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THE DENSITY OF MULTIVARIATE M-ESTIMATES

By Anthony Almudevar, Chris Field and John Robinson

Dalhousie University, Dalhousie University and University of Sydney

When a unique M-estimate exists, its density is obtained as a corol-
lary to a more general theorem which asserts that under mild conditions
the intensity function of the point process of solutions of the estimating
equations exists and is given by the density of the estimating function
standardized by multiplying it by the inverse of its derivative. We apply
the results to give a result for Huber’s proposal 2 applied to regression and
scale estimates. We also give a saddlepoint approximation for the density
and use this to give approximations for tail areas for smooth functions of
the M-estimates.

1. Introduction. For a random vector X defined on a probability space
�����P�, where P is a member of some family � , and a parameter space
� ⊂ Rp, we are interested in M-estimates defined as solutions to


�X�θ� = 0�(1.1)

To enable us to consider such estimates we make the following assumption:

(A1) Let 
�x� θ� be a map from Rm×� to Rp, which is Borel measurable with
respect to x for every θ ∈ �, and, for every x ∈ Rm and for any θ ∈ �
and vector v of length 1 such that θ+yv ∈ �, 0 ≤ y ≤ h; let 
�x� θ+yv�
have a derivative with respect to y, almost everywhere in �0� h�.

Write 
′�X�θ� for the p× p matrix with �i� j�th element ∂
i�X�θ�/∂θj.
Multiple solutions may exist. This makes it important to determine when

the set of solutions is a point process with an intensity function absolutely
continuous with respect to Lebesgue measure. Conditions under which this
holds are given in the next section. This becomes the density of the estimate
when there is a unique solution. In the special case of minimum contrast
estimators, Skovgaard (1990) and recently Jensen and Wood (1998) have used
this concept.

Let


∗�X�θ� = 
′�X�θ�−1
�X�θ��
when the inverse exists and take it as infinite elsewhere. If we restrict atten-
tion to a sequence of sets in � for which the density of 
∗�X�θ� exists, then a
limit of this density at x = 0 is shown to equal the limit of intensity functions
defined on the same sequence of sets. The conditions imposed here differ from
those of Skovgaard (1990) and his result is a special case of ours. Jensen and
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Wood [(1998), Section 5] have a similar result to Skovgaard (1990) and our
result covers cases not included in either to these works.

In the case when X represents a set of iid random variables X1� � � � �Xn,

�X�θ� = ∑n

i=1ψ�Xi� θ� and 
̄ = 
�X�θ�/n and 
̄′ = 
′�X�θ�/n, so

∗�X�θ� is a smooth function of means and thus we can apply the usual tilt-
ing methods to obtain a saddlepoint approximation to the density of 
∗�X�θ�.
From this we are able to obtain accurate saddlepoint approximations of the
P-values for Studentized M-estimates. These saddlepoint approximations are
typically very accurate in the extreme tails.

It is not necessary in this treatment to consider the parameter which may
be regarded as given by solutions of λ�θ� = E
�X�θ� = 0. This again may
have multiple solutions but if for a solution θ∗ we assume that λ′�θ� exists and
is continuous in a neighborhood of θ∗ and that det�λ′�θ∗�� 
= 0, where det�M�
is a determinant of a square matrix M, then the inverse function theorem
ensures that there is an open neighborhood of θ∗ in which θ∗ is the unique
solution.

As noted earlier, Jensen and Wood (1998) consider a problem similar to that
addressed in this paper. They look at the probabilistic behavior of a minimum
contrast estimator in the case of independent identically distributed random
vectors and restrict attention to contrast functions γ which are the sum of n
terms. In addition to giving a proof of Skovgaard’s results, they obtain results
which show that sets of the form ��θ̂ − θ0� > δ� have exponentially small
probability with several selection criteria for choosing the minimum contrast
estimator. Also they give a tilting argument to approximate the density of

∗�X�θ� at 0 in our notation. Since they are considering a situation very
similar to that considered in this paper, it is important to contrast both our
setting and results with theirs.

As a first point, we are considering M-estimates which are defined as solu-
tions of the score equation. Many of the robust M-estimates in common use
cannot be viewed as minimum contrast estimators since we cannot integrate
the score function 
 to get a criterion or contrast function γ. In their proof
of Skovgaard’s result and the resulting tilting argument, they have assumed
that the joint density of �
̄� 
̄′� (D1 and D2 in their notation) is continuous
and bounded. For many robust estimates which use Huber’s score function,
the distribution of �
̄� 
̄′� is made up of a continuous and discrete part and
the continuous part may be degenerate in �p+p2

, the dimension of �
̄� 
̄′�.
Huber’s proposal 2 either for location-scale or regression-scale, falls into this
group. In Section 2, we have obtained Skovgaard’s result without the neces-
sity of having a joint continuous density but rather under the assumption of
a density for 
∗ near 0. Our result, as well as our saddlepoint argument, is
able to handle the more general case where we have a discrete part of 
̄′ and
hence can be applied to Huber’s proposal 2 and other similar robust estima-
tors. It is worth commenting on the conditions used in both papers. Jensen
and Wood have several conditions on the contrast function and its local behav-
ior for which we have no analogue. They also require existence of the second
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derivative of the score function and moments on the supremum of its local
behavior (see their Theorem 5.1). We have not required the existence of the
second derivative of 
 for our results, nor do we impose any moment condi-
tions. Finally, we should point out that they have addressed the behavior of
the minimum contrast estimator under various selection criteria. This is not
an issue we have addressed directly in our paper.

In Section 2 we consider the general case and examine the point process of
the solutions to the score function 
�X�θ� = 0. Lemma 1 proves that there is
a unique solution to the score function under some conditions. This result is
used for the iid case in Section 3 in discussing multiple solutions. The main
result of the section, Theorem 1, establishes Skovgaard’s result relating the
density of 
∗ at 0 to the intensity of the point process of the solutions under
less restrictive conditions than either Skovgaard (1990) or Jensen and Wood
(1998). In Section 3, we introduce the case of Huber’s proposal 2 for regression-
scale estimates and in Section 4, derive a saddlepoint approximation to the
density of M-estimates under conditions which are satisfied by the regression-
scale model of Section 3. A tail area result for a smooth function of the M-
estimate is given in Section 5 and we conclude with some numerical results
in Section 6.

