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BLOCKING IN REGULAR FRACTIONAL FACTORIALS:
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A projective geometric characterization is given of the existence of any
regular main effect sn� k design in s� blocks. It leads to a constructive
method for finding a maximal blocking scheme for any given fractional
factorial design. A useful sufficient condition for admissible block designs
is given in terms of the minimum aberration property of a certain un-
blocked design.

1. Introduction and preliminaries. Blocking is an effective method
for reducing the variation in the comparison of treatments when the hetero-
geneity between blocks is much larger than the heterogeneity within blocks.
Typical examples of blocking variables include time, location, batch, operator
and so on. In the context of factorial and fractional factorial designs, a
fundamental theoretical issue is how to choose good blocking schemes and to
measure their ‘‘goodness.’’ The classic works at the National Bureau of

Ž .Standards 1957, 1959 contain many useful blocking schemes for two-level
and three-level factorial and fractional factorial designs. Because no criterion
for choosing these schemes was spelled out, it was not clear whether they are

Ž .optimal in a reasonable sense. Sun, Wu and Chen 1997 made the first
systematic attempt to understand this problem for two-level designs. As
pointed out by these authors, the study of blocking in fractional factorial
designs is complicated by the presence of two defining contrast subgroups,
one for defining the fraction and another for defining the blocking scheme.
Somewhat counterintuitively, they found that there are situations where a
lower resolution design can be partitioned into more blocks than a higher
resolution one. Even for designs with the same resolution, they noted that in
some situations a minimum aberration 2n�k design cannot be partitioned

Ž n�k�1.into the maximum number i.e., 2 of blocks while a design with worse
aberration can.

In the first part of this paper we develop a theory to explain the above
phenomena for any sn�k designs with prime power s. Our main tool is to use
projective geometry to characterize the existence of an sn�k design arranged
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in s� blocks so that the main effects are not confounded among each other or
with the block effects. The characterization result in Theorem 1 provides a
satisfactory explanation of the empirical findings described above. It also
suggests a constructive method for studying the maximal blocking for a given
unblocked sn�k design. The second part of the paper is concerned with the
class of admissible designs. Admissibility is defined in terms of the two
defining contrast subgroups for treatments and for blocks. Even though
admissibility is a weak criterion, it serves to rule out bad designs. There is no
existing result on the characterization of admissible block designs. Theorem 2
of Section 4 gives a very useful sufficient condition for admissibility in terms
of the minimum aberration property of a certain unblocked design. Many
existing results on minimum aberration designs can be exploited in the
search for admissible block designs. Several technical lemmas in Section 3
are useful for proving the two main results as well as being of general value.
In the remaining part of this section we give some definitions and prepara-
tory results.

Ž . nLet s � 2 be a prime or prime power and consider the setup of an s
factorial design. For � � 1, let � denote the set of � � 1 vectors defined over�

Ž .GF s . Then, as usual, a typical level combination x will be a member of �n
while a typical pencil b, corresponding to a factorial effect, will be a nonnull

Ž .member of � . For nonzero � in GF s , b and �b represent the same pencil.n
A main effect pencil is one that involves exactly one nonzero element.

We shall be concerned with sn�k fractional factorial designs arranged in s�

Ž .equal-sized blocks k, � � 1; k � � � n . A design of this kind will be called a
Ž n�k � .regular s , s design. It is well known that such a design is specified by a

Ž .pair of matrices H and H , defined over GF s and of orders k � n and1 2
� � n, respectively, such that

1 rank H � H � � k � � ,Ž . Ž .1 2

where H � denotes the transpose of H . A typical block of the design consistsi i
of level combinations x satisfying

2 H x � 0, H x � � ,Ž . 1 2

where � is a fixed member of � . The s� blocks correspond to the s� possible�

choices of � in � . A pencil b appears in the defining equation of such a�

design provided

3 b � MM H � ,Ž . Ž .1

Ž .where MM � denotes the column space of a matrix. A pencil b, not appearing
� Ž .�in the defining equation i..e, not satisfying 3 is confounded with blocks

provided

4 b � MM H � H � � MM H � .Ž . Ž . Ž .1 2 1

Let R be the minimum number of nonzero elements in a pencil satisfying
Ž .3 and v � 1 be the minimum number of nonzero elements in a pencil

Ž .satisfying 4 . In the unblocked case, the resolution of a design is given by R.
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In the same spirit, we define the resolution of a block design as R*, where

min R , 2v � 1 , if R is odd,Ž .
R* � ½min R , 2v � 2 , if R is even.Ž .

1 Ž .Then, as in the unblocked case, for any integer u not exceeding R* � 1 , a2

block design of resolution R* keeps all factorial effects involving u or less
factors estimable when all effects involving R* � u or more factors are
negligible. For a full factorial block design, the largest integer u* not exceed-

1 Ž . � Ž .�ing R* � 1 is called the order of estimability Sun, Wu and Chen 1997 .2

Since in the factorial setting the main effects are of primary interest, we shall
Ž n�k � .hereafter consider only those regular s , s designs which have resolution

Ž n�k � .at least three. A design of this kind will be called a regular s , s main
effect design.

