�/�2+1/d��

and for d = 2, using the better lower bound on the metric entropy, we have

n−3/5 �log n�−19/10 � min
f̂

max
f∈N�C�

E�f − f̂�22 � �n/ log n�−3/5�

For this case, it seems unclear how one could set up a local packing set for
applying Birgé’s lower bounding result. Though the upper and lower rates do
not agree (except d = 2, ignoring a logarithmic factor), when d is moderately
large, the rates are roughly n−1/2, which is independent of d.
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7. Relationship between global and local metric entropies. As
stated in the introduction, the previous use of Fano’s inequality to derive the
minimax rates of convergence involved local metric entropy calculation. To
apply this technique, constructions of special local packing sets capturing the
essential difficulty of estimating a density in the target class are seemingly
required and they are usually done with a hypercube argument. We have
shown in Section 2 that the global metric entropy alone determines the mini-
max lower rates of convergence for typical nonparametric density classes.
Thus there is no need to put in efforts in search of special local packing
sets. After the distribution of an early version of this paper which contained
the main results in Section 2, we realized a connection between the global
metric entropy and local metric entropy. In fact, the global metric entropy
ensures the existence of at least one local packing set which has the property
required for the use of Birgé’s argument. This fact also allows one to bypass
the special constructions. Here we show this connection between the global
metric entropy and local metric entropy and comment on the uses of these
metric entropies.

For simplicity, we consider the case when d is a metric. Suppose the global
packing entropy of S under distance d is M�ε�.

Definition (Local metric entropy). The local ε-entropy at θ ∈ S is the log-
arithm of the largest �ε/2�-packing set in B�θ� ε� = �θ′ ∈ S:d�θ′� θ� ≤ ε�. The
local ε-entropy at θ is denoted by M�ε � θ�. The local ε-entropy of S is defined
as Mloc�ε� = maxθ∈S M�ε � θ�.

Lemma 3. The global and local metric entropies have the following rela-
tionship:

M�ε/2� − M�ε� ≤ Mloc�ε� ≤ M�ε/2��

Proof. Let Nε and Nε/2 be the largest ε-packing set and the largest ε/2-
packing set respectively in S. Let us partition Nε/2 into �Nε� parts according
to the minimum distance rule (the Voronoi partition). For θ ∈ Nε, let Rθ =
�θ′: θ′ ∈ S� θ = argminθ̃∈Nε

d�θ′� θ̃�� be the points in Nε/2 that are closest to
θ (if a point in Nε/2 has the same distance to two different points in Nε, any
rule can be used to ensure Rθ ∩ Rθ̃ = φ). Note that Nε/2 = ∪θ∈Nε

Rθ. Since
Nε is the largest packing set, for any θ′ ∈ Nε/2, there exists θ ∈ Nε such that
d�θ′� θ� ≤ ε. It follows that d�θ′� θ� ≤ ε for θ′ ∈ Rθ. From above, we have

�Nε/2�
�Nε�

= 1
�Nε�

∑
θ∈Nε

�Rθ��

Roughly speaking, the ratio of the numbers of points in the two packing sets
characterizes the average local packing capability.

From the above identity, there exists at least one θ∗ ∈ Nε with �Rθ∗ � ≥
�Nε/2�/�Nε�. Thus we have M�ε � θ∗� ≥ M�ε/2� − M�ε�. On the other hand,
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by concavity of the log function,

M
(ε
2

)
− M�ε� = log

(
1

�Nε�
∑

θ∈Nε

�Rθ�
)

≥ 1
�Nε�

∑
θ∈Nε

log��Rθ���

Thus an average of the local ε-entropies is upper bounded by the difference of
two global metric entropies M�ε/2� − M�ε�. An obvious upper bound on the
local ε-entropies is M�ε/2�. This ends the proof of Lemma 3. ✷

The sets Rθ in the proof are local packing sets which have the property that
the diameter of the set is of the same order as the smallest distance between
any two points. Indeed, the points in Rθ are ε/2 apart from each other and are
within ε from θ. This property together with the assumption that locally dK

is upper bounded by a multiple of d enables the use of Birgé’s result [(1983),
Proposition 2.8] to get the lower bound on the minimax risk.