2. The density of the M-estimate. We will use the following notation.
For any x ∈ �p let �x� = maxi �xi� denote the modulus norm of a vector
x = �x1� � � � � xp�. For a matrix M we set �M� = sup �Mx�/�x�. For any x ∈
�p, δ > 0, let Bδ�x� = �y ∈ �p� �x − y� < δ�. Let m�·� denote Lebesgue
measure on �p and let I�E�, for any E ∈ �, be the indicator function on �.
The p×p identity matrix will be written Ip. The density of a random quantity
Y, when it exists, will generally be written fY. We will also use the shorthand
fY�y�E� = fY�y�E�P�E�. We write X =d Y if X equals Y in distribution.
The distribution function and density of the unit normal will be written $ and
φ. We use the notation µ1 � µ2 when measure µ1 is absolutely continuous
with respect to µ2, and a Borel measure µ on �p will be called boundedly finite
if µ�A� < ∞ when A is bounded.

Suppose we have score function 
�X�θ� and derivative matrix 
′�X�θ�
where X is a random vector on a probability space �����P�. Define


∗�X�θ� =
{

′�X�θ�−1
�X�θ�� det

(

′�X�θ�) 
= 0,

∞� otherwise.
(2.1)

Define

z�θ0� τ� =




sup
θ∈Bτ�θ0�

�
′�X�θ0�−1
′�X�θ� − Ip��
det

(

′�X�θ�) 
= 0� ∀θ ∈ Bτ�θ0��

∞� otherwise,

(2.2)

and

H�θ0� α� τ� = �z�θ0� τ� < α� ⊂ ��(2.3)
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Before proceeding with the definitions, we obtain a preliminary technical
result on existence of a unique solution in a neighborhood of some θ0.

Lemma 1. If X ∈ H�θ0� α� τ� with α < 1, if (A1) holds and if �
∗�X�θ0��
≤ �1 − α�τ, then there exists a unique solution, θ∗, of 
�X�θ� = 0 in Bτ�θ0�.

Proof. Define, for each θ0 ∈ �, andX ∈ �, the mappingTX�·� θ0�� � → �p

by

TX�θ� θ0� = θ −
′�X�θ0�−1
�X�θ��
If θ1 and θ2 = θ1 + hv, with �v� = 1, are in B̄τ�θ0�, then using (A1),∥∥TX�θ2� θ0� −TX�θ1� θ0�

∥∥
= ∥∥
′�X�θ0�−1�
�X�θ2� −
�X�θ1�� − �θ2 − θ1�

∥∥
=
∥∥∥∥
′�X�θ0�−1

∫ h
0

d
dy

�X�θ + yv�dy− �θ2 − θ1�

∥∥∥∥
=
∥∥∥∥∥
′�X�θ0�−1

∫ h
0
∑p

i=1 vi

[
∂
∂ti

�X� t�
]

�t=θ1+yv�
dy− �θ1 − θ2�

∥∥∥∥∥
≤ ∫ h

0

∥∥
′�X�θ0�−1
′�X�θ1 + yv� − I
∥∥dy

≤ α�θ1 − θ2��

(2.4)

Also if θ ∈ B̄τ�θ0�, then, applying (2.4),

�TX�θ� θ0� − θ0�
≤ ∥∥
′�X�θ0�−1�
�X�θ� −
�X�θ0�� − �θ − θ0�

∥∥+ ∥∥
∗�X�θ0�
∥∥

≤ α
∥∥θ − θ0

∥∥�1 − α�τ
≤ τ�

So TX�·� θ0�, restricted to B̄τ�θ0�, is a contraction mapping. Now, by the fixed
point theorem for contraction mappings [cf. Theorem 3.1.1, Edwards (1965)]
there is a unique fixed point, θ∗, say, for TX�·� θ0�. So θ∗ = θ∗ − 
′�X�θ0�−1


�X�θ∗�. Thus 
�X�θ∗� = 0 and this value is unique. ✷

For α� τ > 0, define the point processes on �,

Qα�τ�A� = {
θ ∈ A ⊂ �� 
�X�θ� = 0 and X ∈ H�θ� α� τ�}�

Let

Q�A� = ⋂
α>0

⋃
τ>0

Qα�τ�A��

Then define the associated counting processes,

Nα�τ�A� = #Qα�τ�A� and N�A� = #Q�A��
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with intensity measures

µα� τ�A� = E
[
Nα�τ�A�] and µ�A� = E

[
N�A�]�

In this paper we are interested in the distributions of the locations of points
in Q, which is the set of solutions to the score equation 
�X�θ� = 0 at which
the derivative matrix is invertible and locally continuous. To do this define,
where the limit exists, the intensities

λα� τ�θ� = lim
δ→0

P�Nα�τ

(
Bδ�θ�

) ≥ 1�
m
(
Bδ�θ�

) �

If the intensities λα� τ exist for small enough α and τ, then since H�θ� α� τ� is
increasing as τ approaches 0 and decreasing as α approaches 0, the limit

λ�θ� = lim
α→0

lim
τ→0

λα� τ�θ�(2.5)

will also exist. Similarly, we may define

f
∗�X�θ�
(
z�H�θ� α� τ�) = lim

δ→0

P
({

∗�X� θ� ∈ Bδ�z�

} ∩H�θ� α� τ�)
m
(
Bδ�z�

)(2.6)

and

h�θ� = lim
α→0

lim
τ→0

f
∗�X�θ��0�H�θ� α� τ��(2.7)

when the limits exist. Under suitable regularity conditions, to be discussed
below, we will have µ � m and λ will be a version of dµ/dm. Then, under
these conditions we will have λ = h.

We need an assumption concerning the density of 
∗�X�θ�:
(A2) For any compact set A ⊂ � and for any 0 < α < 1, there exists τ > 0

and δ > 0 such that f
∗�X� θ��z�H�θ� α� τ�� exists and is continuous and
bounded by some fixed constant K for any θ ∈ A and z ∈ Bδ�0�.

Remark 1. In situations where X represents n independent identically
distributed random vectors, the constant K and the constants α, τ, δ in (A2)
may depend on n. The scaling involved does not affect the existence of a density
for each value of n.

Theorem 1. Assume that (A1) and (A2) hold, then:

(i) µα� τ � m and µ � m.
(ii) λ is a density of µ on A.
(iii) λ�θ� = h�θ�, for θ ∈ A.

