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HOW TO MAKE A HILL PLOT

By Holger Drees,1 Laurens de Haan2 and Sidney Resnick3

University of Cologne, Erasmus University and Cornell University

An abundance of high quality data sets requiring heavy tailed models
necessitates reliable methods of estimating the shape parameter governing
the degree of tail heaviness. The Hill estimator is a popular method for
doing this but its practical use is encumbered by several difficulties. We
show that an alternative method of plotting Hill estimator values is more
revealing than the standard method unless the underlying data comes from
a Pareto distribution.

1. Introduction. It is now common in diverse fields such as insurance
[McNeil (1997), Resnick (1997a)], finance and economics [Jansen and de Vries
(1991)], computer science and telecommunications [Leland, Taqqu, Willinger
and Wilson (1994), Resnick (1997b)] to encounter large, high quality data sets
for which appropriate models require heavy tailed distributions. By a heavy
tailed distribution we mean a distribution F, which satisfies

1−F�x� ∼ x−αL�x�� x→∞� α > 0�(1.1)

where L is a slowly varying function satisfying limt→∞ L�tx�/L�t� = 1, for
all x > 0.

A basic statistical calibration problem is to estimate the shape parameter
α based on a sample from the process �Xn�n∈�, assumed to be a stationary
sequence whose marginal, one-dimensional distribution is F which satisfies
(1.1). A popular estimator of the so-called extreme value index γ 	= α−1 based
onX1� � � � �Xn is the Hill estimator obtained as follows. Order the observations
as X�1� ≥ · · · ≥ X�n� and then the Hill estimator based on k + 1 upper order
statistics is

Hk�n 	=
1
k

k∑
i=1

log
X�i�
X�k+1�

for k = 1� � � � � n − 1. This estimator is consistent for γ in the sense that if
�kn�n∈� is an intermediate sequence, which means

kn −→∞� kn/n −→ 0�
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then

Hkn�n
P−→γ�

provided 
Xn� is a stationary sequence satisfying one of a broad set of as-
sumptions such as 
Xn� is iid [Mason (1982)], 
Xn� can be written as a finite
or infinite order moving average [Resnick and Stărică (1995)], 
Xn� satis-
fies mixing conditions [Rootzen, Leadbetter, de Haan (1990)] or if 
Xn� is
an ARCH(1) process [Resnick and Stărică (1998)], a bilinear process [Davis
and Resnick (1996), Resnick and van den Berg (2000)] or consists of random
variables defined on a Markov chain [Resnick and Stărică (1998)].

Although consistency holds for all intermediate sequences �kn�n∈�, the per-
formance ofHk�n strongly depends on the particular choice of the number k of
order statistics. Under suitable second-order conditions, a sequence �koptn �n∈�
can be determined such that the asymptotic mean squared error of the Hill
estimator is minimized. The practical usefulness of knowing koptn is limited
by the fact that koptn is determined only up to asymptotic equivalence, only
providing a solution minimizing asymptotic mse and there is little guidance
available about finite sample behavior. Furthermore, koptn depends on unknown
parameters of F (see Theorem 1 below) and hence has to be replaced by an
asymptotically equivalent data-driven choice k̂optn using, for example, a sub-
sample bootstrap method [see Danielsson, de Haan, Peng and de Vries (1998)]
or a sequential approach where the estimator for the optimal number is de-
fined in terms of certain stopping times [see Drees and Kaufmann (1998)].
Both procedures require the choice of certain parameters and the choices are
arbitrary. For the sequential procedure one must choose the threshold rn and
the parameter ξ, while the bootstrap method requires the choice of the sub-
sample size n1 and of the range of k-values in which one searches for the min-
imum of the bootstrap statistic. [The latter remark also applies analogously
to the heuristically motivated procedure introduced by Beirlant, Vynckier and
Teugels (1996).]

For these methods, the choices do not matter asymptotically, but influence
the performance of the resulting adaptive Hill estimator for finite samples.
It is advisable to have computationally less demanding methods for a vari-
ety of applied purposes as well as for the purpose of checking whether these
automatic procedures yield a reasonable number k.

Thus, in practice, it is advisable to construct a plot of the points 
�k�Hk�n��
1 ≤ k ≤ n−1� called a Hill plot and then the value of γ is inferred from a stable
region in the graph. This is sometimes difficult since the plot may be volatile
and/or may not spend a large portion of the display space in the neighborhood
of γ. In fact, it is becoming increasingly clear that the traditional Hill plot is
most effective only when the underlying distribution is Pareto or very close to
Pareto. For the Pareto distribution,

1−F�x� =
(x
σ

)−α
� x > σ > 0�
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Fig. 1. Hill plots of 5000 Pareto observations, γ = 1 (left) and the Danish loss data (right).

one expects the Hill plot to be close to γ for the right side of the plot, since
the Hill estimator Hn−1� n is the maximum likelihood estimator in the Pareto
model. This is borne out in practice. When only (1.1) holds, however, the Hill
estimator is only an approximate maximum likelihood estimator based on ob-
servations which are exceedances over X�k+1� divided by the threshold X�k+1�
and it is less clear what portion of the plot is most accurate.

Two examples where Hill plotting works well are shown in Figure 1. The
left plot is a Hill plot for 5000 iid observations from the Pareto distribution
with α = γ = 1. Notice the right side of the graph clearly indicates the correct
value of 1. The right plot is the Hill plot of the Danish large fire insurance
claim data [see Resnick (1997a)] showing that sometimes the Hill plot can be
quite clear and informative for real data.