To identify the minimax rates of convergence, we assume there exist con-
stants A > 0 and ε0 > 0 such that D�pθ�pθ′ � ≤ Ad2�θ� θ′�, for θ� θ′ ∈ S
with d�θ� θ′� ≤ ε0. From Lemma 3, there exist θ∗ ∈ S and a subset S0 = Rθ∗

with a local packing set N of log-cardinality at least M�ε/2� − M�ε�. Using
Fano’s inequality together with the diameter bound on mutual information as
in Birgé, yields with θ a uniformly distributed random variable on N, when
ε ≤ ε0,

I�#�Xn� ≤ n max
θ� θ′∈N

D�pθ�pθ′ � ≤ nA max
θ� θ′∈S0

d2�θ� θ′� ≤ nAε2�

and hence, choosing εn to satisfy M�εn/2� − M�εn� = 2�nAε2n + log 2�,
as in the proof of Theorem 1, but with S replaced by S0 = Rθ∗ , one gets
minθ̂maxθ∈S0

Eθd
2�θ� θ̂� ≥ ε2n/32, which is similar to our conclusions from

Section 2 (cf. Corollary 1). The difference in the bound just obtained compared
with the previous work of Birgé and others is the use of Lemma 3 to avoid
requiring explicit construction of the local packing set.

If one does have knowledge of the entropy of an ε-ball with the largest order
ε/2-packing set, then the same argument with S0 equal to this ε-ball yields
the conclusion

min
θ̂

max
θ∈S0

Eθd
2�θ� θ̂� � ε̃2n�(7)

where ε = ε̃n is determined by Mloc�ε̃n� = nε̃2n, provided D�pθ�pθ′ � ≤
Ad2�θ� θ′� holds for θ, θ′ in the chosen packing set.

The above lower bound is often at the optimal rate even when the target
class is parametric. For instance, the ε-entropy of a usual parametric class is
often of order m log�1/ε�, where m is the dimension of the model. Then the
metric entropy difference M�ε/2� − M�ε� or Mloc�ε� is of order of a constant,
yielding the anticipated rate εn � 1/

√
n and ε̃n � 1/

√
n. The achievability

of the rate in (7) is due to Birgé [(1986), Theorem 3.1] under the following
condition.
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Condition 4. There is a nonincreasing function U: �0�∞� → �1�∞�. For
any ε > 0 with nε2 ≥ U�ε�, there exists an ε-net Sε for S under d such that
for all λ ≥ 2 and θ ∈ S, we have card�Sε ∩ Bd�θ� λε�� ≤ λU�ε�. Moreover,
there are positive constants A1 > 1�A2 > 0, a θ0 ∈ S and for λ ≥ 2 there
exists for all sufficiently small ε, an ε-packing set Nε for Bd�θ0� λε� satisfying
card�Nε ∩ Bd�θ0� λε�� ≥ �λ/A1�U�ε� and d2

K�θ� θ′� ≤ A2
2d

2�θ� θ′� for all θ� θ′ in
Nε.

Proposition 2 (Birgé). Suppose Condition 4 is satisfied. If the distance d
is a metric bounded above by a multiple of the Hellinger distance, then

min
θ̂∈Sn

max
θ∈S

Eθd
2�θ� θ̂� � ε2n�

where εn satisfies nε2n = U�εn�.

The upper bound is from Birgé [(1986), Theorem 3.1] using the first part
of Condition 4. From the second part of Condition 4 with λ = 2, we have
Mloc�2ε� � U�ε� and a suitable relationship between dK and d in a maximal
order local ε-net, so the lower bound follows from (7) by the Fano inequality
bound as discussed above in accordance with Birgé [(1983), Proposition 2.8].

When lim inf ε→0 M�ε/2�/M�ε� > 1 (as in Condition 2), the upper bounds
given in Section 2 are optimal in terms of rates when d and dK are locally
equivalent. For such cases, there is no difference in considering global or local
metric entropy. The condition lim inf ε→0 M�ε/2�/M�ε� > 1 is characteristic
of large function classes, as we have seen. In that case, the three entropy
quantities in Lemma 3 are asymptotically equivalent as ε → 0,

M�ε/2� − M�ε� � Mloc�ε� � M�ε/2��

In contrast, when limε→0 M�ε/2�/M�ε� = 1 as is typical of finite-dimensional
parametric cases, M�ε/2�−M�ε� is of smaller order than M�ε/2�. In this case,
one may use (7) to determine a satisfactory lower bound on convergence rate.

