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The shortcoming of a test is the difference between the maximal at-
tainable power and the power of the test under consideration. Vanishing
shortcoming, when the number of observations tends to infinity, is there-
fore an optimality property of a test. Other familiar optimality criteria are
based on the asymptotic relative efficiency of the test. The relations be-
tween these optimality criteria are investigated. It turns out that vanishing
shortcoming is seemingly slightly stronger than first-order efficiency, but
in regular cases there is equivalence. The results are in particular applied
to tests for goodness-of-fit.

1. Introduction. Comparison of tests is in principle based on the power
of the tests. Exact powers of tests are hard to compute and, if they can be com-
puted, it is in general not easy to compare them for large sets of alternatives
simultaneously. Therefore, often an asymptotic approach is applied to simplify
things. The simplifications by the asymptotics should be such that computa-
tion can be done and comparison can be made. Moreover, the conclusions based
on the asymptotics should be in line with the finite sample behavior, which
means that the asymptotics should provide good approximations.

A direct way of comparison of two tests is to consider the difference in power
of the two tests. In particular, the difference between the most powerful test
and a given test is of interest. It is called the shortcoming of that test. This
concept is used to express optimality of a test: if the shortcoming of a test
tends to 0 when the number of observations n tends to infinity, the test is
asymptotically optimal.

Another, indirect, method of comparison of tests is based on the number of
observations N�α�β� θ� needed to get power β at the alternative θ when the
level of the test equals α. If we have two tests with corresponding numbers
N1�α�β� θ� and N2�α�β� θ�, the ratio N2�α�β� θ�/N1�α�β� θ� is called the rel-
ative efficiency of test 1 w.r.t. test 2. If the relative efficiency equals r, test
2 needs r times as many observations to perform equally well as test 1 and
hence test 1 is called r times as efficient as test 2. To investigate optimality
we consider N∗�α�β� θ�/N�α�β� θ�, where N∗�α�β� θ� corresponds to the most
powerful test.
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Again, an asymptotic approach is desirable to simplify the calculation and
evaluation, since Ni�α�β� θ� depends on three parameters. When sending n
to infinity, two principles are (a) to “decrease the significance probability as n
increases,” that is, to send α to 0, or (b) to “move the alternative hypothesis
steadily closer to the null hypothesis,” that is, to send θ to the null hypothesis
H0. Both principles are attractive: with more observations it seems reasonable
to have a stronger requirement on the level and on the other hand, for alter-
natives far away from H0 there is no need for statistical methods, since those
alternatives are obviously different from H0. In Pitman’s asymptotic efficiency
concept, method (b) is used, while one deals with fixed levels, thus ignoring
principle (a). In Bahadur’s asymptotic efficiency concept, method (a) is actu-
ally used, while fixed alternatives are under consideration, thereby ignoring
principle (b). Intermediate or Kallenberg efficiency, as defined in Kallenberg
(1983a), applies both attractive principles simultaneously.

Optimality of a test can be expressed by first-order efficiency, which means
that N∗�α�β� θ�/N�α�β� θ� converges to 1, where the limit is taken according
to the efficiency concept involved.

It is the purpose of this paper to investigate the relations between the
asymptotic optimality concepts based on vanishing shortcoming on the one
hand and the three asymptotic efficiency concepts on the other hand, where
the shortcoming is considered for the same limiting process as is involved
in the asymptotic efficiency concept. It turns out that asymptotic vanishing
shortcoming is in the Pitman case equivalent to first-order efficiency, while
in the Bahadur and intermediate case vanishing shortcoming seems slightly
stronger than first-order efficiency. However, in regular cases first-order effi-
cient tests do also have asymptotic vanishing shortcoming. Here is a parallel
with the phenomenon of “first-order efficiency implies second-order efficiency”
[cf. Bickel, Chibisov and van Zwet (1981) and Kallenberg (1983a)].

The main results on the relationship between vanishing shortcoming and
first-order efficiency are very general: there is a very general set-up, very mild
conditions on the most powerful tests and no condition at all on the (form of
the) first-order efficient tests. Moreover, the results hold for all three efficiency
concepts.

The paper is organized as follows. Section 2 contains notation, definitions
and basic assumptions. The main results describing in great generality the
relations between vanishing shortcoming and asymptotic relative efficiency
are given in Section 3. These results are based on an asymptotic expression for
N∗�α�β� θ� and on an investigation of the number of extra observations needed
to get a gain in asymptotic power for the most powerful test. These theorems
(Theorems 3.2, 3.3, 3.2′ and 3.3′) and their extensions to general (regular)
tests (Theorems 4.1 and 5.3) may be of independent interest. The proofs of the
theorems of Section 3 are given in an Appendix. Some examples in Section 3
show the great generality of the results. Apart from an asymptotic expression
for N�α�β� θ�, when the test is based on a (regular) test statistic, it is shown
in Section 4 that as a rule vanishing shortcoming and first-order efficiency
are equivalent. Section 5 is devoted to further elaboration of the examples of
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Section 3. Applications are made to some first-order efficient tests in these
cases with special attention to tests for goodness-of-fit. In particular, some
useful formulas for their asymptotic relative efficiencies are derived, showing
that both for the Cramér–von Mises test and for the Anderson–Darling test,
first-order efficiency is only attained in one direction. In all other directions the
asymptotic relative efficiency is less than one and often much lower. Moreover,
these applications give a nice illustration of the phenomenon that equality of
asymptotic optimal shift implies also equality of scale terms.

2. Notation, definitions and basic assumptions. Let � be a space of
points s, � a σ-field of subsets of � and for each point θ in a set 
 let Pθ

be a probability measure on � . The random element S with values in � is
distributed according to Pθ. In typical cases S = �X1�X2� � � �� is a sequence of
i.i.d. r.v.’s, but as yet �� �� ,Pθ� is a quite general probability space. Note that
θ is an abstract “parameter” and hence the results apply as well to parametric,
nonparametric or semiparametric testing problems.

Suppose the hypothesis H0� θ ∈ 
0 has to be tested against H1� θ ∈ 
1 ⊂

−
0. Let 
ψn�α� n ∈ �� 0 < α < 1� be a family of (randomized) level-α tests
of H0, that is, for each n ∈ � and 0 < α < 1 the function ψn�α is a measurable
function on � with values in 
0�1� satisfying

sup
{
Eθ0

ψn�α� θ0 ∈ 
0
} ≤ α�

Here n refers to the number of observations, implicitly implying that with
increasing n more information about θ comes available. Under very weak
conditions a most powerful (MP) test of H0 against the simple alternative H∗

1�
θ = θ1 exists [cf. Lehmann (1986), Section 3.8 and page 576]. In general, such a
MP test depends on the particular alternative. The existence of such MP tests
will be assumed in the sequel. They will be denoted by 
ψ∗

n�α�, suppressing
their dependence on the particular alternative θ1. In case of ambiguity we
write ψ∗

n�α�S� θ�.
The power Eθψn�α of the level-α test ψn�α is denoted by βn�α� θ�. When

taking the supremum over all level-α tests, we get the envelope power function,
denoted by β∗

n�α� θ�. Thus
β∗

n�α� θ� = sup
ψ

βn�α� θ��

where ψ = 
ψn�α� runs through all families of level-α tests of H0. Obviously,
β∗

n�α� θ� is the power of ψ∗
n�α.

The shortcoming of ψn�α is defined by

Rn�α� θ� = β∗
n�α� θ� − βn�α� θ��(2.1)

Asymptotic relative efficiency is defined in terms of N�α�β� θ�, which is the
smallest number of observations N such that the level-α test ψm�α has power
at least β at the alternative θ for all m ≥ N. Formally,
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N�α�β� θ� = inf
N� βm�α� θ� ≥ β for all m ≥ N��
In the case of the MP test of H0 against the simple alternative θ we write
N∗�α�β� θ�.