2. A projective geometric formulation: application to maximal
blocking. In the unblocked case, it is well known that a fractional factorial
design of resolution three or more can be characterized in terms of a set of

Ž .distinct points in a finite projective geometry; see, for example, Bose 1947 ,
Ž . Ž .Chen and Hedayat 1996 and Tang and Wu 1996 . The corresponding

development in the presence of blocks will be investigated now.
Let P denote the set of distinct points in the finite projective geometry
Ž . Ž .PG n � k � 1, s . Since the points in PG n � k � 1, s are given by the

nonnull members of � , with mutually proportional members representingn�k
the same point, we have �P � L , where � denotes the cardinality of a setn�k
and

5 L � s� � 1 	 s � 1 , � � 0, 1, 2, . . . .Ž . Ž . Ž .�

Ž . Ž .For any nonempty subset C of P, let V C be an n � k � � matrix with
columns given by the points in C, where � � �C. A nonempty subset C of P0
is called a subspace if, up to proportionality, C is closed under the formation0
of nonnull linear combinations. Clearly, then �C � L , where u �0 u

� Ž .4 Ž .rank V C . An ordered pair of nonempty subsets C , C of P, with �C � �0 0 0 0
Ž .and �C � � , will be referred to as a � , � -pair. Such a pair will be called0

Ž . Ž .eligible if 1 C and C are disjoint and 2 C is a subspace.0 0

Ž . Ž .THEOREM 1. The existence of an eligible L , n -pair of subsets C , C of� 0
Ž .P, with V C having full row rank, is equivalent to that of a regular

Ž n�k � .s , s main effect design such that:

Ž .i A pencil b appears in the defining equation of the design if and only if
Ž .V C b � 0.
Ž .ii A pencil b does not appear in the defining equation of the design but is

Ž .confounded with blocks if and only if V C b is identical with some point
in C .0
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Ž . Ž .PROOF. First suppose an eligible L , n -pair of subsets C , C of P, with� 0
Ž . Ž . Ž .V C having full row rank, is available. Then V C is an n � k � n matrix

with rank n � k, which implies the existence of a k � n matrix H , defined1
Ž .over GF s , such that

6 rank H � k , V C H � � 0.Ž . Ž . Ž .1 1

Ž .Since C is a subspace with cardinality L , there exists an n � k � �0 �

matrix V , having full column rank, such that the columns of V span C . As0 0 0
Ž .V C has full row rank, we can find a � � n matrix H such that2

7 V C H � � V .Ž . Ž . 2 0

Ž . Ž . Ž � � .From 6 and 7 , one can check that the matrix H H , with H and H1 2 1 2
Ž .defined as above, has full column rank; compare 1 . Hence, as in the last

Ž n�k � .section, starting from H and H , a regular s , s design can be con-1 2
Ž . Ž . Ž .structed. By 2 , 6 and 7 , a typical block of this design will be of the form

8 x : x � V C �l , where l � � and V � l � � ,� 4Ž . Ž . n�k 0

� being any fixed member of � . It remains to show that this will be a main�

Ž . Ž .effect design for which i and ii hold.
Ž . Ž . Ž . Ž .The truth of i is obvious from 3 and 6 . Next consider ii and observe

Ž .that by 4 , a pencil b is confounded with blocks without appearing in the
� Ž � . Ž .defining equation if and only if b � H � � MM H for some � � 0. By 6 and2 1

Ž . Ž .7 , this is equivalent to V C b � V � for some � � 0, which, by the definition0
Ž .of V , happens if and only if V C b is identical with some point in C . This0 0

Ž .proves ii . It remains to prove that it is a main effect design. Since the points
Ž .in C are distinct, by i , each pencil appearing in the defining equation has at

least three nonzero elements. Furthermore, for any main effect pencil b,
Ž . Ž .V C b � C and, as C and C are disjoint, by ii no main effect pencil is0

Ž .confounded with blocks. Thus the pair C , C leads to a main effect design0
Ž . Ž .for which i and ii hold.

The converse can be proved by reversing the above steps. �

Ž n�k � .In view of Theorem 1, studying regular s , s main effect designs is
Ž . Ž .equivalent to considering eligible L , n -pairs of subsets C , C of P with� 0

Ž .V C having full row rank. The main effect design arising from any such
Ž . � Ž .� Ž .eligible pair C , C cf. 8 will be denoted by d C , C . Considering the0 0

� Ž .�cardinalities of C , C and P in Theorem 1 see 5 , the following corollary is0
evident. Hereafter, n, k, � and s will be assumed to be such that condition
Ž .9 , as stated below, holds.

Ž .COROLLARY 1. Let s � 2 be a prime or prime power and n, k, � be
positive integers such that k � � � n. Then for the existence of a regular
Ž n�k � .s , s main effect design, it is necessary and sufficient that

9 L � n 
 L , that is, n 
 sn�k � s� 	 s � 1 .Ž . Ž . Ž .� n�k

Identifying the blocks as the levels of another ‘‘factor’’, the result given
Ž .above is anticipated also from Theorem 2 of Wu, Zhang and Wang 1992 .
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Given an unblocked sn�k fractional factorial design d of resolution atun
least three, Theorem 1 can be employed to find the maximum possible
blocking of d retaining the estimability of the main effect pencils. Theun
search can be done in two steps.

Ž .1. Represent d by a subset C of P such that V C has full row rank andun
�C � n.

2. Given C, find the maximal � such that P � C contains a subspace of
cardinality L . The maximal blocking scheme has its generators in the�

subspace.

We present some illustrative examples, the first two of which settle the
cases k � 1 and k � 2, respectively. In the sequel, for n � k � 3, the sub-
spaces C�, C�, C� , with cardinalities L , L , L , respec-0 i i i n�k�1 n�k�2 n�k�21 2

tively, are defined as

C� � 	 � 	 , . . . , 	 �: 	 � P , 	 � ��� �	 � 0 ,� 4Ž .0 1 n�k 1 n�k

C� � 	 � 	 , . . . , 	 �: 	 � C� , 	 � 0 , 1 
 i 
 n � k ,� 4Ž .i 1 n�k 0 i

C� � 	 � 	 , . . . , 	 �: 	 � P , 	 � ��� �	 � 	 � 	 ,Ž .� 4i i 1 n�k 1 n�k i i1 2 1 2

10Ž .

