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TESTING FOR MONOTONICITY OF A REGRESSION MEAN BY
CALIBRATING FOR LINEAR FUNCTIONS

By Peter Hall and Nancy E. Heckman1

Australian National University and University of British Columbia

A new approach to testing for monotonicity of a regression mean, not
requiring computation of a curve estimator or a bandwidth, is suggested. It
is based on the notion of “running gradients” over short intervals, although
from some viewpoints it may be regarded as an analogue for monotonicity
testing of the dip/excess mass approach for testing modality hypotheses
about densities. Like the latter methods, the new technique does not suf-
fer difficulties caused by almost-flat parts of the target function. In fact,
it is calibrated so as to work well for flat response curves, and as a result
it has relatively good power properties in boundary cases where the curve
exhibits shoulders. In this respect, as well as in its construction, the “run-
ning gradients” approach differs from alternative techniques based on the
notion of a critical bandwidth.

1. Introduction. The potential monotonicity of a response to the level of
a stimulus is often of significant practical interest. For example, the size or
condition of an animal population in response to the level of a nutrient can be
an important indicator of the concentration at which the nutrient starts to be-
come toxic. In radiocarbon dating problems, a monotone relationship between
true and assessed age is critical to accuracy, and a monotone link between the
levels of two medical symptoms is an important indicator of a common cause.

Particularly in cases where the null hypothesis of monotonicity fails, a re-
sponse curve can be awkward to model parametrically, suggesting that non-
parametric approaches to testing are of interest. Bowman, Jones and Gijbels
(1998) developed a test based on Silverman’s (1981) critical bandwidth method
in nonparametric density estimation. They employed a local linear estimator
ĝ = ĝh of the response curve, depending on a bandwidth h, and calculated that
value of h, hcrit, say, which was as small as possible subject to ĝh still being
monotone. Proceeding by simulation they computed empirical approximations
to critical points and thereby implemented the test.

While the procedure of Bowman, Jones and Gijbels (1998) has many at-
tractive features, it is clear that it also suffers difficulties. In particular, in
cases where the true response function g is flat, or nearly flat, in places, the
bandwidth approach can have low power. There are even cases where, when
the regression mean has a flat part and a nonmonotone dip in another portion
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of the curve, the bandwidth test can fail asymptotically to detect the overall
nonmonotonicity of the curve. Details will be given in Section 2.1.

These problems are to be expected, since they are inherited from difficulties
that the bandwidth test has in the context of density estimation. There, places
where the density is flat or almost flat, for example, in the body of the distri-
bution, can be almost impossible for the bandwidth test to distinguish from
the sites of small modes. Some of these issues are clear from the theoretical
analysis of Silverman (1983) and Mammen, Marron and Fisher (1992).

We argue that a test for monotonicity should have reasonable power in
marginal cases such as those discussed above, where it is difficult to distin-
guish a shoulder or a flat section in an increasing function from a small,
downwards dip. Motivated by this idea, in the present paper we propose an
alternative approach which eschews the notion of a bandwidth and, instead,
focuses on “running gradient” estimates over relatively short intervals. Our
approach has the flavor of the dip and excess mass approaches of Hartigan
and Hartigan (1985) and Müller and Sawitzki (1991), respectively, for testing
modality hypotheses. (These two tests are numerically equivalent.)

The dip/excess mass method has the advantage over the bandwidth test
of being relatively immune to problems caused by flatness of the sampled
density, and so it is to be expected that something similar would be true in
the present setting. Indeed, our “running gradients” approach does not suffer
problems caused by flat parts of the curve; it is calibrated for the case where
the response curve is flat. Moreover, it is sensitive to small dips in the curve.

The latter property is demonstrated in our theoretical work in Section 4; see
in particular point (2) in Section 4.1. Section 2 outlines our methodology and
describes its implementation, and Section 3 discusses numerical performance.

Schlee (1982) has also considered the problem of testing for monotonic-
ity of a response surface, although not really from a practicable viewpoint.
More recent work on the topic includes that of Ghosal, Sen and van der Vaart
(1999) and Woodroofe and Sen (1999). Nonparametric regression subject to
constraints of monotonicity has been treated by, for example, Ramsay (1988,
1998) and Mammen (1991). There is an extensive literature on issues of modal-
ity, including testing, in the context of density estimation; it includes work
of Cox (1966), Good and Gaskins (1980), Minnotte and Scott (1992), Roeder
(1994) and Polonik (1995a, b).