What do we do when the Hill plot is not so informative? C. Stărică [Resnick
and Stărică (1997)] has suggested a simple device called alt (alternative) plot-
ting. Instead of plotting 
�k�Hk�n��1 ≤ k ≤ n − 1�, we construct the altHill
plot by plotting 
�θ�H�nθ�� n��0 ≤ θ < 1�; that is, one uses a logarithmic scale
for the k-axis. (Here �nθ� denotes the smallest integer greater than or equal
to nθ.) This has the effect of stretching the left half of the Hill plot and giving
more display space to smaller values of k. This will clearly not be beneficial
when the underlying distribution is Pareto, but as the following plots show, is
beneficial in a wide variety of circumstances.

Figure 2 displays on the left the traditional Hill plot corresponding to a
sample of size 5000 from the symmetric stable �α = 0�2� γ = 5� distribu-
tion alongside the alt-plot which is more revealing. The information in the
alt-plot would be further enhanced by applying a smoothing procedure given
in Resnick and Stărică (1997). One would have to be paranormal to discern
with confidence the true value from the Hill plot. Figure 3 shows on the left
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Fig. 2. Hill and altHill plot of stable observations, γ = 5.

a Hill plot from a sample of size 5000 from the distribution of the random
variable g�U� where g�x� = x−1/ log x−1 and U is uniform on (0,1). For this
logarithmically perturbed Pareto distribution, F satisfies

1−F�x� = g−1�x� ∼ x−1/ log x� x→∞�

since g�ax−1/ log x� ∼ x/a for all a > 0. The right-hand alt-plot shows more
clearly the true value of γ = 1. Finally Figure 4 compares the traditional Hill
plot with the alt-plot for a real teletraffic data set consisting of interarrival
times of packets in an ISDN network. The alt-plot makes plausible an estimate
of α = 1�1; the traditional Hill plot is rather uninformative.

Fig. 3. Hill and altHill plot for the logarithmically perturbed Pareto, γ = 1.
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Fig. 4. Hill and altHill plot of ISDN2.

The engineering conclusion we emphasize in this paper is that for iid obser-
vations whose common distribution has a tail satisfying a second-order condi-
tion, alt-plotting is superior. See Theorem 2 and the accompanying discussion.
For the Pareto distribution, the traditional Hill plot is preferred. However, one
never knows in practice what second-order tail conditions apply so our firm
recommendation is to produce both the traditional and altHill plots and com-
pare them. Hill and altHill plotting are useful complimentary methods which
can be added to the heavy tailed analyst’s tool box to accompany time-honored
methods using QQ, residual life and various extreme value plots.

We quantify superiority of one plotting method over another in terms of
the occupation time of the plots in a neighborhood of the true value of γ.
The percentage PERHILL of time the Hill plot up to Hl�n spends in an ε-
neighborhood of the true value is defined as

PERHILL�ε� n� l� 	= 1
l

l∑
i=1

1
�Hi�n−γ�≤ε�

and the percentage PERALT of time that the alt-plot up to H�nu�� n spends in
the ε-neighborhood is

PERALT�ε� n�u� = 1
u

∫ u
0

1
�H�nθ�� n−γ�≤ε� dθ�

Note that for u = log�l + 1�/ log n both statistics are based on the same set

Hi�n�1 ≤ i ≤ l�. Asymptotic results for these two quantities are given in
Section 2 which show the superiority of the alt method, unless the distribution
is Pareto-like, provided l = ln constitutes a suitable intermediate sequence.
In order to capture as much of the whole Hill plot or alt-plot as possible, we
will choose ln such that n/ln tends to infinity slower than every power of n,
for example, ln = n/ log n.
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We would prefer results not limited by l or u and have achieved this in the
Pareto case. See Theorem 3. However, the regular variation condition (1.1)
and its second-order refinement (2.2) controls behavior only in the right tail
and hence only affects the Hill plot away from the origin. To control that part
of the Hill plot corresponding to order statistics not determined by the right
tail, one needs an assumption on the central part and the left tail. We are
loath to assume anything about these parts of the distribution for what is
essentially a right tail estimation problem and hence in Theorem 2 are left
with the alternative of giving results for the plots restricted by l and u.

2. Results. In the sequel, we assume that iid random variables

Xn�n ∈ ��, with common distribution function F are observed. In order
to derive the asymptotics of the PERHILL and PERALT statistics, we need
second-order conditions on the underlying distribution. Recall that (1.1) holds
if and only if the quantile function U�t� 	= F←�1− 1/t� satisfies

logU�tx� − logU�t� → γ log x(2.1)

as t→∞. A more precise second-order assumption which strengthens (2.1) is
the following condition:

lim
t→∞

logU�tx� − logU�t� − γ log x
A�t� = x

ρ − 1
ρ
� x > 0�(2.2)

for some ρ ≤ 0 and some function A	 �0�∞� → � which ultimately is of con-
stant sign. Then, necessarily, �A� is regularly varying with index ρ. Although
condition (2.2) is actually stronger than (2.1), it holds for almost all usual
textbook distributions satisfying (2.1), including the extreme value distribu-
tions (ρ = −1), Student’s tν-distributions �α = 1/ν� ρ = −2/ν�, the loggamma
distribution (ρ = 0) and stable distributions (ρ = −1, except for the Cauchy
distribution where ρ = −2). The only well-known exceptions are the Pareto
distributions, for which the numerator of the left-hand side of (2.2) vanishes.
For further discussion of this condition and its relation to other second-order
conditions, we refer to Dekkers and de Haan (1993), de Haan and Stadtmüller
(1996), de Haan, Peng and Pereira (1997) and Drees (1998b).

Most important for our investigations of the asymptotic behavior of the
PERHILL and PERALT statistics will be the following approximation of the
Hill process, which is of interest on its own.