1 
 i � i 
 n � k .1 2

EXAMPLE 1. Let k � 1 and, to avoid trivialities, let n � 4. Without loss of
� 4generality, let d be represented by C � e , . . . , e , y , where e , . . . , eun 1 n�1 1 n�1

Ž .are the unit vectors, of order n � 1, defined over GF s and y �
Ž .y , . . . , y �. By Corollary 1, if P � C contains a subspace of cardinality1 n�1
L , then�

11 � 
 n � 2.Ž .
Ž .a First consider the case s � 3 and, without loss of generality, let y � 0.1

Ž . Ž . �1Ž .As s � 3, there exists � � 0 � GF s such that � � y y � ��� �y .1 2 n�1
The n � 2 points e � �e , 2 
 i 
 n � 1, are linearly independent and it can1 i
be seen that the subspace spanned by them does not contain any member of

Ž .C. Hence for s � 3, the bound 11 is always attainable.
Ž . � � Ž .b If s � 2 and y � C then C � P � C and the bound 11 is attainable.0 0
Ž . � Ž .c Now suppose s � 2 and y � C and, if possible, let the bound 11 be0

˜attainable. Then P � C contains a subspace, say C, of cardinality L . As Pn�2
˜itself has cardinality L ; P can be spanned by y, which is outside C, andn�1

˜points in C, which implies that e � y � q , 1 
 i 
 n � 1, for somei i
˜ � Ž .q , . . . , q � C. Since y � C , the points q � e � y , 1 
 i 
 n � 1, are1 n�1 0 i i

linearly independent. But this is impossible as they belong to a subspace of
� Ž .cardinality L . Hence for s � 2 and y � C , equality cannot hold in 11 ,n�2 0

that is, � 
 n � 3. Since P � C � C� for any i such that y � 0, the attain-i i
ability of the bound � 
 n � 3 is evident.

Continuing with s � 2, let dŽ1. and dŽ2. denote the unblocked 2n�1 designsun un
with the highest and second highest resolution, respectively. Then, without
loss of generality, dŽ1. and dŽ2. correspond to y � yŽ1. and y � yŽ2., respec-un un
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Ž1. Ž . Ž2. Ž .tively, where y � 1, 1, . . . , 1 � and y � 0, 1, . . . , 1 � are both of order
Ž1. � Ž . Ž1.n � 1. For even n, y � C so that by b above d allows a partitioning0 un

into 2 n�2 blocks. On the other hand for odd n, yŽ1. � C� and yŽ2. � C�.0 0
Ž . Ž . Ž1.Hence, by b and c above, the maximum resolution design d does notun

allow a partitioning into 2n�2 blocks while the next best design dŽ2. does so.un
This provides a theoretical explanation for a conflict, for odd n, between
maximum resolution and maximal blocking that was earlier noted by Sun,

Ž .Wu and Chen 1997 in the special cases n � 5, 7.

EXAMPLE 2. Let k � 2 and, to avoid trivialities, suppose n � 5. Without
� 4loss of generality, represent d by C � e , . . . , e , y, z , where e , . . . , eun 1 n�2 1 n�2

Ž . Ž .are the unit vectors, of order n � 2, over GF s and y � y , . . . , y �,1 n�2
Ž .z � z , . . . , z �. By Corollary 1, if P � C contains a subspace of cardinal-1 n�2

ity L , then�

12 � 
 n � 3.Ž .
Ž .We note that the bound 12 is attainable if there exist nonzero elements

Ž .� , . . . , � of GF s such that1 n�2

n�2 n�2

13 � y � 0, � z � 0.Ž . Ý Ýi i i i
i�1 i�1

This is because then the n � 3 points � e � � e , 2 
 i 
 n � 2, are linearlyi 1 1 i
independent and the subspace spanned by them does not contain any mem-
ber of C. We consider various cases below.

Ž .a First suppose s � 4 and, without loss of generality, let y � 0. If1
Ž .z � 0, then as s � 4, there exist nonzero elements � , . . . , � of GF s1 1 n�2

such that � , . . . , � are arbitrary and � is different from both2 n�2 1
�y�1Ýn�2� y and �z�1Ýn�2� z . On the other hand, if z � 0, then without1 i�2 i i 1 i�2 i i 1
loss of generality, z � 0 and there exist nonzero elements � , . . . , � of2 1 n�2

Ž . �1 n�2GF s such that � , . . . , � are arbitrary and � � �z Ý � z , � �3 n�2 2 2 i�3 i i 1
�1 n�2 Ž .�y Ý � y . In either case, we get nonzero � , . . . , � satisfying 13 and1 i�2 i i 1 n�2

Ž .hence, for s � 4, the bound 12 is attainable.
Ž .b Consider next the case s � 3 and, without loss of generality, again let

Ž . Ž .y � 0. If z � 0 then exactly as in a above the bound 12 is attainable.1 1
Now let z � 0 and suppose both y and z are nonzero for two other choices1 i i

Ž .of i, say i � 2 and 3. Then there exist nonzero elements � , . . . , � of GF 31 n�2
such that � , . . . , � are arbitrary and4 n�2

n�2 n�2 n�2
�1 �1 �1� � �z � z , � � �z � z , � � �y � y .Ý Ý Ý3 3 i i 2 2 i i 1 1 i i

i�4 i�3 i�2

Ž . Ž .Then 13 is satisfied and the bound 12 is attainable. Thus, for s � 3, the
Ž .bound 12 can be attained unless y � z � 0 for exactly n � 4 choices of i.i i

Ž .In the latter case, writing, without loss of generality, y � 1, 1, 0, . . . , 0 �,
Ž . Ž .z � 1, 2, 0, . . . , 0 �, it can be shown that equality cannot hold in 12 , though

� � Ž .�� � n � 4 is attainable as P � C � C see 10 . While any unblocked12
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design corresponding to this latter case has resolution three, it is easily seen
that for n � 6, unblocked 3n�2 designs of resolution greater than three exist.
Hence for n � 6, all 3n�2 unblocked designs with highest resolution attain

Ž . 5�2the bound 12 . For n � 5, the 3 unblocked minimum aberration design is
Ž . Ž . Ž .given by y � 1, 1, 0 and z � 1, 2, 1 . It is easily seen that 12 holds for this

design.
Ž . � � �c Now suppose s � 2. If y � C , z � C , then C � P � C and the0 0 0

Ž . �bound 12 is attainable. On the other hand, if either of y or z belongs to C ,0
Ž .then as in Example 1, equality cannot hold in 12 . In this case, � � n � 4 is

attainable. If y � 0, z � 0 for some i, say i � 1, then this follows by notingi i
� Ž .that P � C � C . Otherwise, there exist i , i i � i such that y � 0,1 1 2 1 2 i1� � Ž .�z � 0, y � 0, z � 0 and P � C � C see 10 .i i i i i1 2 2 1 2

Continuing with s � 2, we now consider unblocked 2n�2 designs of maxi-
mum resolution.