For given sequences 
αn� and 
θn� with 0 < αn < 1 and θn ∈ 
1, we want
to relate the shortcoming Rn�αn� θn� with N�αn�β� θn�−N∗�αn�β� θn�, where
0 < β < 1. If αn → α ∈ �0�1� and θn converges to 
0, we speak of Pitman
efficiency. If αn → 0 and θn is fixed, we deal with Bahadur efficiency. The
case αn → 0 and θn converging to 
0 is called intermediate or Kallenberg
efficiency. Throughout the paper 
θn� and 
αn� are given sequences with 0 <
αn < 1� limn→∞ αn = ᾱ ∈ 
0�1� and θn ∈ 
1.

As n is the number of available observations, ψ∗
n�α can be considered for

m ≥ n also as a test based on m observations for testing H0, simply obtained
by ignoring the m− n extra observations. Since ψ∗

m�α is the MP test based on
m observations, we have for all 0 < α < 1 and θ ∈ 
1�

β∗
m�α� θ� = Eθψ

∗
m�α�S� θ� ≥ β∗

n�α� θ� = Eθψ
∗
n�α�S� θ� if m ≥ n�(2.2)

We assume that the MP test of H0 against the simple alternative θ for each
n ∈ � and 0 < α < 1 is based on a real-valued test statistic T∗

n (which as a
rule will depend on θ), rejecting for large values of T∗

n. More precisely, the
level-α MP test of H0 against θ is given by

(A1)

ψ∗
n�α�s� =



1� if T∗

n�s� > cn�
δn� if T∗

n�s� = cn�
0� if T∗

n�s� < cn�
(2.3)

where cn = cn�α� = inf
c � sup
Pθ0
�T∗

n�S� > c� � θ0 ∈ 
0� ≤ α� and
δn = δn�α� = sup
δ ∈ 
0�1� � sup
Pθ0

�T∗
n�S� > cn� + δPθ0

�T∗
n�S� = cn� �

θ0 ∈ 
0� ≤ α�. Then we have for all c < cn�

sup
θ0∈
0

Pθ0
�T∗

n�S� > cn� ≤ α < sup
θ0∈
0

Pθ0
�T∗

n�S� > c��(2.4)

The next assumption concerns the behavior of the test statistics T∗
n, given

in (2.3).

(A2) There exists a function µ∗� 
1 → �0�∞� such that lim supn→∞ µ∗�θn�
< ∞ and additionally limn→∞ µ∗�θn� = 0 in case ᾱ > 0. Moreover, there
exists a continuous distribution function G∗ on �, strictly increasing on
its support, which is � or 
a�∞� with a ∈ �, such that for every sequence
N = N�n� of natural numbers satisfying

√
Nµ∗�θn� −G−1

∗ �1− αn� = O�1� and

lim inf
n→∞

√
Nµ∗�θn� > 0 in case ᾱ > 0�

(2.5)
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we have (with T∗
N the MP test of H0 against θn)

lim
n→∞Pθn

�T∗
N −

√
Nµ∗�θn� ≤ x� = G∗�x� for every x ∈ ��(2.6)

and, as n → ∞,

sup
θ0∈
0

Pθ0
�T∗

N > tn� = 1−G∗�tn + o�1��
for all tn =

√
Nµ∗�θn� + c

(2.7)

with c ∈ �, not depending on n.
In the Pitman case �ᾱ > 0� (2.5) describes the typical local alternatives,

basically of order N−1/2. If ᾱ = 0, the alternative is farther away from the
null hypothesis, since G−1

∗ �1− αn� → ∞ if αn → 0.
In typical cases T∗

N is a (standardized) sum of i.i.d. r.v.’s, G∗ is the stan-
dard normal distribution function and (2.6) follows by a central limit theorem.
Moreover, in the Pitman case �ᾱ > 0� (2.7) also follows from a central limit
theorem, while in the intermediate case (2.7) can be obtained from a moderate
deviation theorem.

Condition (A2) is appropriate for the more local situations as Pitman effi-
ciency and, partly, intermediate efficiency. In the nonlocal case the following
condition is suitable.

(A2′) Let ᾱ = 0. There exist functions µn∗� 
1 → �0�∞� such that
lim supn→∞ µn∗�θn� < ∞. Further, there exist functions r1n∗ and r2n∗,
defined on an open interval containing the limiting points of 
µn∗�θn��,
satisfying for i = 1�2�

0 < b1 ≤
rin∗�x�

x
≤ b2 < ∞(2.8)

for all x and some constants b1� b2. Moreover, there exists a continuous
distribution function G∗ on �, strictly increasing on its support, which is
� or 
a�∞� with a ∈ �, such that for every sequence N = N�n� of natural
numbers satisfying

√
Nr1n∗�µn∗�θn�� − �2 log αn�1/2 = O�1�(2.9)

we have (with T∗
N the MP test of H0 against θn)

lim
n→∞Pθn

(
T∗

N −
√

Nµn∗�θn� ≤ x
)
= G∗�x� for every x ∈ ��(2.10)

and, as n → ∞,

−N−1 log
{
sup
θ0∈
0

Pθ0
�T∗

N > tn�
}

= 1
2r

2
1n∗�µn∗�θn�� + dnN

−1/2r2n∗�µn∗�θn�� + o�N−1/2µn∗�θn��(2.11)

for all tn =
√

Nµn∗�θn� + dn

with 
dn� ⊂ � being any bounded sequence.
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Remark 2.1. As a rule r2n∗ is the derivative of
1
2r

2
1n∗. In typical cases,

rin∗�µn∗�θn��/µn∗�θn� → 1 if θn → 
0�

see also Example 3.6 in Inglot, Kallenberg, and Ledwina. (1998). This gives the
connection between (A2) and (A2′) if G∗ is the standard normal distribution
function [cf. also (3.8)].

Note that also in (A2′)G∗ is often the standard normal distribution function,
but in the Bahadur case the variance as a rule is not equal to 1. Checking of
(A2) and (A2′) is exemplified in Examples 3.4–3.7. ✷

As in (A2), if T∗
N is a (standardized) sum of i.i.d. r.v.’s, (2.10) usually follows

from a central limit theorem, while (2.11) can be obtained from a moderate or
large deviation theorem.

3. Main results. The idea behind the relationship between vanishing
shortcoming and optimality in the sense of asymptotic relative efficiency is as
follows. The asymptotic shift of the MP test statistic T∗

n for testing H0 against
the simple alternative θn is equal to

√
nµ∗�θn�. To obtain with k additional ob-

servations asymptotically a gain in power at θn requires lim infn→∞�√n+ k−√
n�µ∗�θn� > 0. Therefore, vanishing shortcoming corresponds to an additional

number k of observations satisfying �√n+ k −√
n�µ∗�θn� = o�1�, or, equiva-

lently, an additional number of observations of order o�√n/µ∗�θn��.
In the following theorem the latter result is indeed established under (A1)

and (A2). For the proofs of the theorems of this section we refer to the Ap-
pendix.

Theorem 3.1. Assume (A1) and (A2). The following statements are equiv-
alent:

(i) limn→∞ Rm�αn� θn� = 0 for each sequence m = m�n�, provided that in
case ᾱ > 0� lim inf

n→∞ β∗
m�αn� θn� > ᾱ,

(ii) N�αn�β� θn� − N∗�αn�β� θn� = o
(√

N∗�αn�β� θn�/µ∗�θn�
)

for each β ∈
�ᾱ�1�.

The related version of this theorem under (A1) and (A2′) is as follows.