Proof. Fix 1/3 > α > 0, choose τ > 0 such that f
∗�X�θ0��0�H�θ0� α� τ��
exists and take then 0 < δ < τ/2. Suppose that

Nα�τ

(
Bδ�θ0�

) ≥ 1�
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Then there exists θ∗ ∈ B̄δ�θ0� such that 
�X�θ∗� = 0 and X ∈ H�θ∗� α� τ�, by
the definition of Qα�τ. So for θ ∈ B̄δ�θ0�, we must have θ ∈ B̄τ�θ∗�. Thus∥∥
′�X�θ∗�−1
′�X�θ0� − Ip

∥∥ ≤ α(2.8)

and ∥∥
′�X�θ∗�−1
′�X�θ� − Ip
∥∥ ≤ α�(2.9)

So from (2.8) and the Banach lemma [cf. Lemma 5.1, Noble and Daniel,
(1977)]:

1
1 + α

≤
∥∥∥[
′�X�θ∗�−1
′�X�θ0�

]−1
∥∥∥ ≤ 1

1 − α
�

Then since 0 < α < 1/3,∥∥
′�X�θ0�−1
′�X�θ� − Ip
∥∥

≤ ∥∥
′�X�θ0�−1
′�X�θ∗�∥∥
×∥∥
′�X�θ∗�−1
′�X�θ� − Ip − �
′�X�θ∗�−1
′�X�θ0� − Ip�∥∥

≤ 2α
1 − α

< 3α�

Thus

X ∈ H�θ0�3α� τ/2��
Also from the argument in Lemma 1 leading to (2.4) for any θ ∈ Bδ�θ0�,∥∥
′�X�θ0�−1�
�X�θ� −
�X�θ0�� − �θ − θ0�

∥∥ < 3αδ�

Also since 
�X�θ∗� = 0,∥∥−
′�X�θ0�−1
�X�θ0� − �θ∗ − θ0�
∥∥ < 3αδ�

Thus ∥∥
∗�X�θ0�
∥∥ < �1 + 3α�δ�

So {
Nα�τ

(
Bδ�θ0�

)≥ 1
}⊂ {


∗�X�θ0� ∈ B�1+3α�δ�0�}∩H�θ0�3α� τ/2�
and so

P
(
Nα�τ

(
Bδ�θ0�

) ≥ 1
)

≤ P
({

∗�X�θ0� ∈ B�1+3α�δ�0�} ∩H�θ0�3α� τ/2�)�(2.10)

We use this to show that λα� τ exists and is a density of µα� τ. For any
ε > 0 we may define for each n ≥ 1 a sequence of collections of balls � �n� =
�A�n�

1 �A
�n�
2 � � � �� with centers in A, of maximum radius 1/n with A ⊂ ∪iA

�n�
i
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and
∑

i m�A�n�
i � ≤ m�A� + ε. Suppose the balls in � �n� have centers �θ�n�

i �
i ≥ 1� and radii �δ�n�

i : i ≥ 1�. Then define

N�n�
α� τ�A� = ∑

i

I
{
Nα�τ�A�n�

i � ≥ 1
}
�

By (2.10) we have

E
[
N�n�

α� τ�A�] = ∑
i

P
(
Nα�τ�A�n�

i � ≥ 1
)

≤ ∑
i

P
({

∗�X�θ

�n�
i � ∈ B�1 + 3α�δ�n�

i �0�
}

∩H�θ�n�
i �3α� τ/2�

)
�

From (A2) we have for some fixed K,

sup
θ∈A

sup
z∈Bδ�0�

f
∗�X�θ�
(
z�H�θ�3α� τ/2�) ≤ K�

hence

E
[
N�n�

α� τ�A�] ≤ ∑
i

Km
(
A

�n�
i

)
≤ K�m�A� + ε��

The points in Qα�τ�A� are locally unique; that is, they have no accumulation
points, since by the inverse function theorem there is an open neighborhood
of any point in Qα�τ�A�, which may depend on X, in which the solution is
unique. We have

Nα�τ�A� ≤ lim inf
n→∞ N�n�

α� τ�A��

so by Fatou’s lemma,

E
[
Nα�τ�A�] ≤ K

(
m�A� + ε

)
�

By definition

N�A� = lim
α→0

lim
τ→0

Nα�τ�A�

and hence, by monotone convergence, since H�θ� α� τ� is increasing as τ ap-
proaches 0 and decreasing as α approaches 0,

E
[
N�A�] ≤ K

(
m�A� + ε

)
�(2.11)

Thus µα� τ and µ are boundedly finite and by letting ε approach 0 we may
conclude that µα� τ � m and µ � m. We then have the existence of the Radon–
Nikodym derivative calculable by

dµα� τ

dm
�θ� = lim

δ→0

µα� τ

(
Bδ�θ�

)
m
(
Bδ�θ�

)
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a.e.�m� on A. Then, since µα� τ is boundedly finite and Nα�τ is simple [cf. Def-
inition 3.3.II, Daley and Vere-Jones (1988)] we have [cf. Proposition 7.2.VIII,
Daley and Vere-Jones (1988)]

lim
δ→0

P
(
Nα�τ

(
Bδ�θ�

) ≥ 1
)

µα� τ

(
Bδ�θ�

) = 1

a.e.�µα� τ�. Hence λα� τ exists a.e.�µα� τ�, and so a.e.�m� and is a density for µα� τ.
Now in (2.10) divide both sides by m�Bδ�0�� and let δ approach 0 and we

obtain

λα� τ�θ0� ≤ �1 + 3α�pf
∗�X�θ0�
(
0�H�θ0�3α� τ/2�)�(2.12)

a.e.�m�.
Conversely, suppose

X ∈ H�θ0� α� τ� and 
∗�X�θ0� ∈ B�1−α�δ�0��
for δ < τ/2. So from Lemma 1, there exists a unique solution, θ∗, of 
�X�θ� =
0 in B̄δ�θ0�. Thus{


∗�X�θ0� ∈ B�1−α�δ�0�} ∩H�θ0� α� τ� ⊂ {
Nα�τ/2

(
B̄δ�θ0�

) ≥ 1
}
�

So

P
({

∗�X�θ0� ∈ B�1−α�δ�0�}∩H�θ0� α� τ�

) ≤ P
(
Nα�τ/2

(
B̄δ�θ0�

) ≥ 1
)

and dividing both sides by m�Bδ�0�� and letting δ approach 0 gives

�1 − α�pf
∗�X�θ0�
(
0�H�θ0� α� τ�

) ≤ λα�τ/2�θ0��(2.13)

a.e.�m�. The results (2.12) and (2.13) are true for small enough α > 0 and
τ > 0 which suffices to give λ�θ� = h�θ� for θ ∈ A.

Now it remains only to identify λ with the density of µ. For any measurable
B ⊂ A, using monotone convergence as in (2.11),

µ�B� = E
(
N�B�) = lim

α→0
lim
τ→0

E
(
Nα�τ�B�)

= lim
α→0

lim
τ→0

∫
B
λα� τ�θ�dθ

=
∫
B
λ�θ�dθ

for measurable B ⊂ A. ✷

Corollary 1. If (A1) and (A2) hold and with probability 1 there is a unique
M-estimate, θ̂, then h�θ� is a density of θ̂.