Ž .i Let n � 3t � 1, t � 2. Then, up to renaming of factors, there are three
distinct unblocked 2n�2 designs with maximum resolution 2 t. These designs,

Ž i. Ž i. � Ž i.4namely d , can be represented by C � e , . . . , e , y, z , 1 
 i 
 3,un 1 n�2
where y � e � ��� �e , z Ž1. � e � ��� �e , z Ž2. � e � ��� �e , z Ž3.

1 2 t�1 t 3t�2 t�1 3t�1
� e � ��� �e . It can be verified that dŽ3. is the unique minimum aberra-t 3t�1 un
tion unblocked design and that dŽ2. has less aberration than dŽ1.. Sinceun un
Ž3. � Ž . Ž3.z � C , by c above, the minimum aberration design d can be partitioned0 un

into 2 n�4 blocks but not into 2 n�3 blocks. On the other hand, dŽ1. and dŽ2.,un un
which do not have minimum aberration, can be partitioned into 2n�3 blocks
because z Ž1. � C� and z Ž2. � C�.0 0

Ž .ii Let n � 3t � 2, t � 1. Then, up to renaming of factors, the unique
unblocked 2 n�2 design with maximum resolution 2 t � 1 is d which corre-un

Ž .sponds to y � e � ��� �e , z � e � ��� �e . By c above, d can be1 2 t t�1 3t un
partitioned into at most 2 n�4 blocks while, as in Example 1, for t � 2, one
can find designs with resolution 2 t for which partitioning into 2n�3 blocks is
possible.

Ž .iii Let n � 3t, t � 2. Then, up to renaming of factors, the unique un-
blocked 2 n�2 design with maximum resolution 2 t is d which correspondsun

Ž . Ž .to y � e � ��� �e , z � e � ��� �e . By c above, 12 is attained and1 2 t�1 t 3t�2
d can be partitioned into 2 n�3 blocks.un

Ž . Ž .The theoretical results in i and ii above confirm the empirical findings
Ž .in Sun, Wu and Chen 1997 that for n � 5, 7 and 8 minimum aberration

n�2 Ž n�3.2 designs cannot be partitioned into the maximum number i.e., 2 of
blocks.

EXAMPLE 3. For nearly saturated unblocked designs, the cardinality of
P � C, namely, f * � L � n, is small and hence Theorem 1 can consider-n�k
ably simplify the study of maximal blocking. We briefly discuss this with
reference to the minimum aberration unblocked designs reported in Tang and

Ž . Ž .Wu 1996 for s � 2, f * 
 11 and Suen, Chen and Wu 1997 for s � 3,
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f * 
 13. The main innovation in these two papers is to characterize the
minimum aberration property of an unblocked sn�k design, which is repre-
sented by C in the present paper, in terms of its complementary design,
which is represented by P � C. In this context, Corollary 1 can be interpreted
as saying that ‘‘an unblocked design can be partitioned into the maximum
number of blocks if and only if its complementary design P � C contains a
subspace of maximum dimension.’’ Verifying the above result on the comple-
mentary designs in these two papers, it can be seen that all the designs given
there, except the one corresponding to s � 2, f * � 10 allow maximum possi-
ble blocking.

For example, with s � 3, f * � 4, the minimum aberration unblocked
� 4design is given by C such that P � C � e , e , e � e , e � 2 e , which is1 2 1 2 1 2

itself a subspace, and thus the design can be partitioned into 32 blocks which
Ž .is obviously the maximum possible; see 9 . In this particular case, any other

design which does not have minimum aberration can be partitioned into at
most three blocks.

Ž .Turning to the exceptional situation s � 2, f * � 10, Tang and Wu 1996
noted that the minimum aberration unblocked design is given by C such that

� 4P � C � e , e , e , e , e � e , e � e , e � e , e � e , e � e , e � e . Since1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 4
P � C does not include any point like e � e � e , it does not contain a1 2 3
subspace of cardinality L . Therefore, any minimum aberration 2 n�k design3

Ž n�k . 2with f * � 2 � 1 � n � 10 can be partitioned into 2 blocks but not into
23 blocks. The next best unblocked design, according to the aberration

�criterion, corresponds to P � C � e , e , e , e � e , e � e , e � e , e � e1 2 3 1 2 1 3 2 3 1 2
4� e , e , e � e , e � e . Because P � C contains a subspace of cardinality3 4 1 4 2 4

L , it can be partitioned into 23 blocks, which is the maximum possible.3

3. Design criteria. The following notation will be helpful. For integers i
Ž . Ž .and � 0 
 i 
 � , � � 1 , let � be the set of � � 1 vectors over GF s whichi�

involve exactly i nonzero elements. For any subset C, with cardinality
Ž .� � 1 , of P, let

�114 A C � s � 1 � 
 : 
 � � , V C 
 � 0 , 0 
 i 
 � .� 4Ž . Ž . Ž . Ž .i i�

Ž .Similarly, for any eligible pair of subsets C , C of P, where �C � � , define0

B C , CŽ .i 0

�1� s � 1 � 
 : 
 � � ,V C 
 is identical with�Ž . Ž .i�15Ž .
some point in C , 0 
 i 
 � .40

Ž . Ž .It is easily seen that for i � 1, both A C and B C , C are integers. Also,i i 0

�1A C � s � 1 , A C � A C � 0,Ž . Ž . Ž . Ž .0 1 216Ž .
B C , C � B C , C � 0.Ž . Ž .0 0 1 0

Ž . Ž .In particular, if C , C represents an eligible L , n -pair of subsets with0 �

Ž .V C having full row rank, then by Theorem 1, with reference to the design
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Ž . Ž .Ž . Ž .Ž .d C , C , one can interpret A C i � 3 and B C , C i � 2 , respectively, as0 i i 0
the numbers of distinct i-factor interaction pencils which appear in the
defining equation and which are confounded with blocks without appearing in

Ž n�k � .the defining equation. Consider regular s , s main effect designs d �1
Ž . Ž . Ž . Ž .d C , C and d � d C , C , where C , C and C , C are eligible01 1 2 02 2 01 1 02 2

pairs of subsets. The design d is said to have less aberration than the design1
Ž . Ž .d with respect to the defining equation written d  d if A C �2 1 eq 2 i 1

Ž . Ž . Ž . Ž .A C whenever i � u, and A C � A C , for some u 3 
 u 
 n . Simi-i 2 u 1 u 2
larly, d is said to have less aberration than d with respect to blocking1 2
Ž . Ž . Ž .written d  d if B C , C � B C , C whenever i � u, and1 bl 2 i 01 1 i 02 2

Ž . Ž . Ž .B C , C � B C , C , for some u 2 
 u 
 n . We shall also write d  du 01 1 u 02 2 1 2eq
Ž . Ž .Ž .if either d  d or A C � A C 3 
 i 
 n . Similarly, we shall write1 eq 2 i 1 i 2

Ž . Ž .Ž .d  d if either d  d or B C , C � B C , C 2 
 i 
 n .1 2 1 bl 2 i 01 1 i 02 2bl
A design has minimum aberration of either type if there is no other design

having less aberration of that type. Ideally, one should look for a design
which has minimum aberration of both types simultaneously. However, as

Ž .noted by Sun, Wu and Chen 1997 , there often does not exist any such
design. Hence, following them, one may consider the notion of admissibility. A
design d is called admissible if there exists no other design d� such that both
d� d and d� d hold with at least one of d�  d and d�  d beingeq bleq bl
true. We now present some lemmas which are needed in the sequel and
proved in the Appendix.

LEMMA 1. Let C be a subspace of P with cardinality L .0 �

Ž . Ž .a Then for 0 
 i 
 L , A C � M where the M ’s are constants which� i 0 i i
may depend on � but not on the specific choice of the subspace C .0

Ž . Ž . Ž .b Furthermore, for any 	 � C , � � 0 � GF s and 0 
 i 
 L , the0 �

� Ž . 4cardinality of the set 
 : 
 � � , V C 
 � �	 equals � , wherei L 0 i�

Li�1 ��117 � � L s � 1 � M .Ž . Ž .i � i½ 5ž /i
Ž . Ž . Ž .In particular, by 16 , 17 and Lemma 1 a ,

�1 1 �18a M � s � 1 , M � 0, � � 0, � � 1, � � s � s .Ž . Ž . Ž .0 1 0 1 2 2

Also, define

18b M � � � 0 for i � L .Ž . i i �

Ž . Ž .LEMMA 2. Let C , C be an eligible L , n -pair of subsets of P where0 �

n � 3. Then
A C � CŽ .i 0

i

� A C � B C , C � s � 1 M A C � � B C , C ,� 4Ž . Ž . Ž . Ž . Ž .Ýi i�1 0 u i�u u i�u 0
u�2

3 
 i 
 n � 1,
Ž .where A C � 0.n�1
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Ž . ŽFor any nonempty proper subset F of P, let � F denote the subspace of
. Ž . � Ž .4P spanned by the points in F and write  F � rank V F . Also, let

�0, if � F � F ,Ž .�19Ž . � F � otherwise, where L is the cardinality ofŽ . � , �� the largest subspace contained in � F � F .Ž .

Ž .LEMMA 3. a Let F be a nonempty proper subset of P. Then P � F
contains a subspace of cardinality L if and only if�

20 � �  F � � F 
 n � k .Ž . Ž . Ž .
Ž . Ž . Ž .b Suppose 20 and 21 hold, where

21  F 
 n�k�1 and s, � ,  F � 2, n�k�1, n�k�1 .Ž . Ž . Ž . Ž .Ž .
Ž .Then for any choice of a subspace C � P � F of cardinality L , the matrix0 �

Ž . Ž .V C has full row rank where C � P � C � F .0

Ž .Examples can be given to demonstrate that the conclusion of part b of
Ž .Lemma 3 may not hold without the condition 21 .

4. Admissible block designs via minimum aberration unblocked
Ž n�k � .designs. From Theorem 1, recall that a regular s , s main effect

Ž . Ž . Ž .design d C , C is represented by an eligible L , n -pair of subsets C , C of0 � 0
Ž .P such that V C has full row rank. With N � L � n and K � L � k, so� �

Žthat N � K � n � k, the set C � C consists of N distinct points of PG N �0
. Ž . Ž .K � 1, s and V C � C , like V C , has full row rank. Hence, following Bose0

Ž . Ž . N�K1947 or Tang and Wu 1996 , C � C represents an s unblocked design0
Ž � .of resolution at least three hereafter, called a resolution III design and this

Ž .design will be denoted by d C � C . We now present the following usefulun 0
result which yields admissible block designs via minimum aberration un-
blocked designs.