Theorem 3.1. Assume (A1) and (A2′). The following statements are equiv-
alent:

(i) limn→∞ Rm�αn� θn� = 0 for each sequence m = m�n�.
(ii) N�αn�β� θn� −N∗�αn�β� θn� = o

(√
N∗�αn�β� θn�/µn∗�θn�

)
for each β ∈

�0�1�.
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We give some comments on the results. First-order optimality in the sense
of asymptotic relative efficiency means

N∗�αn�β� θn�/N�αn�β� θn� → 1�(3.1)

In the Pitman case, typically µ∗�θn� is of exact order 
N∗�αn�β� θn��−1/2 and
vanishing shortcoming corresponds to first-order optimality in the sense
of (3.1).

For Bahadur efficiency, θn = θ is fixed and vanishing shortcoming seems to
be a stronger property than first-order optimality in the sense of asymptotic
relative efficiency, since N�αn�β� θ� should not only have the same first-order
term, but also the same

√
N-term as N∗�αn�β� θ�. So, it seems that first-order

optimality in the sense of Bahadur efficiency, that is, (3.1) with θn = θ, is not
sufficient to guarantee vanishing shortcoming as (3.1) does not automatically
imply (ii) in case θn = θ. However, in regular cases it turns out, by a simple
argument, that nevertheless most tests which are first-order efficient in the
sense of Bahadur do also have vanishing shortcoming. The same argument
applies to intermediate or Kallenberg efficiency. In Section 4 more details are
given.

The next theorem provides a formula for N∗�αn�β� θn�.

Theorem 3.2. Assume (A1) and (A2). For all β ∈ �ᾱ�1� we have

N∗�αn�β� θn� =
{
G−1

∗ �1− αn� −G−1
∗ �1− β� + o�1�

µ∗�θn�
}2

�(3.2)

Under (A1) and (A2′) Theorem 3.2 takes the following form.

Theorem 3.2′. Assume (A1) and (A2′). For all β ∈ �0�1��

N∗�αn�β� θn�

=
{ �2 log αn�1/2−
r2n∗�µn∗�θn��/r1n∗�µn∗�θn���G−1

∗ �1−β� + o�1�
r1n∗�µn∗�θn��

}2
�

In view of Remark 2.1 we get in typical cases the same expression [up to
o�1�] for

√
N∗�αn�β� θn�µ∗�θn� in Theorem 3.2 as for

√
N∗�αn�β� θn�×

r1n∗ �µn∗�θn�� in Theorem 3.2′ if G∗ is the standard normal distribution func-
tion [cf. also (3.8)].

The next theorem specifies the argument mentioned in the first lines of
this section: “to obtain with k additional observations asymptotically a gain
in power of the MP test at θn requires limn→∞�√n+ k−√

n�µ∗�θn� > 0.”
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Theorem 3.3. Assume (A1) and (A2). For each β ∈ �ᾱ�1� and for each
sequence m = m�n�, we have

lim
n→∞

[
β∗

m�αn� θn�

−
{
1−G∗

(
G−1

∗ �1− β� −
[√

m−
√

N∗�αn�β� θn�
]
µ∗�θn�

)}]
= 0�

(3.3)

A counterpart of Theorem 3.3 when (A1) and (A2′) hold is as follows.

Theorem 3.3′. Assume (A1) and (A2′). Then we have for each β ∈ �0�1�
and for each sequence m = m�n��

lim
n→∞

[
β∗

m�αn� θn�

−
{
1−G∗

(
G−1

∗ �1− β� −
[√

m−
√

N∗�αn�β� θn�
]

r21n∗�µn∗�θn��
r2n∗�µn∗�θn��

)}]
= 0�

As is seen from the definitions and basic assumptions in Section 2, there
are no conditions or assumptions on the tests ψ. This means that Theorems
3.1 and 3.1 are in fact properties of MP tests.

We end this section by presenting some testing problems, where assump-
tions (A1) and (A2) hold and hence Theorem 3.1 can be applied. In Example
3.7 we also show that (A1) and (A2′) hold and apply Theorem 3.1 in the given
context.

Example 3.4. Gauss-test. Let X1� � � � �Xn be i.i.d. r.v.’s each with a nor-
mal N�θ�1�-distribution. Consider the testing problem,

H0� θ = 0 against H1� θ > 0�

It is easily seen that (A1) and (A2) hold with T∗
N = X

√
N, where X =

N−1∑N
i=1 Xi� G∗ = %, the standard normal distribution function and µ∗�θ� =

θ. Theorem 3.1 can be applied for all sequences 
θn� and 
αn� with θn > 0
and limn→∞ αn = ᾱ ∈ 
0�1�, provided of course that θn → 0 if ᾱ > 0.

Example 3.5. Composite null hypothesis. Let �X1�Y1�� � � � � �Xn�Yn� be
i.i.d. r.v.’s with X1 a normal N�θ�1��1�-distribution, Y1 a normal N�θ�2��1�-
distribution and X1 and Y1 independent. Consider the testing problem,

H0� θ�1� ≤ 0� θ�2� ≤ 0 against H1� θ�1� > 0 or θ�2� > 0�

Theorem 7 of Section 3.8 in Lehmann (1986) and normality of the observations
easily yield (A1) and (A2) with G∗ = %,

T∗
N = X

√
N and µ∗�θ� = θ�1� if θ�1� > 0 and θ�2� ≤ 0�

T∗
N = Y

√
N and µ∗�θ� = θ�2� if θ�1� ≤ 0 and θ�2� > 0�
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T∗
N = θ�1�X+ θ�2�Y√

θ�1�2 + θ�2�2
√

N and µ∗�θ� =
√

θ�1�2 + θ�2�2 if θ�1� > 0 and θ�2� > 0�

Theorem 3.1 can be applied for all sequences of alternatives 
θn� and all
sequences of levels 
αn� with limn→∞ αn = ᾱ ∈ 
0�1�, provided of course that
lim supn→∞ µ∗�θn� < ∞ and limn→∞ µ∗�θn� = 0 in case ᾱ > 0.

For extension of this example to testing composite hypotheses in general ex-
ponential families, we refer to Lemmas 3.6, 3.7 and 3.8 in Kallenberg (1981b),
which concern a construction and properties of the most powerful test of a
composite hypothesis against a simple alternative in exponential families.

Example 3.6. Curved exponential families. Let X1� � � � �Xn be i.i.d. k-
dimensional r.v.’s with density

pθ�x� = exp
γ′
θx− ψ�γθ���

θ ∈ 
, with respect to a σ-finite measure ν on �k. Here γ′
θx denotes the inner

product of γθ and x, while ψ�γθ� = log
∫
exp�γ′

θx�dν�x�. Set * = 
γ ∈ �k�
ψ�γ� < ∞�, where ψ�γ� = log

∫
exp�γ′x�dν�x�. Assume int* �= φ, 
 is an

open interval in �1, while γθ is a differentiable bijection from 
 on γ�
� ⊂ *.
Note that pθ�x� is a curved exponential family in the terminology of Efron
(1975).