Theorem 1. Under condition (2.2), there exist versions of Hi�n�1 ≤ i ≤
n−1� n ∈ � and a standard Brownian motionW such that for all intermediate
sequences �jn�n∈� and �ln�n∈�,

Hi�n −
(
γ + γW�i�

i
+ A�n/i�

1− ρ
)
= O

(
log i
i

)
+ o�A�n/i�� a�s�(2.3)
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uniformly for jn ≤ i ≤ ln. Moreover, there exist iid standard exponential ran-
dom variables ξ∗n� n ∈ �, such that for S∗i 	=

∑i
n=1 ξ

∗
n one has

Hi�n − γ
S∗i
i
= O�A�n/i�� a�s�(2.4)

uniformly for 1 ≤ i ≤ ln as n→∞.

Kaufmann and Reiss (1998) established closely related approximations of
the Hill process under the assumption thatU is normalized regularly varying,
but these results are not directly applicable for our purposes, since for small
i their bounds, which do not depend on i, may be of larger order than the
statistic Hi�n − γ which is to be approximated. See also Mason and Turova
(1994).

Often it is more convenient to parametrize the Hill process continuously.

Corollary 1. Let �kn�n∈� denote an arbitrary intermediate sequence. Un-
der condition (2.2), there exists a sequence of Brownian motionsWn, such that
for the versions of Hi�n used in Theorem 1 one has

sup
tn≤t≤Tn

�t1/2 ∧ tρ−ι�
∣∣∣∣H�knt�� n −

(
γ + k−1/2

n γ
Wn�t�
t

+A(n/kn) t−ρ1− ρ
)∣∣∣∣

= oP
(
k
−1/2
n +A�n/kn�

)(2.5)

for all ι > 0 and all tn → 0, Tn →∞ satisfying kntn →∞ and knTn/n→ 0.
Moreover,

sup
0<t≤Tn

�h�t� ∧ tρ−ι�
∣∣∣∣H�knt�� n −

(
γ + k−1/2

n γ
Wn�t�
t

+A(n/kn) t−ρ1− ρ
)∣∣∣∣

= oP
(
k
−1/2
n +A�n/kn�

)(2.6)

if t �→ t/h�t� is an upper class function of a standard Brownian motion, for
example, if

lim
t→0
h�t��log log�1/t�/t�1/2 = 0�

Note that (2.5) is less accurate than (2.3) for large t and that (2.6) is less
accurate for both small and large t. According to Corollary 1, under condition
(2.2) the middle part of the Hill plot can be approximated by the shifted graph
of a power function that is perturbed by small random fluctuations if the
sample size is sufficiently large. This fact can be employed to check graphically
whether condition (2.2) is fulfilled. For example, the Hill plot based on stable
random variables (ρ = −1) should have a linear trend, which indeed shows
up in the plots of Figure 2.

From Corollary 1 it is easily seen that the optimal rate of convergence (in
terms of the asymptotic mean squared error) is obtained if k1/2n �A�n/kn�� tends
to a positive constant, for example,

k1/2n �A�n/kn�� −→ 1�(2.7)
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Observe that, according to Theorem 1.5.12 of Bingham, Goldie and Teugels
(1987), relation (2.7) is satisfied by an intermediate sequence, which is unique
up to asymptotic equivalence [see discussion item (2) after Theorem 2]. The
resulting Hill estimator is asymptotically biased; that is, the limiting distri-
bution of the standardized estimator is not centered. This effect, however, is
common in nonregular non- or semiparametric estimation problems like den-
sity estimation or regression.

Since the rate of convergence of the optimal Hill estimator is k−1/2
n , it is

natural to examine the asymptotic behavior of PERHILL and PERALT for a
neighborhood shrinking with this rate towards the true value γ.

Theorem 2. Suppose that �kn�n∈� and �ln�n∈� are intermediate sequences
satisfying (2.7) and ln/kn→∞, and let un 	= log�ln+1�/ log n. Then for ρ < 0
we have

ln
kn
PERHILL�k−1/2

n ε� n� ln� =
1
kn

ln∑
i=1

1
k1/2n �Hi�n−γ�≤ε�

d→
∫ ∞
0

1
�γW�t�/t+t−ρ/�1−ρ��≤ε� dt

(2.8)

and

log�ln + 1�PERALT�k−1/2
n ε� n�un� = log n

∫ un
0

1
k1/2n �H�nθ�� n−γ�≤ε� dθ

d→
∫ ∞
0

1
�γW�t�/t+t−ρ/�1−ρ��≤ε�
dt

t
�

(2.9)

where the limit random variables are finite almost surely. If, in addition, �A�
is eventually decreasing, then we have for ρ = 0,

ln
kn
PERHILL�k−1/2

n ε� n� ln�


d→
∫ ∞
0

1
�γW�t�/t+1�≤ε� dt� if ε < 1,

P→∞� if ε > 1,
(2.10)

and

log�ln + 1�PERALT�k−1/2
n ε� n�un�



d→
∫ ∞
0

1
�γW�t�/t+1�≤ε�
dt

t
� if ε < 1,

P→∞� if ε > 1,
(2.11)
where the limits are finite a.s. if ε < 1.