Ž . Ž .THEOREM 2. Let C , C be an eligible L , n -pair of subsets of P such0 �

Ž . Ž . N�Kthat V C has full row rank and suppose d C � C is an s unblockedun 0
� Ž n�k � .resolution III design with minimum aberration. Then the regular s , s

Ž .main effect design d C , C is admissible.0

Ž .PROOF. Suppose d C , C is not admissible and is dominated by another0
Ž � . Ž � . Ž .design d C , C* , where C , C* is an eligible L , n -pair of subsets with0 0 �

Ž . Ž .V C* having full row rank. Then, with reference to the statements i
Ž . Ž . Ž . Ž . ŽA C* � A C whenever i � u and A C* � A C for some u 3 
 u 
i i 1 u u 1 11 1
. Ž . Ž � . Ž . Ž � .n , and ii B C , C* � B C , C whenever i � u and B C , C* �i 0 i 0 2 u 02
Ž . Ž .B C , C for some u 2 
 u 
 n , one of the following mutually exclusiveu 0 2 22

possibilities must arise:

Ž . Ž . Ž .a Statements i and ii both hold.
Ž . Ž . Ž � . Ž .b Statement i holds and B C , C* � B C , C , 2 
 i 
 n.i 0 i 0
Ž . Ž . Ž . Ž .c Statement ii holds and A C* � A C , 3 
 i 
 n.i i
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Ž . Ž . Ž .Under a , with u � min u , u � 1 , by 16 and Lemma 2,1 2

A C� � C*Ž .i 0

� A C � C whenever i � u and A C� � C* � A C � C .Ž . Ž . Ž .i 0 u 0 u 0

Ž .But then d C � C does not remain an unblocked minimum aberrationun 0
Ž . Ž .design. The same contradiction arises under b and c . This proves the

result. �

Ž . Ž .REMARK 1. a Let n � k � 2. Then � � 1 as n � k � � , N � K � 2
Ž . N� Kand, as noted in Cheng and Mukerjee 1998 , all s unblocked resolution

III� designs are equivalent under the criterion of aberration. Hence by
Ž n�k � .Theorem 2, all regular s , s main effect designs are then admissible.

Ž . Ž .Ž .b Let f � L � L � n � L � N . If f � 0, 1 or 2, then for samen�k � N�K
� Ž . Ž .�reason as above see Tang and Wu 1996 , Suen, Chen and Wu 1997 all

Ž n�k � .regular s , s main effect designs are admissible. As the following exam-
ple illustrates, this phenomenon, however, does not hold for f � 3.

EXAMPLE 4. Let s � 2, n � 11, k � 7, � � 1. Then f � 3. Let C , C� and0 0
�Ž . 4 � �Ž . 4C be subsets of P such that C � 0, 0, 1, 0 � , C � 1, 0, 0, 0 � , and0 0

1 0 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1V C � .Ž .
1 1 1 0 1 0 1 0 1 0 1
0 0 0 1 1 1 1 1 1 1 1

Ž . Ž . Ž � .Then V C has full row rank and B C , C � 4, B C , C � 5. Hence2 0 2 0
Ž � . Ž .d C , C , being dominated by d C , C , is inadmissible. Incidentally, by0 0

Ž . Ž .Theorem 2, d C , C itself is admissible since P � C � C is a subspace so0 0
Ž .that d C � C has minimum aberration; compare Example 1 of Tang andun 0

Ž .Wu 1996 .
Theorem 2 serves as a powerful tool for obtaining admissible block designs.

As Example 4 illustrates, it enables us to consider the use of every available
result or table on unblocked minimum aberration designs in this context.
Recently, there has been considerable interest in the characterization of
unblocked minimum aberration designs in terms of complementary sets; see

Ž . Ž .Chen and Hedayat 1996 , Tang and Wu 1996 and Suen, Chen and Wu
Ž .1997 . The problem of characterizing an unblocked minimum aberration

Ž .design as being part of an eligible L , n -pair remains unresolved.�

Theorem 2, when employed jointly with Lemma 3, makes it particularly
easy to obtain admissible block designs from such results. The steps in this
regard are as follows:

Ž . Ž .i For given n � k, let F be a proper subset of P such that d P � Fun
is an unblocked resolution III� design with minimum aberration. Let f � �F.

Ž . Ž . Ž . Ž .ii Find � F ,  F and � F as in the context of Lemma 3.
Ž . Ž .iii Suppose there exists a positive integer � satisfying 20 . Then P � F

contains a subspace C with cardinality L and C can be actually found0 � 0
following the proof of the ‘‘if’’ part of Lemma 3 which is constructive.
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Ž . Ž . Ž .iv Obtain C � P � F � C . Suppose 21 holds. Then V C has full row0
Ž .rank and, by Theorem 2, the block design d C , C , representing a regular0

Ž n�k � .s , s main effect plan, is admissible. Here n � L � f � L and k �n�k �

Ž .L � f � L � n � k .n�k �

Examples 5�10 below illustrate the above steps. In view of Remark 1, we
are primarily concerned with the situation n � k � 3 and f � 3 in these
examples.

EXAMPLE 5. Let n � k � 3 and F be a subspace of P with cardinality L ,

Ž . Ž . Ž .where 2 
  
 n � k � 1. Then � F � F, � F � 0,  F � . Since F is a
Ž . Ž .subspace, using Rule 1 of Suen, Chen and Wu 1997 , d P � F hasun

Ž . Ž .minimum aberration. Since n � k � 3, both 20 and 21 hold if and only if
Ž . Ž .� 
 n � k � . For any such � , steps i � iv yield an admissible regular

Ž n�k � .s , s main effect design where n � L � L � L and k � L � Ln�k  � n�k 

Ž .� L � n � k .�

For numerical illustration, let s � 3, n � k � 4,  � 2, � � 2. Then we get
Ž 32�28 2 .an admissible 3 , 3 design.

Ž . Ž .EXAMPLE 6. Let n � k � 3 and F � P be such that  F � 2. Suppose F
is not a subspace since this situation is already covered by Example 5. Then
Ž . Ž . Ž .� F � 1 and as noted in Section 5 of Cheng and Mukerjee 1998 , d P � Fun

Ž . Ž . Ž .has minimum aberration. Both 20 and 21 hold if and only if a � � 1 when
Ž . Ž . Ž . Ž . Ž .s, n � k � 2, 3 , b � 
 n � k � 1 when s, n � k � 2, 3 . For any such � ,

Ž . Ž . Ž n�k � .steps i � iv yield an admissible regular s , s main effect design where
Ž .n � L � f � L and k � L � f � L � n � k , with f � �F.n�k � n�k �

For numerical illustration, let s � 4, n � k � 3, f � 4, � � 2. Then we get
Ž 12�9 2 .an admissible 4 , 4 design.