Consider the testing problem H0� θ = θ0 against H1� θ > θ0, where θ0 ∈

 is given. Additionally to the above, assume that γθ0

∈ int* and that the
covariance matrix of X1 under pθ0

is nonsingular.
Let 
αn� be a sequence of levels satisfying

%−1�1− αn� = o�n1/4� as n → ∞�(3.4)

or, equivalently,

� log αn� = o�n1/2� as n → ∞�(3.5)

Let 
θn� be a sequence of alternatives satisfying

lim
n→∞ θn = θ0�(3.6)

Condition (A1) holds with

T∗
n = n−1/2

n∑
i=1

�γθn
− γθ0

�′�Xi −Eθ0
X�/
varθ0�γθn

− γθ0
�′X�1/2�

Setting

µ∗�θ� = �γθ − γθ0
�′�EθX−Eθ0

X�/
varθ0�γθ − γθ0
�′X�1/2�

it is shown in Inglot, Kallenberg and Ledwina (1998) that Liapounov’s theorem
yields

lim
n→∞Pθn

(
T∗

M −
√

Mµ∗�θn� ≤ x
)
= %�x�� x ∈ ��
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for an arbitrary sequence M = M�n� tending to infinity and θn → θ0. This, in
particular, implies that (2.6) of (A2) holds with G∗ = %.

Exploiting the continuity of ψ�γ� on int*, in a similar way as done in the
proof of Theorem 5.8 in Inglot and Ledwina (1996), we can apply the Cramér-
type large deviation result for triangular arrays obtained by Book (1976) [cf.
Lemma 4.1 in Jurečková, Kallenberg, and Veraverbeke. (1988)]. This yields

Pθ0
�T∗

N > tn� = exp
− 1
2t

2
n + o�tn��(3.7)

if tn → ∞ and tn = √
Nµ∗�θn� + c with c ∈ � and N of the form (2.5). [Note

that to justify the o�tn� in (3.7) we need tn = o�n1/4� and this is one of the
reasons to require (3.4).] Combination of

%−1�u� =
√
−2 log�1− u� + o�1� as u → 1�(3.8)

with (3.7) gives (2.7) if tn → ∞. For bounded tn (2.7) follows from the central
limit theorem. Since θn → θ0, we have always limn→∞ µ∗�θn� = 0. Therefore,
(A2) holds for this testing problem and Theorem 3.1 can be applied for all
sequences 
θn� and 
αn� satisfying (3.4) [or (3.5)] and (3.6).

Example 3.7. Goodness-of-fit. Let X1� � � � �Xn be i.i.d. r.v.’s with values
in 
0�1�. The null hypothesis states that the Xi have a uniform distribution
on 
0�1�. Note that by an application of the integral transformation this is
no loss of generality in the goodness-of-fit testing problem for a simple null
hypothesis.

For simplicity of presentation we restrict attention to alternatives defined
by densities (with respect to Lebesgue measure on 
0�1�),

pn�x� = 1+ θna�x�� θn > 0�(3.9)

with θn → 0 = θ0 as n → ∞ and where a is bounded,
∫ 1
0 a�x�dx = 0 and∫ 1

0 a2�x�dx = 1. The MP test of H0� p�x� = 1 against the simple alternative
pn, given by (3.9), satisfies (A1) with

T∗
n = �√nσ0n�−1

n∑
i=1


log pn�Xi� − e0n��

where

e0n = Eθ0
log pn�X�� σ2

0n = varθ0 log pn�X��
To check (A2), define G∗ = % and µ∗�θ� = θ. Consider sequences of levels 
αn�
and alternatives 
θn� such that

lim
n→∞αn = 0� lim

n→∞ θn = 0 and lim
n→∞ θn%

−1�1− αn� = 0�(3.10)

According to (2.5) take

N = 
%−1�1− αn� +O�1��2/θ2n�



VANISHING SHORTCOMING AND ARE 225

By Lemma 5.4 and Proposition 6.6 in Inglot and Ledwina (1996) we get (2.6).
Indeed, due to (3.10) we get

√
N�θn − b�1��pn�� → 0, where b�1� is given by

(5.18) of Inglot and Ledwina (1996). In view of Proposition 5.12 and Lemma
5.4 in Inglot and Ledwina (1996), we can apply Book’s (1976) result as in
the previous example. The assumption θn%

−1�1 − αn� → 0 [see (3.10)] yields√
Nθn = o�N1/4� and hence Book’s result gives [cf. also (3.7)]

Pθ0
�T∗

N > tn� = exp
− 1
2 t2n + o�tn�� = 1−%�tn + o�1��

for all tn = √
Nµ∗�θn� + c with c ∈ �. Therefore, (A2) holds and Theorem 3.1

can be applied for all sequences 
θn� and 
αn� satisfying (3.10).
Next it will be shown that (A2′) holds for all sequences of levels 
αn� and

alternatives 
θn� such that

lim
n→∞αn = 0 and lim

n→∞ θn = θ1 ∈ ��

We assume that inf
1 + θ1a�x� � x ∈ 
0�1�� > 0. Note that θ1 can be 0 (in-
termediate case) or unequal to 0 (Bahadur case). So, in the intermediate case
this is no restriction at all and in the Bahadur case this is only slightly more
than stating that the alternative is well defined. Define

µn∗�θ� = σ−1
0n 
Eθ log pn�X� − eon��

We have µn∗�θ� ≥ 0 for all θ ≥ 0. Next set

G∗�x� = %�x/σθ1
� with

σ2
θ =



varθ
log�1+ θa�X���
varθ0
log�1+ θa�X��� � if θ �= θ0 = 0�

1� if θ = θ0 = 0�

Using Liapounov’s theorem [as in the proof of Proposition 6.6 in Inglot and
Ledwina (1996)] we have for any sequence N = N�n� → ∞ that

lim
n→∞Pθn

�T∗
N −

√
Nµn∗�θn� ≤ x� = G∗�x� for every x ∈ ��

which proves (2.10) of (A2′). A detailed proof of the rest of (A2′) is given in
Inglot, Kallenberg, and Ledwina (1998). The proof is based on exponential
tilting techniques and delicate estimation of integrals as in the proof of Lemma
3.2 in Kallenberg (1981b).

Therefore, Theorem 3.1 can be applied in the Pitman case, using (A2), and
in the whole intermediate and Bahadur case we can apply Theorem 3.1, using
(A2′).

Remark 3.8. It is seen in Example 3.7 that the whole range of sequences

αn� and 
θn� under consideration in Pitman, Bahadur, and intermediate eff-
ciency is covered. Moreover, the method applied in Example 3.7 can be gener-
alized to other testing problems where MP tests of 
0 against a simple alter-
native are based on sums of i.i.d. r.v.’s, provided that the moment generating
function of the involved r.v. exists on a sufficiently large interval.
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The examples will be investigated further in Section 5, where Theorem 3.1
will be applied to several first-order efficient tests after the general discussion
on these tests in Section 4.

4. First-order efficient tests. In this section we present an expansion
for N�αn�β� θn� (a counterpart of Theorem 3.2) when ψ is based on a test
statistic. The result is applied to show that as a rule vanishing shortcoming
is equivalent to first-order efficiency.

The basic assumptions of this section are modifications of (A1) and (A2)
and an extra condition to replace (2.2), which obviously holds for MP tests,
but not automatically for other tests. Condition (A1) is replaced by (B1), which
is obtained from (A1) by writing ψn�α and Tn instead of ψ∗

n�α and T∗
n, that is,

(B1)

ψn�α�s� =


1� if Tn�s� > cn�
δn� if Tn�s� = cn�
0� if Tn�s� < cn�

(4.1)

where cn = cn�α� = inf
c � sup
Pθ0
�Tn�S� > c� � θ0 ∈ 
0� ≤ α� and

δn = δn�α� = sup
δ ∈ 
0�1�� sup
Pθ0
�Tn�S� > cn�+δPθ0

�Tn�S� = cn�� θ0
∈ 
0� ≤ α�. Then we have for all c < cn�

sup
θ0∈
0

Pθ0
�Tn�S� > cn� ≤ α < sup

θ0∈
0

Pθ0
�Tn�S� > c��

Condition (A2) is replaced by the following one.
(B2) There exists a function µ� 
1 → �0�∞� such that lim supn→∞ µ�θn� < ∞

and additionally limn→∞ µ�θn� = 0 in case ᾱ > 0. Moreover, there exist
continuous distribution functions G1 and G2 on �, strictly increasing on
their supports which are � or 
a�∞� with a ∈ �, such that for every
sequence N = N�n� of natural numbers satisfying

√
Nµ�θn� −G−1

1 �1− αn� = O�1� and
lim inf

n→∞
√

Nµ�θn� > 0 in case ᾱ > 0
(4.2)

we have

lim
n→∞Pθn

�TN −
√

Nµ�θn� ≤ x� = G2�x� for every x ∈ ��(4.3)

and, as n → ∞,

sup
θ0∈
0

Pθ0
�TN > tn� = 1−G1�tn + o�1��

for all tn =
√

Nµ�θn� + c
(4.4)

with c ∈ �, not depending on n.
The extra condition replacing (2.2) is as follows.