Remark 2. If there is either a unique M-estimate with probability p0 or
no solution such that X ∈ H�θ� α� τ� for some α, τ with probability 1 − p0,
and (A1) and (A2) hold, then h�θ� is an improper density with

∫
� h�θ�dθ =

p0. This is the case, for example, if X1� � � � �Xn are independent identically
distributed random variables with densities and 
�X�θ� = ∑n

j=1 hb�Xj − θ�,
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where hb�x� = max�−b�min�x� b��. Then there is a unique solution unless n
is even and the set of X1� � � � �Xn can be divided into two equal sized sets
with minimum distance between the sets at least 2b, in which case the point
processes Qα�τ�A� are all null.

3. Density of the Huber estimate of regression and scale. Huber
(1964) proposed the following score equations for the problem of estimating
the regression and scale parameters for the independent real valued random
vectors �Xi�Ci� from densities σ−1f�σ−1�xi −gi�γ���ci�f1�ci�, where gi�γ� =∑k

i′=1 cii′γi′ , for fixed values cii′ , i = 1� � � � � n, i′ = 1� � � � � k, such that the n× k
matrix C = �cii′ � is of rank k < n and θ = �γ� σ� are the unknown parameters


�X�γ�σ� =




n∑
i=1

hb

(xi − gi�γ�
σ

)
g′
i�γ�

1
2

n∑
i=1

(
h2
b

(xi − gi�γ�
σ

)
− β

)

 �(3.1)

setting

β = E
[
h2
b�Z�]�(3.2)

where Z has density f and hb�x� = max�−b�min�x� b�� is the Huber function.
This corresponds to Huber’s proposal 2 applied to multiple regression. Define
Iiθ = I��Xi − gi�γ��/σ ∈ �−b� b��, I+

iθ = I��Xi − gi�γ��/σ > b� and I−
iθ =

I��Xi − gi�γ��/σ < −b�. Put n�θ� = ∑n
i=1 Iiθ, n

+�θ� = ∑n
i=1 I

+
iθ and n−�θ� =∑n

i=1 I
−
iθ. Then


�X�γ�σ� =




n∑
i=1

Iiθ
Xi − gi�γ�

σ
g′
i�γ�+

n∑
i=1

�I+
iθ−I−

iθ�bg′
i�γ�

1
2

n∑
i=1

Iiθ

((Xi − gi�γ�
σ

)2
−β

)
+ 1

2

n∑
i=1

�I+
iθ+I−

iθ�g′
i�γ��b2 −β�


 �


′�X�γ�σ� = σ−1




−A −
n∑
i=1

Iiθ
Xi − gi�γ�

σ
g′
i�γ�

−
n∑
i=1

Iiθ
Xi − gi�γ�

σ
g′
i�γ�T −

n∑
i=1

Iiθ

(Xi − gi�γ�
σ

)2


 �

where A = �ajj′ � = �∑n
i=1 cijcij′Iiθ�. Then we have det�
′�X�γ�σ�� is equal to

detA
σ2

(
n∑
i=1

(
Xi − gi�γ�

σ

)2

Iiθ−
( n∑
i=1

Xi − gi�γ�
σ

Iiθ

)T

A−1
( n∑
i=1

Xi − gi�γ�
σ

Iiθ

))
�

which is nonnegative and we can choose b so that this determinant equals
zero if and only if n�θ� ≤ k.

In Huber (1964) conditions are given under which the score equation for
Huber’s proposal 2 has a unique solution. For the regression case given here
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we can show by an analogous argument, largely given in Huber [(1981), Sec-
tion 7.7], that there is a unique solution if

b2 > β and n > k�1 − β/b2�−1�(3.3)

In this case if H�θ� α� τ� is defined as in (2.3), then with probability 1 for any
α, τ,

�n�θ� > k� ⊃ H�θ� α� τ� ⊃ �n�θ� > k� ∩
n⋂
i=1

{∣∣∣∣Xi − gi�γ�
σ

− b

∣∣∣∣ > ε�α� τ�
}

for some ε�α� τ�, since this excludes values ofX such that discontinuities occur
in 
′�X�γ�σ� in a small neighborhood of �γ� σ� or det�
′�X�γ�σ�� = 0; also
we may take ε�α� τ� tending to 0 as α and τ tend to 0. So, if (3.3) holds and
if X1� � � � �Xn have densities, then f
∗�X�γ�σ��z�H�θ� α� τ�� can be defined by
(2.6) for any α > 0 and τ > 0, for small enough z. This is also true if we
consider only the conditional densities of X1� � � � �Xn conditionally on fixed C.
Also (A1) and (A2) are both satisfied and the solution is unique, so Corollary 1
gives the density of θ = �γ� σ� as h�θ�, defined by the limit in (2.7).

Remark 3. In the particular case when b = ∞ the density clearly exists if
the densities ofX1� � � � �Xn are bounded and continuous. If we assume that the
random variables are normal with mean γ0 and variance σ0 then elementary
application of the result leads to the usual density of the estimate.

4. The saddlepoint approximation. Consider the case where we have
iid observations X1�X2� � � � �Xn from a distribution F0. We have a function
ψ�X1� θ� which assumes values in �p, and a score function


�X�θ� =
n∑
i=1

ψ�Xi� θ��

Suppose that
∫
ψ�x� θ�dF0�x� = 0 has a solution θ0. Suppose that ψ�X1� θ�

has a derivative ψ′�X1� θ� with respect to θ, with probability 1, and assume

(A3) det
(∫

ψ′�x� θ0�dF0�x�) 
= 0.

Then, if for some τ > 0,
∫
ψ′�x� θ�dF0�x� is continuous at all θ ∈ Bτ�θ0�, the

solution θ0 is the unique solution in Bτ�θ0�. In order to give results which hold
for cases of interest such as Huber’s proposal 2 for regression and scale (see
Section 3), we have to allow for the fact that �ψ�ψ′� may have both continuous
and discrete parts and that the joint density for the continuous part may be
degenerate in �p+p2

, the dimension of �ψ�ψ′�. In fact, in these cases,


∗�X�θ� =
[

n∑
i=1

ψ′�Xi� θ�
]−1

n∑
i=1

ψ�Xi� θ� for det

(
n∑
i=1

ψ′�Xi� θ�
)


= 0�

may not have a density since it is defined to be infinite when det�∑n
i=1ψ

′�Xi�
θ�� = 0.
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Let mp be Lebesgue measure on �p. For each θ let Mθ ⊂ �p be a set of
Lebesgue measure zero such that, by the Lebesgue decomposition theorem,

P�ψ�X1� θ� ∈ A� = P�ψ�X1� θ� ∈ A ∩Mθ� +
∫
A
fθ dmp�

where fθ is a possibly improper density. Let Iiθ = 0 if ψ�Xi� θ� ∈ Mθ, and 1,
otherwise. Consider the following assumption:

(A4) Assume that there are iid random vectors Uiθ = �Wiθ�V1iθ�V2iθ�, where
Wiθ are jointly continuous random vectors of dimension p and V1iθ and
V2iθ are random vectors of dimension p and p∗, respectively, such that

nT̄θ =
n∑
i=1

ψ�Xi� θ� =
n∑
i=1

IiθWiθ +
n∑
i=1

�1 − Iiθ�V1iθ�

vec�nS̄θ� = vec

(
n∑
i=1

ψ′�Xi� θ�
)

= Aθ

n∑
i=1

IiθUiθ�

where Aθ is of dimension p2 by 2p + p∗. Assume further that the com-
ponents of Viθ = �V1iθ�V2iθ� are either continuous or lattice with di-
mension d = p + p∗ and that d = d1 + d0 where d1 is the number of
continuous variables and d0 is the number of lattice variables.

Let U′
jθ = �W′

jθ�V
′
jθ� have the distribution of Ujθ conditional on Ijθ = 1

and V′′
1jθ have the distribution of V1jθ conditional on Ijθ = 0. Write

Ũθ = �W̃θ� Ṽθ� = 1
n

K∑
j=1

U′
jθ�

where K has distribution equal to the conditional distribution of a binomial
variable with parameters n and ρ = P�Iiθ = 1� conditional on it being positive,
and define

T̃θ = 1
n

K∑
j=1

W′
jθ + 1

n

n∑
j=K+1

V′′
1jθ

when 0 < K < n. Also set

vec�nS̃θ� = Aθ

K∑
i=1

U′
iθ�

(A5) Assume that det�S̃θ� 
= 0 and that the transformation T̃θ to S̃−1
θ T̃θ given

Ṽθ is one-to-one with probability 1.

Remark 4. We note that (A5) is satisfied for the case of robust regression
using Huber’s proposal 2 as outlined in Section 3. We also note that a similar
treatment of the non-iid case would be possible with a corresponding complica-
tion of notation and conditions. This would permit development of saddlepoint
approximations for the regression case conditionally on fixed values of C.
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Remark 5. The device of considering the density of T̃θ was used in Em-
brechts, Jensen, Maejima and Teugels (1985).

Let fT̃θ� Ṽθ
�t̃� ṽ� be the density of T̃θ� Ṽθ and let Jθ�t̃� ṽ� be the Jacobian of

the transformation t̃ to t̃∗ = s̃−1t̃ for fixed ṽ. Then the density of T̃∗
θ is

fT̃∗
θ
�t̃∗� =

∫
fT̃θ� Ṽθ

�t̃�t̃∗�� ṽ�Jθ�t̃� ṽ�dm∗�(4.1)

where m∗ is the product measure of Lebesgue and counting measure appro-
priate to ṽ and where the inverse function t̃�t̃∗� may depend on ṽ.

Now f
∗�X�θ��z�H�θ� α� τ�� exists for some α > 0, τ > 0, where H�θ� α� τ��
is defined in (2.3), by (A2) and whenever 
∗�X�θ� has a density, T̃θ has the
same density. Hence, we can write

f
∗�X�θ�
(
z�H�θ� α� τ�) = fT̃∗

θ

(
z�H�θ� α� τ�)

and from Theorem 1,

h�θ� = lim
α→0

lim
τ→0

fT̃∗
θ

(
0�H�θ� α� τ�)�

In order to obtain saddlepoint approximations for the density of �T̃θ� Ṽθ�
and so for T̃∗

θ, we need to assume:

(A6) Assume that E exp�βTUθ� < ∞ for �β� < a for some a > 0 and for all θ.

We now find a saddlepoint approximation to fT̃∗
θ
�z�, and complete the proof

by using this approximation for fT̃∗
θ
�0�H�θ� α� τ��.

Our approach is to develop a saddlepoint approximation for

Y =
(

n∑
i=1

IiθWiθ +
n∑
i=1

�1 − Iiθ�V1iθ�
n∑
i=1

IiθViθ

)
�

However, before doing that we need to relate the distribution of Y to that of
Ỹ = �T̃θ� Ṽθ�. We let B be the product of B1 a ball of radius rad�B1� centered
at 0 for dimensions d1 corresponding to the continuous variables and the point
0 for the d0 lattice variables in Y. Note that

P�Ỹ ∈ y′ +B/n�0 < K < n�

= P

((
K∑
i=1

W′
iθ +

n∑
i=K+1

V′′
1iθ�

K∑
i=1

V′
iθ

)
∈ ny′ +B�0 < K < n

)

= P

((
n∑
i=1

IiθWiθ +
n∑
i=1

�1 − Iiθ�V1iθ�
n∑
i=1

IiθViθ

)
∈ ny′ +B

)
+O�e−cn�

= P�Y ∈ ny′ +B� +O�e−cn�
for some c > 0. Since Ỹ has a continuous density in d1 dimensions, we can
write

P�Ỹ ∈ y′ +B/n� = fỸ�y′� vol�B1/n��1 +O
(
rad�B1�/n�)�
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Now consider the saddlepoint approximation to P�Y ∈ ny′ +B�. Denote the
cumulant generating function of ψ�X1� θ� by

κ�τ� θ� = log
∫

exp
(
τTψ�x� θ�)dF0�x�

and note that ψ�Xj� θ� = IjθWjθ + �1 − Ijθ�V1jθ. Define τ�θ� as the solution
to

∂κ�τ� θ�
∂τ

= 0�

Let ν be the probability measure of Y and let

ντ�B� =
∫
B
exp

(
nκ�τ� θ� − τTv

)
dν�

where �t� v� corresponds to the partition �t̃� ṽ�. Write Yτ as the random vari-
able corresponding to Y under ντ and let nµτ be the mean of Yτ and nGτ be
the covariance matrix of Yτ.