From the above results, it seems that for lower bounds, it is enough
to know the global metric entropy, but for upper bounds, when lim inf ε→0
M�ε/2�/M�ε� = 1, under a stronger homogeneous entropy assumption (Con-
dition 4), the local entropy condition gives the right order upper bounds,
while using the global entropy results in suboptimal upper bounds (within
a logarithmic factor). However, for inhomogeneous finite-dimensional spaces,
no general results are available to identify the minimax rates of convergence.

Besides being used for the determination of minimax rates of convergence,
local entropy conditions are used to provide adaptive estimators using dif-
ferent kinds of approximating models [see Birgé and Massart (1993, 1995),
Barron, Birgé and Massart (1999) and Yang and Barron (1998)].
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APPENDIX

Proofs of some lemmas.

Proof of Lemma 2. The proof is by a truncation of g from above and be-
low. Let G = �x:g�x� ≤ 4T�. Let g = gIG + 4TIGc . Then because dH�f�g� ≤
ε, we have

∫
Gc�
√

f− √
g�2 dµ ≤ ε2. Since f�x� ≤ T ≤ g�x�/4 for x ∈ Gc, it fol-

lows that
∫
Gc�√g − √

g/4�2 ≤ ∫
Gc�
√

f − √
g�2 dµ ≤ ε2. Thus

∫
Gc gdµ ≤ 4ε2,

which implies 1 − 4ε2 ≤ ∫
gdµ ≤ 1 and

∫ �√g −√
g�2 dµ ≤ ∫

Gc gdµ ≤ 4ε2.
Let g̃ = �g + 4ε2�/�∫ gdµ + 4ε2�. Clearly g̃ is a probability density function
with respect to µ. For 0 ≤ z ≤ 4T, by simple calculation using 1 − 4ε2 ≤∫
gdµ ≤ 1, we have �√z −

√
�z + ε2�/�∫ gdµ + ε2�� ≤ 2�8T − 1�ε. Thus∫ �√g − √

g̃�2 dµ ≤ 4�8T − 1�2ε2. Therefore, by triangle inequality,∫ (√
f −

√
g̃
)2

dµ ≤ 2
∫ (√

f − √
g
)2

dµ + 4
∫ (√

g −
√

g
)2

dµ

+ 4
∫ (√

g − √
g̃
)2

dµ

≤ 2ε2 + 16ε2 + 16�8T − 1�2ε2�
That is, d2

H�f� g̃� ≤ 2�9 + 8�8T − 1�2�ε2. Because f/g̃ is upper bounded by
T/�4ε2/�∫ gdµ + 4ε2�� ≤ 9T/�4ε2�, the K-L divergence is upper bounded by a
multiple of the square Hellinger distance [see, e.g., Birgé and Massart (1994),
Lemma 4 or Yang and Barron (1998), Lemma 4] as given in the lemma. This
completes the proof of Lemma 2. ✷

Lemma 4. Assume Conditions 1 and 2 are satisfied. Let εn satisfies ε2n =
V�εn�/n and εn�d be chosen such that M�εn�d� = 4nε2n + 2 log 2. Then εn�d �
εn.

Proof. Let σ = lim inf ε→0 M�αε�/M�ε� > 1. Under the assumption
M�ε� > 2 log 2 when ε is small, we have 4nε2n + 2 log 2 ≤ 6nε2n when
n is large enough. Then under Condition 1, M��a/b�εn� ≥ �1/c�V�εn� ≥
�6c�−1M�εn�d�. Take k large enough such that σk ≤ 6c. Then M��a/b�αkεn� ≥
σkM��a/b�εn� ≥ M�εn�d�. Thus �a/b�αkεn ≤ εn�d, that is, εn = O�εn�d�. Sim-
ilarly, M�εn/b� ≤ V�εn� = nε2n ≤ �1/4�M�εn�d� ≤ M�εn�d�. So εn/b ≥ εn�d,
that is, εn�d = O�εn�. This completes the proof. ✷
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