2. Methodology.

2.1. Influence of flat or nearly-flat parts of the curve. We use the term “in-
creasing” in the sense of “nondecreasing,” and qualify it by “strictly” if we are
considering an increasing regression mean that is not flat on any nondegen-
erate interval. We argue, however, that in the nonparametric context of the
present paper, there is not really statistical interest in distinguishing between
the null hypothesis which prescribes that the regression mean g be strictly
increasing and the null which asks only that it be increasing.
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Consider the analogous problem of testing a composite null hypothesis in
a parametric context, for example testing H0� θ ≥ θ0 against the alterna-
tive H1� θ < θ0. It would rarely be argued that the potential null hypothesis
H′

0� θ > θ0 be distinguished from H0. The reason is one of continuity: the
level of a test of H0 is generally taken to be the supremum over H0 of the
probability of rejectingH0. The supremum typically occurs at the “boundary,”
that is, at θ = θ0, and the supremum is the limit as θ ↓ θ0 of probabilities
calculated under θ in H′

0. The same argument applies when testing H′
0; the

regression function is strictly increasing. If the regression error distribution is
continuous and is considered fixed, then for most “plausible” tests, the supre-
mum over H′

0 of the probability of rejecting H0 will occur at the “boundary,”
that is, when the regression function is constant. In particular, this holds for
our proposed method, as stated in result (1) in Section 4.1.

The test of Bowman, Jones and Gijbels (1998), referred to below as the
bandwidth test, will generally perform well if the regression function does not
have any flat or nearly flat parts, that is, if the regression function is far from
the “boundary” of H0. However, the test will have low power for detecting
dips in regression functions that are flat or nearly flat in some parts. The
bandwidth test can be so strongly influenced by flat or nearly flat parts of the
curve that it can overlook places where the curve is not monotone.

We next give an example of functions which exhibit this type of behavior;
we shall explore it numerically in Section 3.3. Suppose the true regression
mean is defined on the interval � = �0�1�, is strictly increasing on �0� 12	, and
is flat on � 12 �1�. For the sake of definiteness, assume that the support of the
symmetric kernel employed in the local linear estimator for the bandwidth
test is the interval �−1�1�, the errors are Normal, and the n design points are
regularly spaced through � . In order to combat stochastic variability which
will occur among values of the gradient of the local linear estimate on � 12 �1�,
hcrit will tend to be relatively large. In particular, the probability that hcrit ≥ 1

6
will converge to a strictly positive number as n→ ∞. (To see where 1

6 comes
from, note that local linear estimators with bandwidth 1

6 , computed at x = 2
3

and 1 respectively, are stochastically independent.) This means that, for large
n, the local linear estimator computed at a point x will with high probabil-
ity involve averaging over all data whose design points lie within at least
1
6 of x.

Now imagine putting a dip in that part of the regression mean on �0� 12	.
Let the dip have its center at 1

4 and extend strictly less than 1
6 on either

side of 1
4 . Provided the dip is not too deep relative to the gradient of other

parts of the curve on �0� 12	, the following will be true: (a) the gradient of
any local linear smooth with bandwidth exceeding 1

6 will, with probability
tending to 1, have strictly positive gradient on �0� 12 �; and (b) the probability
that hcrit ≥ 1

6 will continue to converge to a strictly positive number as n→ ∞.
Therefore, the probability that the dip will be detectable by the bandwidth test
will not converge to 1. The test proposed in Section 2.2 does not suffer from
this deficiency.
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2.2. Test statistic. Suppose data � = 
�xi�Yi	, 1 ≤ i ≤ n� are generated
by the modelYi = g�xi	+εi, where g is a smooth function, the xi’s (which may
be either conditioned values of random variables or regularly spaced points)
are distributed in a compact interval � and the errors εi are independent
and identically distributed with zero mean and variance σ2 for some σ >
0. We wish to test the null hypothesis H0 that g is nondecreasing on the
interval � .