Discussion. (1) The limiting random variables can be expressed in
terms of the local time of a standard Brownian motion defined by

Lat 	= lim
ε↓0

1
2ε

∫ t
0
1�a−ε� a+ε��W�s��ds

= 2
(�W�t� − a�+ − a1�−∞�0��a� + ∫ t

0
1
W�s�>a� dW�s�

)
�
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According to Revuz and Yor [(1991), Example (VI.1.15)], one has a.s.,∫ ∞
0

1
�γW�t�/t+t−ρ/�1−ρ��≤ε�t
−σ dt

=
∫ ∞
−∞

∫ ∞
0

1
�γa/t+t−ρ/�1−ρ��≤ε�t
−σ dLat da�

(2) From Theorem 2 we have

PERHILL�k−1/2
n ε� n� ln� = Op

(
kn
ln

)

and

PERALT�k−1/2
n ε� n�un� = Op

(
1

log�ln + 1�
)

if ρ < 0, or ρ = 0 and ε < 1. Hence, if n/ln is of smaller order than every posi-
tive power of n (for example, ln = n/ log n), then the rate of convergence to 0 is
faster for PERHILL, confirming the claimed superiority of the altHill plot. To
see this, recall that k1/2n �A�n/kn�� → 1, which is equivalent to Ã�n/kn� ∼ n1/2

where Ã�t� 	= t1/2/�A�t�� is a �1/2−ρ�-varying function. According to Theorem
1.5.12 of Bingham, Goldie and Teugels (1987), there exists an asymptotically
unique inverse Ã←, such that kn/n ∼ 1/Ã←

(
n1/2

)
is a −1/�1 − 2ρ�-varying

function of n. Hence kn/ln converges to 0 at a faster rate than the slowly
varying function 1/ log�ln + 1� ∼ 1/ log n.

This provides a comparison between the two plotting methods when the
second-order condition (2.2) holds. However, as mentioned above, this excludes
a result for the important case of the Pareto distribution, for which we expect
traditional Hill plotting to be superior. For the Pareto distributions, we have
the following result.

Theorem 3. Suppose F is Pareto, and n > ln ≥ kn→∞. Then
log�ln + 1�

log kn

(
1− PERALT�k−1/2

n ε� n�un�
)

= log n
log kn

∫ un
0

1
k1/2n �H�nθ�� n−γ�>ε� dθ
P→ 1�

(2.12)

where again un 	= log�ln + 1�/ log n. If, in addition, ln/kn→ c ∈ �1�∞�, then

ln
kn

(
1− PERHILL�k−1/2

n ε� n� ln�
) = ln

kn

(
1
ln

ln∑
i=1

1
k1/2n �Hi�n−γ�>ε�

)

d→
∫ c
0
1
�γW�t�/t�>ε� dt�

(2.13)

where the limit is finite a.s.
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Discussion. (1) When c = ∞, the percentage of time the Hill plot spends
outside the neighborhood of γ is

1− PERHILL�k−1/2
n ε� n� ln� = OP�kn/ln� = oP�1��

In contrast, the corresponding percentage for the altHill plot,

1− PERALT�k−1/2
n ε� n�un� = OP

(
log kn
log ln

)
�

converges to 0 in probability only if kn is of smaller order than any positive
power of n, that is, if one considers a very large neighborhood of γ. Moreover,
even in this case log kn/ log ln converges to 0 more slowly than kn/ln.

(2) When 1 ≤ c <∞,

1− PERHILL�k−1/2
n ε� n� ln�

1− PERALT�k−1/2
n ε� n�un�

d−→ 1
c

∫ c
0
1
�γW�t�/t�>ε� dt =d

∫ 1

0
1
�γW�t�/t�>c1/2ε� dt�

where the limiting random variable is almost surely less than 1.
(3) In particular, one may choose ln = n−1, that is, one considers the whole

Hill and altHill plot. If, in addition, one chooses kn = n−1, so that in analogy
to Theorem 2, k−1/2

n equals the optimal rate of convergence, then

PERHILL�k−1/2
n ε� n� n− 1� d−→

∫ 1

0
1
�γW�t�/t�≤ε� dt�

whereas

PERALT�k−1/2
n ε� n�1� P−→ 0�

Hence, the traditional Hill plot spends a nonvanishing percentage of time in
the neighborhood of the true value, while almost the whole altHill plot lies
outside the neighborhood, thus confirming the superiority of the Hill plot for
the Pareto distribution.

3. A maximal occupation time estimator of the extreme value index.
In this section we will formalize the heuristic idea to infer γ from a stable
region in the Hill or altHill plot. If one assumes that condition (2.2) holds for
some ρ < 0, then, according to Theorem 1, the sequence of Hill estimators
Hi�n can be approximated by the sum of the unknown extreme value index γ,
a weighted Brownian motion and a monotone bias function, which converges
to 0 as i/n converges to 0. Consequently, for i = O�kn� (that is, if the bias
does not dominate the random error) the standardized error i1/2�Hi�n − γ�/γ
is stochastically bounded, so that for a sufficiently large constant a > 0 and a
consistent initial estimator γ̃n of γ a large percentage of Hill estimators Hi�n
satisfies i1/2�Hi�n − γ� ≤ aγ̃n. On the other hand, for all γ > 0 the condition
i1/2�Hi�n − γ� ≤ aγ̃n is violated for most i � kn due to the increasing bias
term. Hence, it is natural to estimate the extreme value index by the value γ
such that the time one of the Hill plots spends in such neighborhoods of γ is
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maximized. Since, in view of Theorem 2, it is advisable to use the altHill plot,
we define

γ̂n 	= argmax
γ∈�

∫ un
0

1
�nθ�1/2�H�nθ�� n−γ�≤aγ̃n� dθ

for some un ∈ �0�1�. Notice that the normalization of the neighborhood �γ −
aγ̃n�nθ�−1/2� γ + aγ̃n�nθ�−1/2� with the estimated asymptotic standard devia-
tion γ̃n�nθ�−1/2 of the Hill estimatorH�nθ�� n automatically ensures that for the
optimal order nθ ∼ kn the width of the interval is of the order k−1/2

n considered
in Section 2.