Ž .EXAMPLE 7. Let s � 2, n � k � 4 and F � P be obtained by deleting any
Ž .u distinct point s from a subspace with cardinality L , where 3 
  
 n � k

� 4� 1, u � 1, 2, 3 and if u � 3 the three deleted points are noncollinear. Then
Ž . Ž . Ž . F � , � F � 1 and, following Section 4 of Cheng and Mukerjee 1998 ,
Ž . Ž . Ž .d P � F has minimum aberration. Both 20 and 21 hold if and only ifun

Ž . Ž .� 
 n � k �  � 1. For any such � , steps i � iv yield an admissible regular
Ž n�k � . Ž . n�k  �2 , 2 main effect design where, by 5 , n � 2 � 2 � 2 � u � 1 and

n�k  � Ž .k � 2 � 2 � 2 � u � 1 � n � k .
For numerical illustration, let s � 2, n � k � 5,  � 3, u � 3, � � 3. Then

Ž 20�15 3.we get an admissible 2 , 2 design.

EXAMPLE 8. Continuing with s � 2, we now consider some more admissi-
ble block designs arising from unblocked minimum aberration designs with

Ž .small f � �F . Specifically, we are interested in the situations n � k � 4,
Ž3 
 f 
 9 and n � k � 5, 10 
 f 
 15 note that n � k � 4 leads to triviali-

.ties for 10 
 f 
 15 . Examples 5 and 7 cover the cases n � k � 4, 3 
 f 
 7
and n � k � 5, 12 
 f 
 15.
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Now, for n � k � 4, f � 8, 9 or n � k � 5, f � 10, 11, from Tang and Wu
Ž . Ž . Ž .1996 , one can find F � P , with cardinality f, such that d P � F hasun
minimum aberration. For each such f, it can be seen from their results that
Ž . Ž . Ž . F � 4 and � F � 1. Hence 20 holds provided � 
 n � k � 3 and for any

Ž . Ž . Ž . Ž .such � , 21 also holds unless n � k, f , � � 4, 8, 1 or 4, 9, 1 . However,
Ž .from the details on F recorded in Tang and Wu 1996 , one can check that

Ž .even with these two exceptional triplets, V C has full row rank for every
Ž . Ž .choice of C . Thus for � 
 n � k � 3, steps i � iv yield an admissible regular0

Ž n�k � . n�k � n�k2 , 2 main effect design where n � 2 � f � 2 and k � 2 � f �
� Ž .2 � n � k .

For numerical illustration, let s � 2, n � k � 5, f � 10, � � 2. Then we
Ž 18�13 2 .get an admissible 2 , 2 design.

EXAMPLE 9. In the spirit of the last example, we take s � 3 and explore
admissible block designs arising from minimum aberration unblocked designs

Žfor n � k � 3, 3 
 f 
 8 and n � k � 4, 9 
 f 
 13 note that n � k � 3
.leads to trivialities for 9 
 f 
 13 , where f � �F. Examples 5 and 6 cover

the cases n � k � 3, f � 3, 4 and n � k � 4, f � 13.
For n � k � 3, 5 
 f 
 8 or n � k � 4, 9 
 f 
 12, from Suen, Chen and
Ž . Ž . Ž .Wu 1997 , one can find F � P , with cardinality f , such that d P � F hasun

minimum aberration. For any such f , it can be seen from their results that
Ž . Ž . Ž . F � 3 and � F � 1. Hence 20 holds, provided � 
 n � k � 2 and for

Ž . Ž . Ž . Ž . Ž .any such � , 21 also holds unless n � k, f , � � 3, 5, 1 , 3, 6, 1 , 3, 7, 1 , or
Ž . Ž .3, 8, 1 . However, from the details on F given by Suen, Chen and Wu 1997 ,

Ž .one can check that even with these four exceptional triplets V C has full row
Ž . Ž .rank for every choice of C . Hence for � 
 n � k � 2, steps i � iv yield an0

1n�k � n�k �Ž . Ž .admissible regular 3 , 3 main effect design where n � 3 � 3 � f2
1 n�k �Ž . Ž .and k � 3 � 3 � f � n � k .2

For numerical illustration, let s � 3, n � k � 3, f � 5, � � 1. Then we get
Ž 7�4 1.an admissible 3 , 3 design.

EXAMPLE 10. We now illustrate how, given s, n and k, Remark 1 and
Examples 5�9 can help in obtaining admissible designs for various values of

Ž .� . Let s � 2, n � 47 and k � 41; then by 10 , 1 
 � 
 4. If � � 1 then for
Ž 47�41 1. Ž .any regular 2 , 2 main effect design d C , C , the cardinality of P �0

Ž . Ž 47�41 1.C � C equals 15 and an admissible 2 , 2 design can be obtained0
from Example 5 with  � 4. Similarly, for � � 2, 3, 4, admissible designs are

Ž . Ž .given, respectively, by Example 7 with  � 4, u � 2 , Example 8 with f � 9
Ž . Ž .and Remark 1 b with f � 1 .

REMARK 2. Examples can be given to show that the condition in Theorem
2 is sufficient but not necessary for a block design to be admissible. Notwith-
standing this, Theorem 2 is very useful for several reasons. First, in most
situations complete characterization of admissible block designs is extremely
difficult but Theorem 2 can potentially yield at least one admissible design.
Second, in the unblocked case, quite often only minimum aberration designs
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give the smallest possible value of A and, as such, in many situations,3
Ž .admissible block designs for which d C � C has minimum aberrationun 0

Ž . Ž .have smaller values of A C � C than those for which d C � C does not3 0 un 0
have minimum aberration; this happens in all the cases covered by Examples

Ž . Ž .5�9 except for Example 8 with f � 10, 11. Since A C � C � M � A C �3 0 3 3
Ž .B C , C by Lemma 2, in such situations admissible designs arising from2 0

Theorem 2 have an appeal in the sense of exercising a control on ‘‘overall’’
aberration. Furthermore, in view of the recent findings in Cheng and Muker-

Ž .jee 1998 in the unblocked case, we believe that Theorem 2 should be capable
of producing admissible block designs that perform well with regard to the
estimation capacity criterion given in their paper.