Our test statistic is defined as follows. Let 0 ≤ r ≤ s−2 ≤ n−2 be integers,
let a� b be constants and put

S�a� b�r� s	 =
s∑

i=r+1

Yi − �a+ bxi	�2�(2.1)

For each choice of �r� s	, define â = â�r� s	 and b̂ = b̂�r� s	 by
�â� b̂	 = argmin�a�b	S�a� b�r� s	�

and let

Q�r� s	2 =
s∑

i=r+1

{
xi − �s− r	−1

s∑
j=r+1

xj

}2

�

Then, b̂�r� s	Q�r� s	 has variance σ2 for each pair �r� s	. We incorporate this
standardization into our test statistic, which is

Tm = max
{− b̂�r� s	Q�r� s	� 0 ≤ r ≤ s−m ≤ n−m}

�(2.2)

where m, satisfying 2 ≤m ≤ n, is an integer. The test consists of rejectingH0
if the value of Tm is too large.

From some points of viewm plays the role of a smoothing parameter, in that
choosing m relatively large tends to “smooth out” (and consequently reduce)
the effects of outlying data values. Thus, larger values of m provide greater
resistance against the effects of heavy-tailed error distributions, and this is
the principal reason for taking m to be other than 2.

Alternative but related definitions ofTm have useful features thatTm lacks.
They include, for example,

T1m�u	 = max
{
s− r � b̂�r� s	Q�r� s	 ≤ −u and 0 ≤ r ≤ s−m ≤ n−m}

�

T2m�u	 = max
{
xs − xr � b̂�r� s	Q�r� s	 ≤ −u and 0 ≤ r ≤ s−m ≤ n−m}

where u denotes a positive number that may be interpreted as the “average”
standard error of b̂�r� s	Q�r� s	. (Here and below we take the left-hand side
to be 0 if the set on the right-hand side is empty.) Unlike Tm, the statistics
T1m and T2m focus specifically on the lengths of runs of design points where
the average gradient is negative, length being measured in terms of number
of design points and distance between design points, respectively. However,
the need to select u as a precursor to tests based on T1m and T2m makes such
statistics less attractive, and we do not consider them further.
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2.3. Calibration. Our approach to calibration is based on the fact that
a constant function is the most difficult nondecreasing form of g for which
to test. Thus, we develop approximations to the distribution of Tm when
S�a� b�r� s	 is given by

S�a� b�r� s	 =
s∑

i=r+1

εi − �a+ bxi	�2�(2.3)

instead of by the definition at (2.1). We shall show in Section 4 that, provided
m increases sufficiently fast, asymptotically correct levels may be obtained by
calibrating as though the errors were Normal. “Sufficiently fast” can actually
be quite slow. For example, if the sampling distribution has a moment gener-
ating function in the neighborhood of the origin, then m need only increase
faster than �log n	2 in order for calibration based on approximation by the
Normal-error case to be asymptotically valid.

Calibration for Normal errors would usually involve application of the para-
metric bootstrap, as follows. First, compute an estimator σ̂2 of σ2, using any
of a variety of different methods; see, for example, Rice (1984), Gasser, Sroka
and Jennen-Steinmetz (1986), Buckley, Eagleson and Silverman (1988), Buck-
ley and Eagleson (1989), Hall and Marron (1990), Hall, Kay and Titterington
(1990), Carter and Eagleson (1992), Seifert, Gasser and Wolf (1993) and Dette,
Munk and Wagner (1998). The technique is generally not as important in the
present context as it is in more general applications of nonparametric regres-
sion, since under the constraint of monotonicity the influence of bias, which
is the main factor determining relative performance of different variance es-
timator types, is usually relatively small.

Having estimated variance, condition on σ̂2 and simulate values of εi from
the Normal N�0� σ̂2	 distribution. Thereby compute Monte Carlo approxima-
tions to the distribution of first S�a� b�r� s	 [defined on this occasion by (2.3) for
Normal errors] and then to the distribution of Tm. In particular, compute an
approximation t̂m� a to the point tm�a such that P0�Norm�Tm > tm�a	 = α, where
P0�Norm denotes probability measure under the model where g is identically
constant and the errors are NormalN�0� σ2	. Reject the null hypothesis if the
value of Tm computed from the data, this time using the definition of S at
(2.1), exceeds t̂m� a.