(B3) For every sequence N = N�n� of natural numbers satisfying

lim
n→∞

{√
Nµ�θn� −G−1

1 �1− αn�
}
= ∞ we have lim

n→∞βN�αn� θn� = 1�
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This condition is used to show that if the power tends to 1 for some sequence
m�n�, it still goes to 1 if we have even more observations. Such a property is
needed, due to the definition of N�α�β� θ�.

A slight modification of the proof of Theorem 3.2 [cf. Inglot, Kallenberg and
Ledwina (1998) for more details] yields the following result.

Theorem 4.1. Assume (B1), (B2) and (B3). For all β ∈ �ᾱ�1�, with
G−1

2 �1− β� < G−1
1 �1− ᾱ� in case ᾱ > 0, we have

N�αn�β� θn� =
{
G−1

1 �1− αn� −G−1
2 �1− β� + o�1�

µ�θn�

}2

�

Suppose that (B2) holds for ψn�α with G1 = G∗ (see Sections 5.4, 5.5 and
5.6). Often this can be established by a monotone transformation of the test
statistic, thus keeping the same test. For instance, if

sup
θ0∈
0

Pθ0
�TN > tn� = 1−G1�tn + o�1��

we might consider T̃N = G−1
∗ �G1�TN��. Then we have

sup
θ0∈
0

Pθ0
�T̃N > tn� = sup

θ0∈
0

Pθ0
�TN > G−1

1 �G∗�tn���

= 1−G1
(
G−1

1 �G∗�tn�� + o�1�) �
which often reduces to 1−G∗�tn + o�1��. Assume further that the asymptotic
shift represented by µ and µ∗ is the same: µ = µ∗. If we have first-order
efficiency, that is, N∗�αn�β� θn�/N�αn�β� θn� = 1 + o�1�, the equality µ = µ∗
will often hold true. Having no difference in shift, suppose that there is a
possible difference in scale. So, suppose that G2�x� = G∗�x/σ� for some σ ∈ �.

Since N�αn�β� θn� ≥ N∗�αn�β� θn� for all β ∈ �ᾱ�1�, by definition of N∗, we
get, in view of Theorem 3.2 and Theorem 4.1,{

G−1
∗ �1− αn� − σG−1

∗ �1− β� + o�1�
µ∗�θn�

}2

≥
{
G−1

∗ �1− αn� −G−1
∗ �1− β� + o�1�

µ∗�θn�
}2

for all β ∈ �ᾱ�1�. If G−1
∗ �1−β� takes positive as well as negative values (which

for instance is the case ifG∗ is the standard normal distribution function), then
we get σ = 1. Therefore, the same shift implies automatically the same scale.
Concrete examples of this phenomenon are presented in Sections 5.4 and 5.5,
when discussing the Cramér–von Mises test and the Anderson–Darling test. A
similar argument to that above is used in proving first-order efficiency implies
second-order efficiency in Kallenberg (1983a).

As a conclusion we may state that in many situations tests which are first-
order efficient (N∗�αn�β� θn�/N�αn�β� θn� = 1+ o�1�) satisfy not only µ∗ = µ
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and G∗ = G1, but automatically also G1 = G2. We call such a situation a
“regular case.” It follows in that case that for each β ∈ �ᾱ�1��

N�αn�β� θn� −N∗�αn�β� θn� = o
(
G−1

∗ �1− αn�/µ2
∗�θn�

)
= o

(√
N∗�αn�β� θn�/µ∗�θn�

)
�

(4.5)

This, together with Theorem 3.1, yields the corollary.

Corollary 4.2. Assume (A1) and (A2) for ψ∗
n�α and (B1), (B2) and (B3) for

ψn�α with µ∗ = µ, G∗ = G1 = G2. Then

N�αn�β� θn� −N∗�αn�β� θn� = o
(√

N∗�αn�β� θn�/µ∗�θn�
)

for each β ∈ �ᾱ�1�
and

lim
n→∞Rm�αn� θn� = 0 for each sequence m = m�n�� provided that

lim inf
n→∞ β∗

m�αn� θn� > ᾱ in case ᾱ > 0�

From Corollary 4.2 and the discussion above it is seen that the seemingly
stronger property of vanishing shortcoming is, in regular cases, in fact equiv-
alent to first-order efficiency.

The exception in Corollary 4.2 with respect to the shortcoming is not very
serious. Let ᾱ > 0 and limn→∞ β∗

m�αn� θn� = ᾱ. This means that with the
m�n� observations θn is too close to 
0 to detect. As a rule βm�αn� θn� will
also converge to ᾱ in this case, at least if the test ψ is asymptotically unbi-
ased. However, the conditions (B1), (B2) and (B3) give no information on this
exceptional occasion. So, formally the restriction should be there.

For the nonlocal case, similarly to (A2′), condition (B2) may be replaced by
a more suitable one, directed to (moderate and) large deviations. We do not
present the details.

5. Applications and extensions. It has been shown in the previous sec-
tions that shortcoming and first-order efficiency are strongly related optimal-
ity concepts. The equivalence holds in quite generality as is seen from the
very general structure of the testing problem, the different types of efficiency
concepts which are involved, from local to nonlocal, and the rather weak condi-
tions imposed on the test statistics. Here we consider some concrete examples
and applications. Also some extensions to comparison of tests which are not
efficient are discussed.

5.1. Student test. Consider the situation from Example 3.4.
In the Pitman situation with θn = cn−1/2 for some c > 0 and αn = ᾱ ∈ �0�1�,

we consider the one-sided Student’s t-test. It is easily seen that (B1), (B2) and
(B3) hold with G1 = G2 = G∗ = % and µ�θ� = µ∗�θ� = θ. By Corollary 4.2 we
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get the well-known result that the t-test is Pitman-efficient [cf., e.g., Serfling
(1980), page 320] and that its shortcoming tends to 0.

Next consider a sequence 
θn� with θn → 0 and n1/2θn → ∞ as n → ∞. Let

αn� be a sequence of levels satisfying limn→∞ αn = 0 and %−1�1 − αn� =
o�n1/2�. Again conditions (B1), (B2) and (B3) hold (note that the power of the
t-test increases with n). Hence, Corollary 4.2 gives that the shortcoming of
the t-test tends to 0 for all these alternatives and, equivalently, that its effi-
ciency equals N∗�αn�β� θn�/N�αn�β� θn� = 1+o

(
θnN∗�αn�β� θn��−1/2
) = 1+

o
(
%−1�1− αn��−1/2

)
.

Finally, in the Bahadur case with θn = θ > 0, (B1) and (4.3) continue to
hold with G2 = G∗ = % and µ�θ� = µ∗�θ� = θ, but

N−1 log P0

(
TN > θ

√
N

)
→ − 1

2 log�1+ θ2�

and hence (4.4) does not hold with G1 = G∗ = %. This corresponds to the fact
that the t-test is not Bahadur-efficient.