Employing Theorem 1 and the ideas of the proof of Theorem 2, one can show
by lengthy computations that γ̂n is consistent for γ with the optimal rate up
to a factor that is of smaller order than any positive power of n:

γ̂n − γ = oP�k−1/2+δ
n � for all δ > 0�

However, for practical applications the finite sample behavior of γ̂n is more
important. To investigate this performance, we have drawn n = 100�200�500
and 1000 iid random variables according to the Cauchy distribution (γ =
1� ρ = −2), a Fréchet distribution F1�x� = exp�−x−1��γ = 1� ρ = −1�, tν-
distributions with ν = 4 and 10 degrees of freedom (γ = 1/ν� ρ = −2/ν) and a
loggamma distribution with density proportional to �log x�2x−41�1�∞��x� �γ =
1/3� ρ = 0�. In addition, we have simulated random variables according to the
Pareto distribution with parameter γ = 1, which does not meet the second-
order condition (2.2). In the definition of γ̂n the parameters are chosen as
un = �n+/2�� γ̃n = H�2√n+�� n and a = 1�5 with n+ denoting the number of
positive observations.

The simulation results are displayed in Table 1. For each sample size and
each distribution, the first figure gives the empirical root mean squared error
(RMSE) of the estimator γ̂n based on 1000 simulations. In the second lines,
this empirical RMSE is divided by the minimum of the empirical RMSE of
all Hill estimators based on a deterministic number of order statistics; the
pertaining optimal number will be denoted by kopt� simn . Hence, these figures
measure the loss of efficiency of the new estimator compared with the best
possible Hill estimator. Note, however, that the latter cannot be used in ap-
plications, since kopt� simn depends on the unknown underlying distribution. In
contrast, in the third lines the RMSE of γ̂n is compared with the empirical
RMSE of a real estimator, namely of the adaptive Hill estimator based on
the data driven choice k̂optn of the number of order statistics that is defined
in Drees and Kaufmann [(1998), Section 3]. (For the Pareto distribution these
figures are omitted, because the estimator k̂optn does not make sense in that
case.)

Obviously, the RMSE of γ̂n decreases as the sample size increases and, as
expected, the speed of convergence is lowest for the loggamma distribution,
where the optimal rate of convergence k−1/2

n is a slowly varying function of n.
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Table 1
RMSE(γ̂n), RMSE(γ̂n) /RMSE(H

k
opt sim
n � n

) and RMSE(γ̂n)/RMSE(H
k̂
opt
n � n

)

d.f. � � n =100 n =200 500 1000

Cauchy 1 −2 0.26 0.21 0.17 0.14
1.03 1.12 1.32 1.43
0.86 0.88 1.03 1.08

F1 1 −1 0.22 0.18 0.15 0.13
1.06 1.09 1.33 1.44
0.83 0.81 1.02 1.03

t4 0.25 −0.5 0.22 0.18 0.13 0.10
1.28 1.26 1.26 1.20
0.94 0.98 0.99 0.94

t10 0.1 −0.2 0.27 0.22 0.16 0.13
1.50 1.52 1.44 1.37
1.01 1.04 1.02 1.00

loggamma 1/3 0 0.12 0.10 0.09 0.08
0.96 0.98 1.04 1.08
0.81 0.88 0.93 0.88

Pareto 1 — 0.23 0.17 0.13 0.10
2.37 2.41 2.88 3.14

For sample size n = 100 and 200, the loss of efficiency of γ̂n compared
with the best possible Hill estimator is small to moderate if �ρ� is not too
small, that is, for the Cauchy, Fréchet and t4-distribution, and, somewhat
surprisingly, also in the case of the loggamma distribution, where ρ = 0. For
the t10-distribution, where ρ is negative but close to 0 [a case that is known
to be the most difficult one, see, for example, Beirlant, Vynckier and Teugels
(1999) or Danielsson, de Haan, Peng and de Vries (1998)], the RMSE of γ̂n
is about 50% higher than the RMSE of the optimal Hill estimator Hkopt simn � n.
As the sample size increases, the relative efficiency is improved for the t-
distributions, while it deteriorates for the Cauchy and Fréchet distribution.

In most cases the new estimator performs better than the adaptive Hill
estimator with estimated optimal number of order statistics for small sample
sizes, and the RMSE of both estimators are about the same for sample size
n = 500 and 1000. In the case of the loggamma distribution, however, the new
estimator is clearly superior for all sample sizes.

As one may expect from Theorem 3, the maximal occupation time estimator
γ̂n based on the altHill plot shows a poor performance for the Pareto distribu-
tion, with its RMSE being about twice to three times as big as the RMSE of
the optimal Hill estimator.

Finally, it is worth mentioning that one can improve the performance of the
maximal occupation time estimator significantly if one chooses the constant
a larger for large �ρ� and smaller if ρ is close to 0. For instance, for a =
3 the fraction RMSE�γ̂n�/RMSE�Hkopt simn � n� ranges from 0.75 to 1.11 for the
Fréchet distribution and from 0.85 to 1.20 for the Cauchy distribution. The
corresponding figures for the tν-distribution and a = 1 are 1.06–1.11 �ν = 4�
and 1.15–1.25 �ν = 10�. However, such an approach would require a data
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driven choice of a and thus a more detailed investigation of the asymptotic
behavior of γ̂n, which would go beyond the scope of the present paper and will
be considered elsewhere.