More generally, if the error distribution were known up to a vector of pa-
rameters then the step of simulating from the N�0� σ̂2	 distribution would
be replaced by simulating from the model for the error distribution, with un-
known parameter values replaced by estimates. Alternatively, we may use
nonparametric bootstrap methods, as follows. Let ĝ be a consistent estimator
of g, for example computed by local linear methods, and calculate the resid-
uals ε̂i = Yi − ĝ�xi	. We might wish to center or rescale these quantities, for
example so that their average value is zero and their (sample) variance is the
same as a standard estimate of σ2. Centering does not affect our estimate of
the distribution of Tm under H0, however. Note too that we do not need to
compute ε̂i for all values of i. In particular, values corresponding to design
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points at the ends of � might be considered unreliable because of excessive
bias or variance, and not be used for that reason.

Let � be the set of residuals that we have computed, and let ε∗1� � � � � ε
∗
n

denote a resample drawn by sampling randomly, with replacement, from � .
Put

S∗�a� b�r� s	 =
s∑

i=r+1

ε∗i − �a+ bxi	�2�

�â∗� b̂∗	 = argmin�a� b	S
∗�a� b�r� s	�

T∗
m = max

{− b̂∗�r� s	Q�r� s	� 0 ≤ r ≤ s−m ≤ n−m}
�

(2.4)

The nonparametric bootstrap estimator of the α-level critical point ofTm under
the null hypothesis is t̃m� a, defined by P�T∗

m > t̃m�a�� 	 = α. In the case of
approximately Normal errors, the calibration step suggested earlier can itself
be calibrated using a bootstrap argument.

2.4. Heteroscedasticity. If the errors εi, conditional on the xi’s, may be
assumed identically distributed except for a scale factor that depends on xi,
then we should estimate scale. We may parametrically model the function σ�·	
defined by σ�xi	2 = var�εi�xi	 and estimate the parameters of the model; or
we might use nonparametric methods to estimate conditional variance. Either
way, we obtain an estimator σ̂�xi	2 of σ�xi	2, which should be constrained to
be bounded away from zero. If the weight σ̂�xi	−2 is incorporated into the se-
ries at (2.1) and (2.3) then our method may proceed as before. For the sake of
simplicity and brevity, however, we shall confine attention to the homoscedas-
tic case when describing properties of the test. Concise results in the general
case depend on the accuracy with which we may estimate σ�·	.

3. Numerical properties.

3.1. Distribution of Tm when g is constant. Without loss of generality, g ≡
0. Define Tm as at (2.2). In each of 500 simulations we generated data Yi =
εi, for i = 1� � � � � n = 100, where the εi’s were independent and identically
distributed with mean zero. Our test statistics were based on S�a� b�r� s	,
defined as at (2.3) with xi = i/�n+ 1	 (i.e., equally spaced xi’s).

Two error distributions were considered: εi Normally distributed with stan-
dard deviation 0.1 (the Normal calibration model), and εi = ρW, whereW had
Student’s t distribution with 5 degrees of freedom, denoted below by t5. The
value of ρ was chosen so that the interquartile range of εi was the same as
that for the Normal distribution with standard deviation 0.1. Note that t5 is
the lowest-index Student’s t distribution for which the fourth moment is finite.
We addressed the distributions of both Tm/0�1 and Tm/σ̂ , where σ̂2 was the
variance estimator proposed by Rice (1984),

σ̂2 = 1
2 �n− 1	

n−1∑
i=1

�Yi+1 −Yi	2�(3.1)
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Fig. 1. Distribution of Tm when g ≡ 0. The 5th, 10th, 50th, 90th and 95th pointwise percentiles
are graphed in each panel, for (a) the distribution of Tm/0�1 with Normal errors, (b) Tm/0�1 with
t5 errors, (c) Tm/σ̂ with Normal errors, and (d) Tm/σ̂ with t5 errors.

When g is constant, the distribution of Tm/σ̂ does not depend on σ .
Figure 1 graphs the 5th, 10th, 50th, 90th and 95th pointwise percentiles of

the distribution of Tm/0�1 [panels (a) and (b)] and Tm/σ̂ [panels (c) and (d)]
againstm. As expected, the quantiles are monotone decreasing functions ofm,
and the statistics are more variable and stochastically larger when the errors
are distributed as t5 than they are for Normal errors. However, standardizing
by dividing by σ̂ tends to counteract much of that variability.