5.2. Likelihood ratio test. Consider the situation from Example 3.5 and the
likelihood ratio statistic Ln for this testing problem. Write Tn = √

2 log Ln.
Straightforward calculation yields

Tn =




0� if X < 0�Y < 0�
√

nX� if X ≥ 0�Y ≤ 0�
√

nY� if X ≤ 0�Y ≥ 0�
√

n

√
X

2 +Y
2
� if X > 0�Y > 0�

thus giving (B1). Set µ�θ� = µ∗�θ�, where µ∗�θ� is as in Example 3.5 and
define 
1 = 
�θ�1�� θ�2�� � θ�1� > 0 or θ�2� > 0�. Standard but rather lengthy
considerations yield the following result.

If θn ∈ 
1 and M = M�n� is an arbitrary sequence satisfying M → ∞ and√
Mµ�θn� → ∞, then

lim
n→∞Pθn

�TM −
√

Mµ�θn� ≤ x� = %�x�� x ∈ ��

Moreover, immediate calculation gives

sup
θ�1�≤0� θ�2�≤0

Pθ�TN > tn� = P�0�0��TN > tn� = exp
− 1
2t

2
n +O�1��

for any tn such that tn → ∞. The two results imply that Tn satisfies (B2)
and (B3) for any θn and αn� αn → 0, with G1 = G2 = G∗ = % and µ = µ∗.
Hence, Corollary 4.2 applies, yielding optimality of the likelihood ratio test
in the sense of vanishing shortcoming and first-order efficiency according to
Corollary 4.2 in the intermediate and Bahadur case.

Note that studying shortcoming of likelihood ratio tests in general exponen-
tial families has been the subject of Chapter II and Chapter III of Kallenberg
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(1978). Reformulating, extending and stating these results in the present set-
up is beyond the scope of this paper.

5.3. Curved exponential families. Consider the situation from Example 3.6
and assume moreover that

lim
n→∞�θn − θ0�2� log αn�1/2 = 0�(5.1)

The test statistic of the locally most powerful test is of the form Tn =
γ̇′

θ0
�Xn − Eθ0

X�√n/s, where · denotes the derivative w.r.t. θ, while s =

varθ0 γ̇′

θ0
X�1/2. It is seen from Lemma 3.7 in Kallenberg (1981a) with the

number of observations n replaced by m that Rm�αn� θn� → 0 in all cases,
provided that

m−1� log αn�3/2 → 0 if s�θn − θ0�m1/2
−2 log αn�−1/2 → 1�(5.2)

Writing

m−1� log αn�3/2 = �θn − θ0�−2m−1� log αn��θn − θ0�2� log αn�1/2�
it immediately follows that (5.2) is implied by (5.1). Hence, for all sequences
of levels 
αn� and all sequences of alternatives 
θn� satisfying (3.5) and (5.1),
Rm�αn� θn� → 0 for each sequence m = m�n�.

Therefore, by Theorem 3.1, the locally most powerful test is first-order effi-
cient in the Pitman case and in the intermediate case, provided in the latter
situation that (3.5) and (5.1) are satisfied. [Of course, the locally most pow-
erful test is in general not first-order efficient in the sense of Bahadur; see
Kallenberg (1981a), page 673.]

5.4. Cramér–von Mises test. Consider the situation from Example 3.7. The
Cramér–von Mises test statistic for this testing problem is defined by rejecting
H0 for large values of {

n
∫ 1

0
�Fn�x� − x�2 dx

}1/2
�

where Fn is the empirical distribution function. Consider alternatives (3.9),
that is, pn�x� = 1 + θna�x� with θn → 0 and such that

√
nθn → ∞ and the

other restrictions of Theorem 5.1(d), (e) are fulfilled. Theorem 5.1(e) shows
that there is only one function a�x�� a�x� = C1�x� =

√
2 cos�πx�, under which

the Cramér–von Mises test is efficient. This result supports analogous results
stated in another framework by Neuhaus (1976) and Nikitin (1995). Moreover,
the asymptotic relative efficiency under other alternatives than the one given
by C1�x� is explicitly calculated in Theorem 5.1(d). This provides an alterna-
tive to the findings of Neuhaus (1976) and related developments of Strasser
(1990). See also Milbrodt and Strasser (1990), Drees and Milbrodt (1991, 1994)
and Janssen (1995) for further results in this area. The phenomenon that
equality of asymptotic optimal shift implies also equality of scale terms, as
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discussed in general terms in Section 4, is also illustrated clearly in this case.
Similar results for the Anderson–Darling statistic are treated in Section 5.5.

We use the following notation

A�t� =
∫ t

0
a�x�dx� �A� =

{∫ 1

0
A2�t�dt

}1/2
� µ�θ� = π�A�θ(5.3)

and

Tn = π

{
n
∫ 1

0
�Fn�x� − x�2 dx

}1/2
�

Write

ARE�Tn�T
∗
n� = lim

n→∞
N∗�αn�β� θn�
N�αn�β� θn�

for the asymptotic relative efficiency of Tn with respect to T∗
n. The following

theorem is proved in Inglot, Kallenberg and Ledwina (1998), Section 5.3.

Theorem 5.1.

(a) Let θn → 0 and let M = M�n� be an arbitrary sequence satisfying

M → ∞ and
√

Mθn → ∞. Then

lim
n→∞Pθn

(
TM −

√
Mµ�θn� ≤ x

)
= %

(�A�
σπ

x

)
�

where

σ2 =
∫ 1

0

∫ 1

0
�s ∧ t− st�A�s�A�t�dsdt�

(b) Let Ck�x� =
√
2 cos�πkx� and let ck = ∫ 1

0 a�x�Ck�x�dx. We have

�A�2 =
∞∑

k=1

c2k
π2k2

and σ2 =
∞∑

k=1

c2k
π4k4

�(5.4)

provided that a is bounded,
∫ 1
0 a�x�dx = 0 and

∫ 1
0 a2�x�dx = 1.

(c) If xn → 0� nx2
n → ∞, then for any ρ ∈ �2�3��

log Pθ0

(
Tn ≥ xn

√
n
) = − 1

2nx2
n +O�nxρ

n��
(d) Let pn�x� = 1+ θna�x� be as in (3.9). Suppose that αn → 0 and

θ
γ
n%−1�1−αn� → 0 for some γ ∈ �0�1�. Then conditions (B1), (B2) and (B3) hold

with G1�x� = %�x� and G2�x� = %��A�x/�σπ��. Hence, for each β ∈ �0�1��

N�αn�β� θn� =
{
%−1�1− αn� −

πσ

�A�%
−1�1− β� + o�1�

}2/

π�A�θn�2�(5.5)
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Moreover, for each β ∈ �0�1�,

N∗�αn�β� θn� =
{
%−1�1− αn� −%−1�1− β� + o�1�}2 /θ2n�(5.6)

implying

ARE�Tn�T
∗
n� = �π�A��2�(5.7)

(e) Let pn�x� = 1+θnC1�x�� C1�x� =
√
2 cos�πx�. Suppose that αn → 0 and

θ
γ
n%−1�1−αn� → 0 for some γ ∈ �0�1�. Then ARE�Tn�T

∗
n� = 1 and, moreover,

N∗�αn�β� θn� − N�αn�β� θn� = o
(√

N∗�αn�β� θn�/θn

)
. Hence, for these alter-

natives limn→∞ Rm�αn� θn� = 0 for each sequence m = m�n�. For any other
alternative pn�x� = 1+θna�x�, satisfying our assumptions, ARE�Tn�T

∗
n� < 1.