REMARK 3. Admissible designs generated by Theorem 2 can be further
discriminated by using a minimum aberration criterion such as the one

Ž . n�kproposed by Sitter, Chen and Feder 1997 for blocked 2 designs.

APPENDIX

Proofs of Lemmas.

Ž .PROOF OF LEMMA 1. The proof of a is not hard and we present only the
Ž . Ž .proof of b . As C is a subspace, given any 
 � � , the vector V C 
 is0 i L 0�

Ž . Ž .either null or equals �	 for some 	 � C and some � � 0 � GF s . Also, by0
symmetry argument, the cardinality of the set under consideration does not

Ž . Ž .depend on 	 and � as long as 	 � C and � � 0 � GF s . Hence, consider-0
Ž .ing all possible choices of 
 in � , by 14 , we havei L�

L i� s � 1 � s � 1 A C � � s � 1 L ,Ž . Ž . Ž . Ž .i 0 i �ž /i

Ž .whence using part a above, the result follows. Note that the � ’s, like thei
M ’s, may depend on � but not on the specific choice of C . �i 0

PROOF OF LEMMA 2. Let N � L � n and Ý* denote double summation�

Ž . Ž .with respect to 	 and � such that 	 � C and � � 0 � GF s . Also, for fixed0
Ž . �i 3 
 i 
 n � 1 , let Ý denote summation with respect to u over the rangeu

Ž . Ž .max i � n, 0 
 u 
 min L , i . Then for 3 
 i 
 n � 1, noting that C is a� 0
Ž . Ž .subspace and using 14 , 15 and Lemma 1,

s � 1 A C � CŽ . Ž .i 0

� Ý�
� 
 � , 
 �

�: 
 � � , 
 � � , V C 
 � V C 
 � 0Ž . Ž . Ž .� 4u 1 2 1 u L 2 Ž i�u.n 0 1 2�
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�� Ý � 
 : 
 � � , V C 
 � 0 � 
 : 
 � � , V C 
 � 0Ž . Ž .� 4� 4u 1 1 u L 0 1 2 2 Ž i�u.n 2�

�Ý*� 
 : 
 � � , V C 
 � �	Ž .� 41 1 u L 0 1�

�� 
 : 
 � � , V C 
 � ��	Ž .� 42 2 Ž i�u.n 2

2�� Ý s � 1 A C A CŽ . Ž . Ž .u u 0 i�u

�� Ý*� 
 : 
 � � , V C 
 � ��	Ž .� 4u 2 2 Ž i�u.n 2

2�� Ý s � 1 M A C � � s � 1 B C , C ,Ž . Ž . Ž . Ž .� 4u u i�u u i�u 0

Ž . �whence, using 18a, b and recalling the definition of Ý , the result follows. �u

Ž . Ž . Ž .PROOF OF LEMMA 3. a We write  �  F and � � � F for notational
simplicity and proceed as with ordinary finite dimensional vector spaces in
proving this part.

Ž .If. Consider the case � � 0 the treatment is similar for � � 0 . Let F* be
Ž . � Ž .�a subspace, of cardinality L , contained in � F � F see 19 . Let T , T� 1 2

and T be subsets of P, with respective cardinalities �,  and n � k, such3
Ž .that T � T � T and T , T and T span F*, � F and P, respectively.1 2 3 1 2 3

Ž .Clearly, then the points in T are linearly independent so that T � T � T3 3 2 1
Ž . Ž .contains n � k �  � � linearly independent points. If 20 holds, that is, if

Ž .� 
 n � k �  � �, then any �-subset of T � T � T will span a subspace3 2 1
which is contained in P � F and has cardinality L .�

Only If. Let P � F contain a subspace C of cardinality L . Note that0 �

Ž . � Ž .4C � � F is a subspace if it is nonempty. Hence � C � � F � L , for0 0 u
Ž . Ž . Ž .some nonnegative integer u. Since C � � F � � F � F, by 19 , u 
 �.0

Hence

� �  � � 
 � �  � u � rank V C � � F 
 n � k ,� 4Ž .Ž .0

Ž .which proves 20 .
Ž . Ž . Ž .b Let 20 and 21 hold. Since F is nonempty, we have  � �, so that
Ž .by 20 ,

A.1 � 
 n � k � 1.Ž .
Ž Ž ..Now, C � C where C � P � C � � F and it is enough to show that1 1 0

Ž . Ž .V C has full row rank. Assume the contrary. Then there exists l � 0 �1
Ž .� such that V C �l � 0. Then C � C where C is a subspace, ofn�k 1 1 2 2

� 4cardinality L , defined as C � 	 : 	 � P, l�	 � 0 . Hence, recalling then�k�1 2
definition of C ,1

L � L � � P � C � � P � C � � C � CŽ . Ž . Ž .n�k n�k�1 2 1 2 1

� � C � � F � � C � C � � F� 4Ž . Ž .Ž . Ž .0 2 0A.2Ž .

 �C � � C � C � �� F � � C � � F .Ž . Ž . Ž .Ž .0 2 0 2

� 4 Ž . Ž .We can write C � 	 : 	 � P, Q	 � 0 , where Q is an n � k � � � n � k0
matrix having full row rank. If C is not a subspace of C , then l� does not0 2
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Ž .belong to the row space of Q and, therefore, � C � C � L . On the other2 0 ��1
Ž . Ž .hand, if C � C then � C � C � �C � L . Hence � C � C � L .0 2 2 0 0 � 2 0 ��1

Ž Ž .. Ž .Similarly, � C � � F � L . Thus by A.2 ,2 �1

A.3 L � L 
 L � L � L � L .Ž . n�k n�k�1 � ��1  �1

Ž . Ž . n�k�1 ��1 �1Using 5 , A.3 implies s 
 s � s , which is, however, impossible
Ž . Ž . Ž .by 21 and A.1 . This contradiction proves part b . �
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