3.2. Level accuracy. We considered four tests: Tp, Tnp, Tst and Bow. Tests
Tp and Tnp employed the statistic Tm with p-values derived using the para-
metric and nonparametric bootstrap, respectively, described in Section 2.3. In
the case of Tp the ε∗i ’s were Normal with mean 0 and variance σ̂2, defined at
(3.1). For Tnp, residuals were computed from a local linear fit with automatic
bandwidth choice, using the Splus routine KernSmooth written by M. P. Wand
and described by Wand and Jones (1995). The test Tst employed the Studen-
tized statistic Tm/σ̂ , with p-value calculated using the simulated distribution
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of Tm/σ̂ , with Normal errors, from Section 3.1. The test Bow is described by
Bowman, Jones and Gijbels (1998) and is based on the bandwidth of a local
linear estimator of g. The code for Bow was kindly supplied by A. W. Bowman.
The number of bootstrap resamples for methods Tp, Tnp and Bow was 300.

To check level accuracy of Tp, Tnp and Tst we simulated data Yi = g�xi	+
εi, for i = 1� � � � � n = 100, with xi = i/�n+1	 and g ≡ 0. In this context, panels
(a) and (b) of Figure 2 graph Monte Carlo approximations to the actual level
when the nominal level is 0.05, in the case of tests Tp and Tnp, respectively,
and for Normal errors. (The horizontal axis gives values of m.) The actual
level for the test Tst is of course exactly 0.05, and that for Bow is 0.06 in
the same setting. It is seen that, in terms of level accuracy, Tp and Bow are
comparable, although Tnp is slightly more liberal. The former result is true
also at nominal level 0.10, where both have an actual level of about 0.11, but
at nominal level 0.25 the actual level of Bow is about 0.34 (compared with
about 0.27 for Tp).

Panels (c)–(e) of Figure 2 give Monte Carlo approximations to exact levels
of Tp, Tnp and Tst, for t5 errors and for an α = 0�05 level test. For this com-
parison we first calibrated the tests so that, in the case of Normal errors, they
all had level 0.05, to within simulation error (which here is ±0�01, denoting
plus or minus one standard deviation). In particular, we did not rely on the
nominal levels. The same adjustment was made to Bow, to ensure that that
test had level 0�05 when errors were Normal. Note that there is no need to
adjust Tst.

We see from panels (c)–(e) that after this calibration, level accuracy of Tp
and Tnp is reasonable for m above 10 or 15. The Bow test tends to be more
conservative than Tp, Tnp and Tst, its actual level being 0.030 in the case of
t5 errors. The relative conservatism of Bow persists for nominal levels 0.10
and 0.25.

3.3. Power. To explore numerically the properties discussed in Section 2.1
we considered a function g that was monotone except for a pronounced dip on
an interval around x = 1/4. Specifically, we took g�x	 = g1�x	 −g2�x	, where

g1�x	 =



15

(
x− 1

2

)3
+M

(
x− 1

2

)
� on

[
0� 12

]
�

M
(
x− 1

2

)
� on

(
1
2 �1

]

and g2�x	 = exp
−250�x− 1
4	2�. Thus, g is increasing with a continuous second

derivative, and g2 introduces the dip. For each version of g considered below
we generated 500 datasets of the form Yi = g�i/101	 + εi, for i = 1� � � � �100,
where the εi’s were independent Normal N�0�0�12	. Figure 3 illustrates both
g and a typical simulated dataset in the caseM = 0�3.

We consideredM = 0, 0.15 and 0.3, and present here results for the band-
width and Tst tests. Results for the Tp and Tnp tests are similar to those
for Tst. In the comparisons below the tests were calibrated so that their levels
were all equal to 0�05. In particular, we did not rely on accuracy of nominal
levels.
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Fig. 2. Level accuracy of tests Tp, Tnp and Tst. For α = 0�05, panels give (a) Monte Carlo
approximations to actual level of Tp for Normal errors, (b) level of Tnp for Normal errors, (c) level
of Tp for t5 errors, after calibration for Normal errors, (d) level of Tnp for t5 errors, after calibration,
and (e) level of Tst for t5 errors, after calibration.
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Fig. 2. (Continued)

Fig. 3. Simulated dataset for the function g whenM = 0�3. Definition of g is given in Section 3�3;
errors are Normal N�0�0�12	.