In particular, for pn�x� = 1+θnCk�x�� Ck�x� =
√
2 cos�kπx�, ARE�Tn�T

∗
n� =

k−2.

Theorem 5.1(d) clearly illustrates the phenomenon discussed in Section 4.
To get first-order efficiency, the asymptotic shift µ�θn� = π�A�θn of Tn should
be the same as that of T∗

n, which equals µ∗�θn� = θn. Hence, π�A� should be
equal to 1. However, (5.5) and (5.6) show that also the terms corresponding
to the scale of the limiting distributions G2 and G∗ are different: πσ/�A�
and 1, respectively. But, in case π�A� = 1, these scale terms should be the
same as well due to the phenomenon discussed in Section 4. And, indeed
this is the case: if π�A�=1, then σ = π−2 and hence πσ/�A� = 1. This is
shown analytically in Lemma 5.8 of Inglot, Kallenberg and Ledwina (1998),
but could also be derived from (5.5) and (5.6) directly. Let π�A� = 1. Since
N∗�αn�β� θn� ≤ N�αn�β� θn� for all β ∈ �0�1� and %−1�1 − β� can be positive
as well as negative, it follows that the coefficients of %−1�1 − β� in (5.5) and
(5.6) should be the same. Together with π�A� = 1 this gives σ = π−2.

The next section contains similar results for the Anderson–Darling test.

5.5. Anderson–Darling test. Consider the situation from Example 3.7. The
Anderson–Darling test rejects for large values of

Tn =
{
2n

∫ 1

0

�Fn�t� − t�2
t�1− t� dt

}1/2
�

Set [cf. (5.3)]

µ�θn� =
√
2θn�Aw�� Aw�t� = A�t�/

√
t�1− t��

Theorem 5.2.

(a) Suppose θn → 0 and M = M�n� is an arbitrary sequence satisfying

M → ∞ and
√

Mθn → ∞. Then

lim
n→∞Pθn

�TM −
√

Mµ�θn� ≤ x� = %�x�Aw�/�
√
2σw���



VANISHING SHORTCOMING AND ARE 233

where

σ2
w =

∫ 1

0

∫ 1

0

�s ∧ t− st�A�s�A�t�
s�1− s�t�1− t� dsdt�

(b) Let 
Ln�x��n≥0 be the system of orthonormal Legendre polynomials on


0�1� and let ln = ∫ 1
0 a�x�Ln�x�dx. We have

�Aw�2 =
∞∑

k=1
l2k/
k�k+ 1�� and σ2

w =
∞∑

k=1
l2k/
k2�k+ 1�2��(5.8)

provided that a is bounded,
∫ 1
0 a�x�dx = 0 and

∫ 1
0 a2�x�dx = 1.

(c) If xn → 0� nx2
n → ∞, then for any ρ ∈ �2�3��

log Pθ0

(
Tn ≥ xn

√
n
) = − 1

2nx2
n +O�nxρ

n��
(d) Let pn�x� = 1+ θna�x� be as in (3.9). Suppose that αn → 0 and

θ
γ
n%−1�1−αn� → 0 for some γ ∈ �0�1�. Then conditions (B1), (B2) and (B3) hold

with G1�x� = %�x� and G2�x� = %�x�Aw�/�
√
2σw��. Hence, for each β ∈ �0�1��

N�αn�β� θn� ={
%−1�1− αn� −

√
2σw

�Aw�%
−1�1− β� + o�1�

}2/

√2�Aw�θn�2

and

ARE�Tn�T
∗
n� = 2�Aw�2�(5.9)

(e) Suppose that αn → 0 and θ
γ
n%−1�1 − αn� → 0 for some γ ∈ �0�1�.

Let pn�x� = 1 + θnL1�x�� L1�x� = √
3�2x − 1�, then ARE�Tn�T

∗
n� = 1

and, moreover, N∗�αn�β� θn� − N�αn�β� θn� = o
(√

N∗�αn�β� θn�/θn

)
. Hence,

for these alternatives limn→∞ Rm�αn� θn� = 0 for each sequence m = m�n�.
For any other alternative pn�x� = 1 + θna�x�, satisfying our assumptions,
ARE�Tn�T

∗
n� < 1. In particular, if pn�x� = 1+θnLk�x�� Lk the kth Legendre

polynomial, ARE�Tn�T
∗
n� = 2/
k�k+ 1��.

For a proof of Theorem 5.2 we refer to Inglot, Kallenberg and Ledwina
(1998), Section 5.4. The same remark on the fact that optimal asymptotic
shift implies also equality of scale terms as at the end of Section 5.4 applies
here. If

√
2�Aw� = 1, σw should be 1 by this property, and indeed, this is the

case.

5.6. Concluding remarks and extensions. In Sections 5.1–5.5 the equiva-
lence of vanishing shortcoming and first-order efficiency is illustrated with a
lot of examples. Numerous other examples and applications could be added,
both in the Pitman case, the intermediate one and for fixed alternatives. The
equivalence is partly due to the phenomenon that equality of asymptotic op-
timal shift implies also equality of scale terms. This is clearly illustrated in
the applications in Sections 5.4 and 5.5, where for most directions there is
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no first-order efficiency. In those cases the asymptotic shift and scale of Tn

and T∗
n differ. As soon as the asymptotic shifts (first-order efficiency) coincide,

automatically also the asymptotic scales become the same, which in turn is
equivalent to vanishing shortcoming.

The results of Sections 5.4 and 5.5 can be extended to other statistics, which
are bilinear functionals of the empirical process. For appropriate limit theo-
rems, see Inglot, Kallenberg and Ledwina (1993) and Inglot and Ledwina
(1993).

Results like (5.4), (5.8) and (5.7), (5.9) are of independent interest. They
provide a simple and intuitive way of comparing quadratic tests with the
best possible one or two quadratic tests with each other. Yielding explicit ex-
pressions for the efficiency, as illustrated in (5.7) and (5.9), the intermediate
approach is more widely applicable than classical approaches, which give for
more complex problems only efficiencies for which no closed expression is avail-
able. Moreover, the limiting behavior described by the intermediate approach
is nicely reflected by finite sample results. In this way our findings repro-
duce Nikitin’s (1995) results, where Bahadur’s approach has been exploited.
On the other hand, they can be nicely confronted with the two-step approach
proposed by Hájek and Sidák (1967) and applied in Neuhaus (1976) as well
as Wieand’s approach exploited by Gregory (1980). Moreover, the results coin-
cide with those obtained in Section 7.7 of Inglot and Ledwina (1996), where a
slightly different definition of asymptotic intermediate relative efficiency [cf.
also Kallenberg (1983b)] has been applied.

Although the main theme of the paper concerns the relation between van-
ishing shortcoming and first-order efficiency, Theorem 4.1 can also be applied
to compare two tests with each other. This gives an easy way to calculate the
asymptotic relative efficiency of Tn w.r.t. T̃n, where Tn and T̃n are two test
statistics.

Similarly, Theorem 3.3 can be generalized to statistics other than the MP.

Theorem 5.3. Assume (B1), (B2) and (B3). Moreover, assume that for ev-
ery sequence N = N�n� of natural numbers satisfying limn→∞
√Nµ�θn� −
G−1

1 �1− αn�� = −∞ we have limn→∞ βN�αn� θn� = 0. Then, for each β ∈ �ᾱ�1�
and for each sequence m = m�n� we have

lim
n→∞

[
βm�αn� θn�−

{
1−G2

(
G−1

2 �1−β�−
[√

m−
√

N�αn�β� θn�
]
µ�θn�

)}]
= 0�

The proof of Theorem 5.3 is obtained from the proof of Theorem 3.3 by obvious
modifications and is therefore omitted.