4. Proofs.

Proof of Theorem 1. We take up the approach used by Kaufmann and
Reiss (1998). Denote by ξn� n ∈ �, iid standard exponential random variables
and define Si 	=

∑i
n=1 ξn. Recall that U�Sn+1/Si�� 1 ≤ i ≤ n, are versions of

the order statistics X�i��1 ≤ i ≤ n [Reiss (1989), Corollary 1.6.9].
Next note that (2.2) implies

sup
x≥1
x−ι

∣∣∣∣ log(U�tx�/U�t�)−
(
γ log x+A�t�x

ρ − 1
ρ

)∣∣∣∣ = o�A�t��(4.1)

for all ι > 0. This is a direct consequence of Lemma 2.1 of Drees (1998a),
where in case ρ = 0, we use the fact that (2.2) is equivalent to the /-variation
of log�t−γU�t��. Hence applying (4.1) with t = Sn+1/Si+1 and x = Si+1/Sj
yields

(
Sj

Si+1

)ι∣∣∣∣ log U�Sn+1/Sj�
U�Sn+1/Si+1�

−
(
γ log

Si+1

Sj
+A

(
Sn+1

Si+1

)�Si+1/Sj�ρ − 1

ρ

)∣∣∣∣
= o

(
A

(
Sn+1

Si+1

))
a�s�

(4.2)

uniformly for 1 ≤ j ≤ i ≤ ln. The strong law of large numbers and the uniform
convergence theorem for regularly varying functions yield

A�Sn+1/Si+1�
A�n/i� −→ 1 a�s�(4.3)

uniformly for jn ≤ i ≤ ln. The law of iterated logarithm gives

max��Si/i− 1�� �Si+1/i− 1�� = O��log log�3i�/i�1/2��

and thus∣∣∣∣�Si+1/Sj�ρ − 1

ρ
− �i/j�

ρ − 1
ρ

∣∣∣∣ = O(�i/j�ρ�log log�3j�/j�1/2) a�s�(4.4)

uniformly for 1 ≤ j ≤ i <∞.
Combining (4.2)–(4.4) and the strong law of large numbers, we arrive at

(
j

i

)ι∣∣∣ log U�Sn+1/Sj�
U�Sn+1/Si+1�

−
(
γ log

Si+1

Sj
+A

(n
i

)�i/j�ρ − 1
ρ

)∣∣∣∣ = o
(
A
(n
i

))
a�s�



HOW TO MAKE A HILL PLOT 267

uniformly for 1 ≤ j ≤ i ≤ ln. Consequently,

1
i

i∑
j=1

log
U�Sn+1/Sj�
U�Sn+1/Si+1�

= γ1
i

i∑
j=1

log
Si+1

Sj
+A

(n
i

)1
i

i∑
j=1

�i/j�ρ − 1
ρ

+o�A�n/i�� a�s�

uniformly for jn ≤ i ≤ ln. Since ξ∗j 	= j log�Sj+1/Sj� defines a sequence of
iid exponential random variables [Reiss (1989), Corollary 1.6.11], the famous
Komlós–Major–Tusnády approximation of the partial sum process by a Brow-
nian motion combined with the facts that S∗i 	=

∑i
j=1 log�Si+1/Sj� =

∑i
j=1 ξ

∗
j

and
∑i
j=1��i/j�ρ − 1�/�iρ� → 1/�1 − ρ� yields (2.3) [cf. Kaufmann and Reiss

(1998), proof of Theorem 1].
Using A�Sn+1/Si+1�/A�n/i� = O�1� a.s. uniformly for 1 ≤ i ≤ ln instead of

(4.3), one obtains the second assertion. ✷

Proof of Corollary 1. First note that (2.3) implies

sup
tn≤t≤Tn

(
t1/2 ∧ A�n/kn�

A�n/�knt��
)∣∣∣∣H�knt�� n −

(
γ + γW��knt���knt�

+ A�n/�knt��
1− ρ

)∣∣∣∣
= o�k−1/2

n +A�n/kn�� a�s�

For all ι > 0, the Potter bounds [Bingham, Goldie and Teugels (1987), Theo-
rem 1.5.6] yield

1
2
�tρ−ι ∧ tρ+ι� ≤ A�n/kn�

A�n/�knt��
≤ 2

(
tρ−ι ∨ tρ+ι)(4.5)

for sufficiently large n and all tn ≤ t ≤ Tn, so that

t1/2 ∧ A�n/kn�
A�n/�knt��

≥ 1
2

(
t1/2 ∧ tρ−ι)�

Moreover, the uniform convergence theorem gives

sup
t≥s
tρ−ι�A�n/�knt�� − t−ρA�n/kn�� = o�A�n/kn��

for all s > 0, and hence, by a standard diagonal argument, there exists a
sequence sn→ 0 such that

sup
t≥sn
tρ−ι�A�n/�knt�� − t−ρA�n/kn�� = o�A�n/kn���

On the other hand, in view of (4.5), we have

sup
t≤sn
t1/2

(�A�n/�knt��� + �t−ρA�n/kn��) = o�A�n/kn���
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To sum up, we have shown that

sup
tn≤t≤Tn

�t1/2 ∧ tρ−ι�
∣∣∣∣H�knt�� n −

(
γ + k−1/2

n γ
Wn��knt�/kn�
�knt�/kn

+A
( n
kn

) t−ρ
1− ρ

)∣∣∣∣
= o�k−1/2

n +A�n/kn�� a.s.,

where

Wn�t� 	= k−1/2
n W�knt�(4.6)

is a Brownian motion.
Since �Wn�t�/t�t≥1 is uniformly continuous and convergence in quadratic

mean implies convergence in probability, for the proof of (2.5) it suffices to
verify that

E

(
sup
tn≤t≤1

t1/2
∣∣∣∣Wn��knt�/kn��knt�/kn

− Wn�t�
t

∣∣∣∣
)2

= o�1��(4.7)

For this, we use the following series respresentation of a Brownian motion
[see, e.g., Breiman (1968), Proposition 12.24]:

Wn =d
(
t

π1/2
Y0 +

( 2
π

)1/2 ∞∑
j=1

sin�jt�
j
Yj

)
t∈�0�1�

�

where Yj, j ≥ 0, are independent standard normal random variables. Hence
the left-hand side of (4.7) equals.

sup
tn≤t≤1

t
2
π

∞∑
j=1

(
sin�j�knt�/kn�
j�knt�/kn

− sin�jt�
jt

)2

�(4.8)