We will use Theorem 1 of Robinson, Höglund, Holst and Quine (1990) to
write the following approximation:

P�Y ∈ ny′ +B� = exp
(
nκ�τ�θ�� θ�)

�2π/n��p+d1�/2�2πn�d0/2 detG1/2
τ�θ�

×
{∫

y′+B/n
exp�−ny∗Ty∗/2��1 +Q�y∗√n�dy+R

}
�

(4.2)

where y∗ = G
−1/2
τ�θ� �y−µτ�θ���R = vol�B1/n�O�1/n� and dy denotes integration

with respect to Lebesgue measure on Rp+d1 . The first and third error terms
of that theorem can be easily reduced to this form if ε of the theorem equals
rad�B1�/n and the second term can be bounded in that form by the following
argument. If ν̂τ denotes the characteristic function of the measure ντ, the
probability measure of Yτ, then

�ν̂τ�ξ�� =
∣∣∣∣∣Eτ exp

[
�τ + iξ1�

(
n∑

j=1

Ijθτ′Wjθτ +
n∑

j=1

�1 − Ijθτ�V1jθτ

)

+iξ2

n∑
j=1

IjθτVjθτ

]∣∣∣∣∣
=
∣∣ρE exp

[�τ + iξ1�W′
jθτ + iξ2V

′
jθτ

]+ �1 − ρ� exp��τ + iξ1�V
′′
1jθτ�

∣∣n∣∣ρE exp�τW′
jθτ� + �1 − ρ� exp�τV′′

1jθτ�
∣∣n

Then, if L is the set of subscripts of ξ corresponding to lattice random compo-
nents,

qn�n� = sup
{�ν̂τ�ξ�� · �G1/2

τ ξ� > c� �ξk� < π� k ∈ L�
}

< exp�−c1n��
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for some c1 > 0. So the second term in the errors of the theorem can also be
bounded by vol�B1/n�O�1/n�.

The integral in (4.2) can be approximated to give

P�Y ∈ ny′ +B�

= exp
(
nκ�τ�θ�� θ�)

�2π/n��p+d1�/2�2πn�d0/2 detG1/2
τ�θ�

×{exp�−ny′∗Ty′∗/2��1 +Q�y′∗√n�vol�B1/n��1 +O�rad�B1/n�� +R
}
�

By choosing B1 to be O�1�, the density of �T̃θ� Ṽθ� is

fT̃θ� Ṽθ
�y� = exp

(
nκ�τ�θ�� θ�)

�2π/n��p+d1�/2�2πn�d0/2 detG1/2
τ�θ�

×{exp�−ny∗Ty∗/2��1 +Q�y∗√n� +O�1/n��}
(4.3)

Substituting the approximation in (4.1) gives

fT̃∗
θ
�0� = exp

(
nκ�τ�θ�� θ�)

�2π/n�p/2 detG1/2
τ�θ�

×
∫

detJ�0� ṽ� exp�−ny∗T
2 y∗

2/2�
�2π/n�d1�2πn�d0

(
1 +Q�0� y∗

2

√
n� +O�n−1�)dm∗�

where, if G22
τ�θ� is the submatrix of G−1

τ�θ� omitting the first p rows and columns,
y∗

2 = �G22
τ�θ��1/2�y2 −µ2τ�θ�� for y = �y1� y2�, µτ�θ� = �µ1τ�θ�� µ2τ�θ��. We note that

y1 = µ1τ�θ� = 0 when t, the value of T̃θ, equals 0. We can replace the sum
arising from the lattice part of m∗ by an integral with errors of order n−1.
Then using a Laplace approximation in the integral, we have

fT̃∗
θ
�0� = exp

(
nκ�τ�θ�� θ�) bθ

�2π/n�p/2 det�G11� τ�θ��1/2
(
1 +O�n−1�)�(4.4)

where G11� τ�θ� is the submatrix of Gτ�θ� corresponding to Tτ�θ� and equals
covτ�θ� ψ�X1� θ�, and bθ = det

(
J�0� µ2τ�θ��

) = detEτ�θ�
̄′�X�θ�. This last equal-
ity follows from the definition of the transformation of T̃θ to T̃∗

θ.
We now need to show that fT̃∗

θ
�0� approximates fT̃∗

θ
�0�H�θ� α� τ�� with an

exponentially small error. If for any 0 < α < 1 there exist τ > 0 and δ > 0
such that

P
(
H�θ� α� τ�) > 1 − e−cn�(4.5)

for some c > 0, then the density of
∗�X�θ� at 0, restricted toH�θ� α� τ�, is just
the density of T̃∗

θ at 0 up to exponentially small errors. Thus, by Theorem 1,
we can approximate the intensity h�θ� by the right-hand side of (4.4).

If there is a unique M-estimate, the right-hand side of (4.4) approximates
the density of θ̂. In the case where we do not have uniqueness, if we can
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verify that the event �N�Bτ�θ0�� = 1� converges to one exponentially fast
in increasing sample size, for suitably chosen τ, then except on sets with
exponentially small probability, there is a unique M-estimate, θ̂ in Bτ�θ0�,
and its density, fθ̂�θ�, exists and is equal to fT̃∗

θ
�0� up to exponentially small

error and so is approximated by the right-hand side of (4.4).
It now remains to prove that the set H�θ� α� τ� and the set �N�Bτ�θ0�� = 1�

converge to one exponentially fast. To prove these results, we will use a single
proof based on both Cramér’s and Sanov’s theorems on large deviations. Let
� be the class of all probability measures on the sample space of X1, endowed
with the topology of weak convergence. We denote the empirical measure of
the random sample X by Fn. Let

L�F� θ′� θ� =




∥∥∥(∫ ψ′�x� θ�dF�x�
)−1 ∫

ψ′�x� θ′�dF�x� − Ip

∥∥∥�
det

∫
�ψ′�x� θ��dF�x� 
= 0�

∞� otherwise�

and

L∗�F� θ� τ� = sup
θ′∈Bτ�θ�

L�F� θ′� θ��

We make the following assumptions, which we use to show that the event
�N�Bτ�θ0�� = 1� converges to one exponentially and then that (4.5) holds.

(A7) Given 0 < α < 1 there is a τ such that supθ∈B̄τ�θ0� L
∗�F0� θ� τ� < α.

(A8) For fixed θ ∈ Bτ�θ0�� L�·� ·� θ� is continuous at �F0� θ� in the product
topology.

Remark. Conditions (A7) and (A8) will be satisfied if the derivative of the
score function is bounded and is continuous as a function of θ. The conditions
are also satisfied for the case of Huber’s robust regression outlined in Section 3.

Lemma 2. If (A1)–(A8) hold, then the probability that there is exactly one
solution to the score equation in Bτ�θ0� approaches one exponentially quickly
in n.

Proof. Given 0 < α < 1, select τ such that supθ∈B̄τ�θ0� L
∗�F0� θ� τ� ≤ α < 1.