30 P. HALL AND N. E. HECKMAN

Our choice of g is of particular interest since, although the corresponding
curve is partly flat only when M = 0, the dip is more pronounced for smaller
values of M. This means that the bandwidth test could actually have more
trouble finding dips in functions g without flat sections, than in the case where
they were flat over half the design interval. We found this to be the case.

For example, when M = 0�3 the bandwidth test rejected H0 5.0% of the
time, that is, its power was equal to its significance level. On the other hand,
its power for M = 0�15 and M = 0 was 19% and 59%, respectively. The test
Tst performed substantially better in all these cases. For example, no matter
what the value taken for m in the range 1 ≤ m ≤ 15, when M = 0�3, 0.15
and 0 the power of Tst was never less than 98%, 99% and 99%, respectively.

Power of the Tst test decreased monotonically with increasing m. This was
to be expected, since the dip extends over a relatively short interval and was
not seen as a problem. Indeed, a plot of the p-value as a function ofm provided
valuable insight into the shape of g, suggesting the length of the abnormality
that was leading to nonmonotonicity.

Bowman, Jones and Gijbels (1998) studied the test function g�x	 = ga�x	 ≡
1 + x + a exp
−50 �x − 1

2	2�, where a > 0. Note that g is strictly increasing
for 0 < a < a1 ≡ 0�1e1/2 ≈ 0�165, but neither increasing nor decreasing for
a > a1. In a simulation study we used the two error distributions introduced
in Section 3.1. We found that when g ≡ ga, α = 0�05 and m = 20, the break-
even point for performance of our tests relative to Bow was a2 ≡ 0�415, in the
sense that our tests tended to have greater power than Bow if a > a2 but not
otherwise. When a = a2 and errors were Normal, the rejection rate of all four
tests (i.e., Tp, Tnp, Tst and Bow) was approximately 0.8. (As always, we have
adjusted all tests so that they are indeed 5% level tests and thus comparable.)

4. Theoretical properties

4.1. Properties of distribution of Tm when g is not constant. Result (1) be-
low confirms that, by taking the null hypothesis to assert that g is identically
constant, we obtain a test that is conservative against other nondecreasing
functions g. Result (2) shows that if g is strictly decreasing over some por-
tion of the interval supporting the design, then the test statistic Tm assumes
values at least as large as n1/2. In Section 4.2 we shall demonstrate that, for
tests calibrated using either the Normal approximation or bootstrap methods,
critical points are an order of magnitude smaller than n1/2; they equal O�nδ	
for all δ > 0. Together, these results confirm that (i) large values of the test
statistic Tm indicate that g is not nondecreasing, (ii) our method of calibra-
tion tends to be conservative and (iii) our calibration method produces tests
for which power increases to 1 with increasing sample size.

As a prelude to stating our results, write P0 for the probability measure
P when g is taken to be identically constant but the error distribution is
the same as that for the data. Assume that the error distribution has finite
variance, and that either (a) the design points xi are conditioned values of a
sequence of independent and identically distributed random variables from a
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continuous distribution on � = �0�1�, with density bounded away from zero
and infinity, or (b) the design points are regularly spaced on � = �0�1�. In
case (a), probability statements should be interpreted as holding with respect
to classes of sequences 
xi� that arise with probability 1. The following results
hold.

1. For any nondecreasing function g, for all 2 ≤m ≤ n and for all 0 ≤ x <∞,
P�Tm ≥ x	 ≤ P0�Tm ≥ x	. That is, the probability of Type I error is no
more for a general nondecreasing g than it is for an identically constant g.

2. If there exists a nondegenerate interval � ⊆ � on which the derivative of
g exists and is bounded below 0, then Tm is of size at least n1/2, uniformly
in values m satisfying m = o�n	, in the following sense. There exists C > 0
such that, for each sequence m0 =m0�n	 → ∞ with m0 = o�n	,

inf
2≤m≤m0�n	

P
(
Tm > Cn

1/2) → 1

as n→ ∞.