Because xd/dx�sinx/x� = cosx − sinx/x is bounded and �j�knt�/kn − jt�
≤ j/kn, by the mean value theorem (4.8) is of the order

O

(
sup
tn≤t≤1

t

(
kn∑
j=1

(
j

kn

1
jt

)2

+
∞∑

j=kn+1

(
1
jt

)2
))

= O
( 1
kntn

)
= o�1��

To prove the second assertion, choose tn such that kntn → ∞ but
sup0≤t≤tn h�t�k

1/2
n → 0, which is possible because of limt→0 t

−1/2h�t� = 0. Then,
the definition of h and (2.4) ensure that

sup
0≤t≤tn

h�t�
∣∣∣∣H�knt�� n −

(
γ + γk−1/2

n

Wn�t�
t

+A�n/kn�
t−ρ

1− ρ
)∣∣∣∣

= o�k−1/2
n +A�n/kn�� a.s. ✷
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Proof of Theorem 2. First we prove that the limit random variables are
finite a.s. For (2.8) and (2.10) this is an immediate consequence of
limt→∞W�t�/t = 0 a.s., whereas for the limit random variables in (2.9) and
(2.11), in addition, one has to take into account that, for all a > 0,

E
∫ a
0

1
�γW�t�/t+t−ρ/�1−ρ��≤ε�
dt

t

=
∫ a
0
2

(
t1/2−ρ

γ�1− ρ� +
εt1/2

γ

)
−2

(
t1/2−ρ

γ�1− ρ� −
εt1/2

γ

)
dt

t

≤
∫ a
0
�2πγ2�−1/22εt−1/2 dt <∞�

(4.9)

Next we will show that, due to the large bias, for i being large compared
with kn one has k1/2n �Hi�n−γ� > ε with large probability if ρ < 0, or ρ = 0 and
ε < 1. Pick some (small) δ > 0. For ρ < 0, choose M sufficiently large such
that P
supt≥M �W�t��/t ≥ 1� ≤ δ/2 andM−ρ/2/�2�1−ρ�� ≥ ε+γ+1. Then, for
Mkn ≤ i ≤ ln, (2.3), (4.6), (2.7) and the Potter bounds (4.5) imply

k1/2n �Hi�n − γ� =
∣∣∣∣γWn�i/kn�i/kn

+ A�n/i��1+ o�1���A�n/kn���1− ρ�
+O

(
k1/2n

log i
i

)∣∣∣∣
≥ M−ρ/2

2�1− p� − γ −
1
2
> ε

(4.10)

with probability greater than 1 − δ for sufficiently large n. Likewise, in case
of ρ = 0 the monotonicity of �A� yields

k1/2n �Hi�n − γ� ≥ 1− γ �Wn�i/kn��
i/kn

+ o�1� > ε(4.11)

with probability greater than 1−δ ifM is chosen such that P
supt≥M �W�t��/t
≥ �1− ε�/�2γ�� ≤ δ/2.

Moreover, the finiteness of the limit random variables in (2.8) and (2.10)
shows that

lim
M→∞

∫ ∞
M

1
�γW�t�/t+t−ρ/�1−ρ��≤ε� dt = 0 a.s.

Hence, for the convergence of the normalized PERHILL statistic for ρ < 0, or
ρ = 0 and ε < 1, it suffices to prove that for allM<∞,

1
kn

�Mkn�∑
i=1

1
k1/2n �Hi�n−γ�≤ε� =
∫ M
0

1
k1/2n �H�knt�� n−γ�≤ε�
dt+O�k−1

n �

d→
∫ M
0

1
�γW�t�/t+t−ρ/�1−ρ��≤ε� dt�

This, however, follows easily from (2.6), which implies that

sup
m≤t≤M

�k1/2n �H�knt�� n − γ� − �γWn�t�/t± t−ρ/�1− ρ���
P→0
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for all 0 < m <M <∞, by a continuous mapping argument. For one has, for
all δ > 0, with probability tending to 1,

∫ M
δ/2

1
�γWn�t�/t+t−ρ/�1−ρ��≤ε−δ� dt−
δ

2
≤
∫ M
0

1
k1/2n �H�knt�� n−γ�≤ε�
dt

≤
∫ M
δ/2

1
�γWn�t�/t+t−ρ/�1−ρ��≤ε+δ� dt+
δ

2
�

where the left- and the right-hand side converge to

I�ε� 	=
∫ M
0

1
�γWn�t�/t+t−ρ/�1−ρ��≤ε� dt

as δ→ 0, since the map ε �→ I�ε� is continuous.
Next, we turn to the limit behavior of the PERHILL statistic if ρ = 0 and ε >

1. ChooseM such that P
supt≥M �W�t��/t > �ε−1�/�2γ�� < δ/2, and note that
for all K > 1 the uniform convergence theorem gives supMkn≤i≤MKkn �A�n/i�
/A�n/kn� − 1� → 0. Hence one has with probability greater than 1− δ

k1/2n �Hi�n − γ� ≤ 1+ o�1� + �ε− 1�/2 < ε(4.12)

forMkn ≤ i ≤MKkn and sufficiently large n, so that

ln
kn

PERHILL�k−1/2
n ε� n� ln� ≥

�MKkn� − !Mkn"
kn

−→M�K− 1��

Since K > 1 and δ > 0 are arbitrary, it follows that the left-hand side con-
verges to ∞ in probability.