Then select α′ ∈ �α�1� and define

�1�θ� = {
F ∈ � � L∗�F� θ� τ� > α′}�

�2 =
{
F ∈ � �

∥∥∥∥
[∫

ψ′�x� θ0�dF�x�
]−1 ∫

ψ�x� θ0�dF�x�
∥∥∥∥ > τ0�1 − α�

}
�

�3 =
{
F ∈ � � ∃ unique θ ∈ Bτ�θ0� such that

∫
ψ�x� θ�dF�x� = 0

}
�

Now by the results of Lemma 1, which give conditions for Fn to have a unique
solution to (1.1), we have that �c3 ⊂ �1�θ0� ∪ �2,
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By Sanov’s theorem, which gives the large deviation principle for empirical
measures [see Dembo and Zeitouni (1993)], we may state

lim sup
n→∞

1
n

logP
{
Fn ∈ �1�θ�

} ≤ − inf
F∈�̄1�θ�

H�F�F0��

where

H�F�G� =


∫ dF

dG
log

dF

dG
dF� if

dF

dG
exists�

∞� otherwise,

which is a good, convex rate function. We will verify that for all θ ∈ B̄τ�θ0�,
F0 
∈ �̄1�θ� in which case infF∈�̄1�θ� H�F�F0� is positive since H�F�G� = 0
if and only if F = G. Suppose there is a sequence of measures in � , say
�Fm� in �1�θ� converging to F0. Select ε > 0 so that α < α′ − ε. Then we
can find θm ∈ Bτ�θ0� such that L�Fm� θm� θ� ≥ α′ − ε. There is a convergent
subsequence �θmi

� of the θm with limit θ1 ∈ Bτ�θ0�. Now condition (A8) asserts
that L�F0� θ1� θ� ≥ α′ − ε which contradicts assumption (A7). Hence F0 
∈
�̄1�θ� and infF∈�̄1�θ� H�F�F0� > 0. In particular, this holds for �1�θ0�. Using
assumptions (A4) and (A6), we can apply Cramér’s theorem and conclude that
P�Fn ∈ �2� approaches zero exponentially as n approaches 0. Hence

P
(
N�Bτ�θ0�

) 
= 1� = P�Fn ∈ �c3�
≤ P�Fn ∈ �2� +P

(
Fn ∈ �1�θ0�

)
�

Since both terms on the right-hand side are exponentially small, this com-
pletes the proof. ✷

It remains only to prove (4.5). Now we can write H�θ� α� τ�c ⊂ �Fn ∈ �1�θ��,
with α′ ∈ �α/2� α� for θ ∈ B̄τ�θ0� and we showed in the proof of Lemma 2 that
the probability of this set is exponentially small. Thus we have the following
from (4.4).

Theorem 2. Under conditions (A1)–(A8), there is, with probability 1−e−cn

for some c > 0, a uniquely definedM-estimate θ̂ on Bτ�θ0� which has a density,
restricted to Bτ�θ0�,

fθ̂�θ� = exp
(
nκ�τ�θ�� θ�)

× detEτ�θ�ψ′�X1� θ�
�2π/n�p/2 det(covτ�θ� ψ�X1� θ�

)1/2 (1 +O�n−1�)�(4.6)

It should be noted that this approximation, (4.6), is the same as that derived
in Field (1982). His result was obtained under more restrictive conditions and
technically does not cover the estimation of location and scale with Huber’s
proposal 2.
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5. Smooth functions of M-estimates. In this section we derive tail
probability approximations for smooth real valued functions of multivariate
M-estimates, proceeding as in Jing and Robinson (1994). Let g1�θ� be an in-
finitely differentiable function from �p to �1 with �∇g1�θ�� > 0 for θ = θ0,
where E�
�X�θ0�� = 0. We wish to find an approximation for the tail area
Pθ0

�g1�θ� ≥ η1�. We proceed by finding a differentiable function g2�θ� from
�p to �p−1 such that g�θ� = �g1�θ�� g2�θ�� has Jacobian matrix

J�θ� = [∇g�θ�]−1
�

We may assume without loss of generality that ∂g1�θ�/∂θ1 > 0 and choose
g2�θ� = �θ2� � � � � θp�. Then we can find an ε-neighborhood of θ0�Bε�θ0�, in
which J�θ� > 0. Let B∗

ε�θ0� be the image of Bε�θ0� under g. Then g is a
one-to-one transformation from Bε�θ0� onto B∗

ε�θ0�. Let θ�η� = g−1�η� for any
η ∈ B∗

ε�θ0�, and
L�η� = −κ(τ(θ�η�)� θ�η�)�

Then, as in Jing and Robinson (1994), we can choose ε small enough so that
L�η� is convex in B∗

ε�θ0�. Assuming that (A1)–(A8) hold, then Theorem 2 as-
serts that there is, with probability greater than 1 − e−cn for some c > 0, a
unique solution θ̂ of (1.1) with density given in (4.6). If η̂ = g�θ̂�, then the
density of η̂ is

fη̂�η� = exp
(−nL�η�)

�2π/n�p/2 A�η�(1 +O�1/n�)�
for η close enough to g�θ0�, where

A�η� = detEτ�θ�η��ψ′(X1� θ�η�)det(J(θ�η�))
det

(
covτ�θ�η�� ψ

(
X1� θ�η�))1/2 �

Now let η = �η1� η2� where η1 ∈ �1, and set η̂1 = g1�θ̂�. Let

H�η1� = inf
η2

L�η� = L�η̃��

Following Jing and Robinson (1994) we have, using the Laplace approxima-
tion,

fη̂1
�η1� = exp

(−nH�η1�
)

�2π/n�1/2 det�L22
(
η̃�)−1/2

A�η̃�(1 +O�1/n�)�(5.1)

where

L22�η� = ∂2L�η�
∂η2

2

�

This density can be integrated as in Jing and Robinson (1994) to give the
following theorem.



292 A. ALMUDEVAR, C. FIELD AND J. ROBINSON

Theorem 3. If (A1)–(A8) hold and g is defined as above, then for some
δ < 0 and 0 < η1 − g1�θ0� < δ,

P�g1�θ̂� ≥ η1� = �1 −$�n1/2s∗���1 +O�1/n���(5.2)

where s∗ = �2H�η1��1/2 − log��2H�η1��1/2 det�L22�η̃��−1/2A�η̃�/H′�η1���/
�n�2 H�η1��1/2�.

Remark. Equation (5.2) gives lower tail probabilities when H′ is replaced
with −H′.