As Theorem 4.1 can be used to get results on the asymptotic relative effi-
ciency of Tn w.r.t. T̃n, Theorem 5.3 in combination with Theorem 4.1 can be
applied to obtain results on the “shortcoming of Tn w.r.t. T̃n”:βm�αn� θn� −
β̃m�αn� θn�.

APPENDIX

This appendix contains the proofs of Theorems 3.1, 3.2 and 3.3. The proofs
of Theorems 3.1, 3.2′ and 3.3′ are similar to the proofs of Theorems 3.1, 3.2 and
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3.3, respectively. They are given in Inglot, Kallenberg and Ledwina (1998).
We start with the proofs of Theorems 3.2 and 3.3 and end with the proof of

Theorem 3.1.

Proof of Theorem 3.2. For a (sufficiently small) positive ε set
√

N = {
G−1

∗ �1− αn� −G−1
∗ �1− β� − ε

}
/µ∗�θn��(A.1)

Consider the test which rejects H0 if

T∗
N >

√
Nµ∗�θn� +G−1

∗ �1− β� + ε/2�

Denote the level of this test by α
�1�
n . Then, by (2.7) and (A.1), we get for suffi-

ciently large n

α
�1�
n = sup

θ0∈
0

Pθ0

(
T∗

N >
√

Nµ∗�θn� +G−1
∗ �1− β� + ε/2

)

= 1−G∗
(
G−1

∗ �1− αn� − ε/2+ o�1�) > αn

and, by (2.6),

lim
n→∞β∗

N�α�1�
n � θn� = 1− lim

n→∞Pθn

(
T∗

N −
√

Nµ∗�θn� ≤ G−1
∗ �1− β� + ε/2

)
= 1−G∗�G−1

∗ �1− β� + ε/2� < β�

Hence, for sufficiently large n,

N∗�αn�β� θn� ≥ N∗�α�1�
n � β� θn� > N�(A.2)

By sending ε → 0 in (A.2) [cf. also (A.1)], we arrive at

lim inf
n→∞

√
N∗�αn�β� θn�µ∗�θn� −G−1

∗ �1− αn� ≥ −G−1
∗ �1− β��(A.3)

Similarly, define for ε > 0�
√

N = {
G−1

∗ �1− αn� −G−1
∗ �1− β� + ε

}
/µ∗�θn�(A.4)

and consider the test which rejects H0 if

T∗
N >

√
Nµ∗�θn� +G−1

∗ �1− β� − ε/2�

By (2.7) we get for sufficiently large n�

α
�2�
n = sup

θ0∈
0

Pθ0

(
T∗

N >
√

Nµ∗�θn� +G−1
∗ �1− β� − ε/2

)
< αn

and, by (2.6),

lim
n→∞β∗

N�α�2�
n � θn� = 1−G∗

(
G−1

∗ �1− β� − ε/2
)
> β�(A.5)

In view of (2.2) and (A.5) we therefore have

β∗
m�α�2�

n � θn� > β for all m ≥ N



236 T. INGLOT, W. C. M. KALLENBERG AND T. LEDWINA

and hence

N∗�αn�β� θn� ≤ N∗�α�2�
n � β� θn� ≤ N(A.6)

for sufficiently large n. Sending ε → 0 in (A.6) [cf. also (A.4)], we end up with

lim sup
n→∞

√
N∗�αn�β� θn�µ∗�θn� −G−1

∗ �1− αn� ≤ −G−1
∗ �1− β��(A.7)

Combining (A.3) and (A.7) completes the proof. ✷

Proof of Theorem 3.3. Consider first a sequence m = m�n� of the form
√

m =
√

N∗�αn�β� θn� + 
bn/µ∗�θn���(A.8)

where bn → b� b ∈ � with b > G−1
∗ �1−β�−G−1

∗ �1− ᾱ� if ᾱ > 0. In view of (3.2)
and (A.8), m is of the form (2.5). By (2.4) and (2.7) the critical value cm in (2.3)
of the level-αn MP test of H0 against θn based on m observations satisfies

cm = G−1
∗ �1− αn� + o�1��

[Note that G−1
∗ �1− αn� + o�1� is of the form √

mµ∗�θn� + O�1� as required in
(2.7).]

Since

Pθn
�T∗

m > cm� ≤ β∗
m�αn� θn� ≤ Pθn

�T∗
m ≥ cm�

and G∗ is continuous, it follows by (2.6) and (3.2) that

lim
n→∞β∗

m�αn� θn� = 1−G∗�G−1
∗ �1−β�−b�

= 1− lim
n→∞G∗

(
G−1

∗ �1−β�−
[√

m−
√

N∗�αn�β� θn�
]
µ∗�θn�

)
�(A.9)

So, (3.3) holds for sequences of the form (A.8).
If
√

m = √
N∗�αn�β� θn�+
bn/µ∗�θn�� with bn → ∞, then for any b we have

bn > b for sufficiently large n and hence
√

m >
√

N∗�αn�β� θn� + 
b/µ∗�θn��.
Consequently, by (2.2) and (A.9),

β∗
m�αn� θn� ≥ 1−G∗�G−1

∗ �1− β� − b�
for every b ∈ � and n sufficiently large. Thus limn→∞ β∗

m�αn� θn� = 1. On the
other hand,

lim
n→∞G∗

(
G−1

∗ �1− β� −
[√

m−
√

N∗�αn�β� θn�
]
µ∗�θn�

)

= lim
n→∞G∗

(
G−1

∗ �1− β� − bn

) = 0�

So, (3.3) holds also in this case. We can proceed similarly in the case bn → −∞,
getting (3.3) again. The general case follows now by a subsequence
argument. ✷
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Proof of Theorem 3.1. (i)⇒(ii). Let ᾱ < β < 1 and ε > 0. For each m
satisfying

√
m ≥

√
N∗�αn�β� θn� + ε/µ∗�θn��

we have, in view of (3.3),

lim inf
n→∞ βm�αn� θn� = lim inf

n→∞ 
β∗
m�αn� θn� −Rm�αn� θn�� > β�

Hence

N�αn�β� θn� ≤
[√

N∗�αn�β� θn� + ε/µ∗�θn�
]2

+ 1

for sufficiently large n. Since ε > 0 is arbitrarily chosen, (ii) now follows.
(ii)⇒(i). Let m = m�n� be some sequence. By a subsequence argument we

may for proving Rm�αn� θn� → 0 assume w.l.o.g. that βm�αn� θn� → β ∈ 
0�1�.
[The case β = 1 can be excluded, since βm�αn� θn� → 1 automatically implies
Rm�αn� θn� → 0.] If β∗

m�αn� θn� → β, we get Rm�αn� θn� → 0 and hence it
suffices to prove that the statement β∗

m�αn� θn� → β + ε for some ε > 0 and
β+ ε > ᾱ, leads to a contradiction.

So, assume βm�αn� θn� → β and β∗
m�αn� θn� → β + ε with 0 ≤ β < 1 and

ᾱ < β + ε ≤ 1. For sufficiently large n we have for all β∗ and β̃ such that
β < β∗ < β̃ < β+ ε and β∗ > ᾱ�

m ≤ N�αn�β
∗� θn� and m ≥ N∗�αn� β̃� θn��

Hence, we get

N∗�αn� β̃� θn� ≤ N�αn�β
∗� θn�

and therefore, by (ii),

N∗�αn� β̃� θn� −N∗�αn�β
∗� θn� ≤ N�αn�β

∗� θn� −N∗�αn�β
∗� θn�

= o

(√
N∗�αn�β

∗� θn�/µ∗�θn�
)

�

Application of (3.3) with m = N∗�αn� β̃� θn� and β replaced by β∗ gives a
contradiction. ✷
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