Now we examine the asymptotics of

log�ln + 1�PERALT�k−1/2
n ε� n�un� =

ln∑
i=1

log
i+ 1
i

1
k1/2n �Hi�n−γ�≤ε��(4.13)

In case of ρ = 0 and ε > 1 we obtain from (4.12) that with probability greater
than 1− δ,

log�ln + 1�PERALT�k−1/2
n ε� n�un� ≥ log

�MKkn�
!Mkn"

−→ logK

for all K > 1 and hence (2.11).
If ρ < 0, or ρ = 0 and ε < 1, then again (4.10) and (4.11), respectively, in

combination with limM→∞
∫∞
M 1
�γW�t�/t+t−ρ/�1−ρ��≤ε� t−1 dt = 0 a.s. show that it

suffices to prove that

�Mkn�∑
i=1

log
i+ 1
i

1
k1/2n �Hi�n−γ�≤ε�
d→
∫ M
0

1
�γW�t�/t+t−ρ/�1−ρ��≤ε�
dt

t
(4.14)

for allM> 0.
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Because in the expression for the PERALT statistic the weights 1/kn occur-
ring in the definition of PERHILL are replaced with the weights log�1+ 1/i�,
which are of larger order for i = o�kn�, an additional argument is needed for
the integral over �0�m��m ↓ 0. In view of (2.4), for fixed i�Hi�n is asymptot-
ically gamma distributed with shape and scale parameter i. Since this dis-
tribution is continuous, it follows that P
k1/2n �Hi�n − γ� ≤ ε� = P
Hi�n ∈
�γ − εk−1/2

n � γ + εk−1/2
n �� → 0, so that

∑i0
i=1 log��i + 1�/i�1
k1/2n �Hi�n−γ�≤ε�

P→0 for
all fixed i0. Thus, a standard diagonal argument proves that there exists an
intermediate sequence �jn�n∈� such that

jn∑
i=1

log
i+ 1
i

1
k1/2n �Hi�n−γ�≤ε�
P−→ 0�(4.15)

Next note that by (2.3), (2.7) and (4.5) for all δ > 0 there exists C > 0 such
that with probability greater than 1− δ,

γ
�W�i��
i

≤ �Hi�n − γ� + k−1/2
n

∣∣∣∣A�n/i��1+ o�1��A�n/kn��1− ρ�

∣∣∣∣+C log i
i

≤ �Hi�n − γ� + 2k−1/2
n �i/kn�−ρ−ι +C

log i
i

for all jn ≤ i ≤mkn + 1 and sufficiently large n. Use the inequalities log�1+
x� ≤ x for x > 0 and 2′�x� ≤ �2π�−1/2 for all x ∈ � to obtain

!mkn"∑
i=jn+1

log
i+ 1
i
P

{
γ
�W�i��
i

≤ εk−1/2
n + 2k−1/2

n �i/kn�−ρ−ι +C
log i
i

}

≤ 2�2πγ2�−1/2
!mkn"∑
i=jn+1

i−1(ε�i/kn�1/2 + 2�i/kn�1/2−ρ−ι +Ci−1/2 log i
)

≤ const� �m1/2 +m1/2−ρ−ι� + o�1� −→ 0

as m ↓ 0. Hence, it follows that for all δ > 0 one can find m > 0 such that
with probability greater than 1− δ one has

!mkn"∑
i=jn+1

log
i+ 1
i

1
k1/2n �Hi�n−γ�≤ε� ≤ δ(4.16)

for sufficiently large n.
In view of (4.14)–(4.16) and (4.9), it remains to prove that for all 0 < m <

M <∞ one has
�Mkn�∑
i=!mkn"

log
i+ 1
i

1
k1/2n �Hi�n−γ�≤ε� =
∫ M
m

1
k1/2n �H�knt�� n−γ�≤ε�
dt

t
+O�k−1

n �

d→
∫ M
m

1
�γWn�t�/t+t−ρ/�1−ρ��≤ε�
dt

t
�
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but this follows by the continuous mapping argument mentioned above. ✷

Proof of Theorem 3. Following the lines of the proof of Theorem 1, one
can show that for suitable versions of Hi�n,

Hi�n = γ + γ
W�i�
i

+O
(
log�i+ 1�
i

)
a�s�(4.17)

uniformly for 1 ≤ i ≤ n− 1.
Since supt≥M �W�t�/t� → 0 a.s. as M → ∞, for each δ > 0 one can pick a

largeM such that one has eventually with probability greater than 1− δ,

k1/2n �Hi�n − γ� ≤ γ
�Wn�i/kn��
i/kn

+ ε/2 ≤ ε(4.18)

for allMkn ≤ i ≤ ln withWn defined in (4.6). Hence, by similar arguments as
in the proof of Theorem 2,

log�ln + 1�
log kn

(
1− PERALT�k−1/2

n ε� n�un�
)

= 1
log kn

(�Mkn�∧ln∑
i=1

log
i+ 1
i

1
k1/2n �Hi�n−γ�>ε�

+
ln∑

i=��Mkn�∧ln�+1

log
i+ 1
i

1
k1/2n �Hi�n−γ�>ε�

)

= log��Mkn� + 1�
log kn

− 1
log kn

(∫ M∧�ln/kn�
0

1
γ�W�t��/t≤ε�
dt

t
+ o�1�

)
�

from which assertion (2.12) is obvious.
Because of (4.18), for the examination of PERHILL, one may restrict oneself

to 1 ≤ i ≤Mkn ∧ ln. Similarly, as in the proof of Corollary 1, one may deduce
from (4.17) that

sup
0<t≤M∧�ln/kn�

h�t�
∣∣∣∣k1/2n (

H�knt�� n − γ
)− γWn�t�

t

∣∣∣∣ = o�1��
Thus we obtain assertion (2.13) using the continuous mapping argument of
the proof of Theorem 2 and the a.s. finiteness of

∫ c
0 1
�γW�t�/t�>ε� dt, which is

immediate from limt→∞ W�t�/t = 0 a.s. ✷
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