6. Numerical example. We consider a numerical example in which we
apply the approximation to the case of Huber’s proposal 2 as given in Sec-
tion 3 for the special case of location and scale. We will assume that the
condition holds which guarantees a unique solution (see Section 3). Then,
since the derivatives are piecewise continuous and globally bounded, condi-
tions (A1)–(A8) of Section 3 hold. So to apply Theorems 2 and 3 we note that
the calculations are based on the moment generating function,

κ�θ� τ� = E
[
exp

(
τ1hb

(�Z− µ�σ−1)+ τ2h
2
b

(�Z− µ�σ−1)− τ2β
)]

= exp�−τ2β�
{
exp�τ1b+ τ2b

2�(1 −$�µ+ bσ�)
+ exp�−τ1b+ τ2b

2�$�µ+ bσ�

+ σ√
2c1�θ� τ�

exp
(

−µ2

2
+
(
c2�θ� τ�
2c1�θ� τ�

)2)

+
(
$

(√
2c1�θ� τ�b+ c2�θ� τ�√

2c1�θ� τ�

)

−$
(

−
√
2c1�θ� τ�b+ c2�θ� τ�√

2c1�θ� τ�

))}
�

where Z is a standard normal random variable and

τ = �τ1� τ2�� θ = �µ�σ�� c1�θ� τ� =
(
σ2

2
− τ2

)1/2

� c2�θ� τ� = �µσ − τ1�(6.1)

for σ2/2 ≥ τ2. For Huber’s proposal 2 we set

β = E
[
h2
b�Z�] = b2$�−b� − 2bφ�b� +$�b� −$�−b��(6.2)

For b = 1�345 we have β = 0�71, so that (3.3) is satisfied for any n ≥ 2.
Letting �µ̂� σ̂� be the M-estimates defined above, we now examine the dis-

tributions of S1 = µ̂/σ̂ and S2 = σ̂ . The method of Section 5 was applied to
approximate tail probabilities of S1 and S2. In addition, tail probabilities were
estimated by simulations using 200,000 replications each for n = 5�10�20.
Samples are simulated from the standard normal distribution. In Figures 1
and 2, the approximate marginal density of the Studentized mean �µ̂/σ̂� and
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Fig. 1. Huber’s proposal 2 (density of Studentized mean).
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Fig. 2. Huber’s proposal 2 (density of scale estimate).
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Table 1
Tail probabilities for µ̂/σ̂

P��̂/�̂ > t�
Saddlepoint Saddlepoint

t n (Nonnormalized) (Normalized) Simulations

0�5/
√
5 5 0.3875 0.3400 0.3246

1�0/
√
5 5 0.2461 0.2160 0.1921

1�5/
√
5 5 0.1544 0.1355 0.1097

2�0/
√
5 5 0.0990 0.0868 0.0631

2�5/
√
5 5 0.0657 0.0577 0.0372

0�5/
√
10 10 0.3464 0.3263 0.3236

1�0/
√
10 10 0.2013 0.1896 0.1864

1�5/
√
10 10 0.1090 0.1027 0.1001

2�0/
√
10 10 0.0571 0.0538 0.0515

2�5/
√
10 10 0.0300 0.0283 0.0265

0�5/
√
20 20 0.3285 0.3192 0.3182

1�0/
√
20 20 0.1826 0.1774 0.1764

1�5/
√
20 20 0.0896 0.0870 0.0860

2�0/
√
20 20 0.0402 0.0390 0.0382

2�5/
√
20 20 0.0171 0.0165 0.0162

the scale parameter estimate �σ̂� obtained from (5.1) is compared to an empir-
ical estimate of the densities obtained from the simulations. In Tables 1 and
2 various tail probabilities for µ̂/σ̂ and σ̂ are estimated using Monte Carlo
simulations, by integrating the approximate marginal density of (5.1) and by
using the tail probability formula (5.2).

Before evaluating the results, we note that the Monte Carlo tail areas will
have standard errors of 0.00016 with a tail area of 0.005 and a standard error
of 0.00003 with a tail area of 0.0001. The graphs of the empirical and the
approximate marginal densities show very good agreement for n = 10 and
n = 20. There is a systematic error at n = 5 but even here the approxima-
tion is quite reasonable. The empirical density for the standard deviation σ̂
shows some irregularities at 0.5 and 1.5. It is not clear exactly what causes
this behavior but it may represent some underlying discontinuity with small
samples.

The tail area approximations obtained by integrating the marginal density
numerically and those from the tail area approximation itself are quite com-
parable and give similar levels of accuracy. The tail area approximations for
both µ̂/σ̂ and σ̂ are very good for n = 20 and n = 10 except perhaps in the
extreme tail. For n = 5 the accuracy deteriorates as we might expect due to
the errors in the marginal density approximation.
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Table 2
Tail probabilities for σ̂

P��̂ > t�
Saddlepoint Saddlepoint

t n (Nonnormalized) (Normalized) Simulations

�χ2
4�0�99/4�1/2 5 1 − 0�0441 1 − 0�0387 1 − 0�0119

�χ2
4�0�975/4�1/2 5 1 − 0�0823 1 − 0�0722 1 − 0�0296

�χ2
4�0�95/4�1/2 5 1 − 0�1332 1 − 0�1169 1 − 0�0591

�χ2
4�0�90/4�1/2 5 1 − 0�2129 1 − 0�1869 1 − 0�1132

�χ2
4�0�10/4�1/2 5 0.0986 0.0865 0.1074

�χ2
4�0�05/4�1/2 5 0.0509 0.0447 0.0530

�χ2
4�0�025/4�1/2 5 0.0274 0.0241 0.0282

�χ2
4�0�01/4�1/2 5 0.0115 0.0101 0.0121

�χ2
9�0�99/9�1/2 10 1 − 0�0393 1 − 0�0370 1 − 0�0327

�χ2
9�0�975/9�1/2 10 1 − 0�0778 1 − 0�0733 1 − 0�0633

�χ2
9�0�95/9�1/2 10 1 − 0�1239 1 − 0�1167 1 − 0�1038

�χ2
9�0�90/9�1/2 10 1 − 0�1871 1 − 0�1763 1 − 0�1710

�χ2
9�0�10/9�1/2 10 0.1147 0.1080 0.1098

�χ2
9�0�05/9�1/2 10 0.0661 0.0622 0.0616

�χ2
9�0�025/9�1/2 10 0.0361 0.0340 0.0354

�χ2
9�0�01/9�1/2 10 0.0181 0.0171 0.0169

�χ2
19�0�99/19�1/2 20 1 − 0�0354 1 − 0�0344 1 − 0�0349

�χ2
19�0�975/19�1/2 20 1 − 0�0725 1 − 0�0705 1 − 0�0653

�χ2
19�0�95/19�1/2 20 1 − 0�1155 1 − 0�1122 1 − 0�1058

�χ2
19�0�90/19�1/2 20 1 − 0�1744 1 − 0�1694 1 − 0�1715

�χ2
19�0�10/19�1/2 20 0.1206 0.1172 0.1212

�χ2
19�0�05/19�1/2 20 0.0717 0.0697 0.0702

�χ2
19�0�025/19�1/2 20 0.0404 0.0392 0.0415

�χ2
19�0�01/19�1/2 20 0.0211 0.0205 0.0209
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