4.2. Properties of null distribution. We take the null distribution to be
that which arises under the assumption that g is constant, and do not insist
that the errors be Normally distributed. Result 1 below shows that under this
null hypothesis, and provided the error distribution is reasonably light tailed,
Tm = O�nδ	 for all δ > 0. This property should be contrasted with result 2 in
Section 4.1, where we showed that if at least some portion of g is decreasing
then Tm is of size at least n1/2. Therefore, Tm can distinguish nondecreasing
functions g from functions that do not have this property. However, result
2 below shows that heavy-tailedness of the error distribution does tend to
increase the size of Tm under the null hypothesis, and so can be expected to
reduce power. This property motivated us to incorporate the tuning parameter
m in our definition of Tm.

Result 3 below demonstrates that, provided m is chosen large enough (de-
pending on the tailweight of the error distribution), the null distribution of
Tm is asymptotically equivalent to its form in the case of Normal errors. This
motivated our suggestion that the Normal-error approximation be considered
as one approach to calibration. Result 4 shows that in the case of Normal
errors the size of Tm grows very slowly indeed, at rate �log n	1/2. Finally, re-
sult 5 establishes that our nonparametric bootstrap approach to calibration
produces statistically consistent results.

Let P0�Norm denote P0-measure when the errors εi are Normally distributed
with variance σ2. Assume g is identically constant, and that the design se-
quence satisfies either (a) or (b) of Section 4.1. Then the following results
hold.

1. If the error distribution has all moments finite then Tm is of smaller order
than nδ for all δ > 0, in the sense that

for all δ > 0� sup
2≤m≤n

P0
(
Tm > n

δ
) → 0

as n→ ∞.
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2. If the error distribution has the property that P��ε� > x	 ≥ const� x−c for
all sufficiently large x, then for each fixed m ≥ 2,

lim inf
n→∞ P0

(
Tm > Cn

1/c) → 1

as C→ 0.
3. If either (i) E�ε�c < ∞ and m = m�n	 satisfies n2/c�log n	1+ε = O�m	 and
m = O�nρ	, for some c > 3, ε > 0 and ρ ∈ �2/c�1	 or (ii) the distribution of ε
has a finite moment generating function in some neighborhood of the origin,
and m = m�n	 satisfies �log n	3+ε = O�m	 and m = O�nρ	 for some ε > 0
and ρ ∈ �0�1	, then the distribution of Tm is asymptotically equivalent to
that in the case of Normal errors (with the same variance σ2), in the sense
that

sup
0≤x<∞

∣∣P0�Tm ≤ x	 −P0�Norm�Tm ≤ x	∣∣ → 0

as n→ ∞. Moreover, this result remains true if, when effecting the Normal-
error approximation, we employ a variance σ2n that is within O�n−δ	 of the
true variance σ2, for some δ > 0. (This property justifies our empirical
calibration by Normal-error approximation, using an estimate of σ2.)

4. If the error distribution is Gaussian then, uniformly in 2 ≤m ≤ nρ for each
0 < ρ < 1, Tm is of exact size �log n	1/2, in the sense that for each ρ there
exist constants 0 < t1 < t2 <∞ such that

sup
2≤m≤nρ

∣∣P0�Norm
{
t1 ≤ Tm

/�log n	1/2 ≤ t2}− 1
∣∣ → 0

as n→ ∞.
5. Suppose the error distribution is continuous with density f, let F denote

the corresponding distribution function and put F̄ = min�F�1−F	. If the
random function ĝ used to compute the residuals ε̂i = Yi − ĝ�xi	 satisfies
supy1≤x≤y2 �ĝ�x	 − g�x	� = Op�n−η	 for some η > 0 and 0 ≤ y1 < y2 ≤ 1;
if we compute all those residuals ε̂i that correspond to design points xi
satisfying y1 ≤ xi ≤ y2; if f ≥ CF̄ � log F̄�γ for constants C�γ > 0; and
if m = m�n	 satisfies �log n	3+ε = O�m	 and m = O�nρ	 for some ε > 0
and 0 < ρ < 1; then the bootstrap distribution of T∗

m is consistent for the
unconditional null distribution of Tm, in the sense that

sup
0≤x<∞

�P�T∗
m ≤ x�� 	 −P0�Tm ≤ x	� → 0

in probability as n→ ∞.

The assumption on f in result 5 is just a little stronger than the require-
ment that the error distribution have finite moment generating function, and
in this sense is a version of condition (ii) in result 3 above. Likewise, we may
formulate and prove result 5 under a slightly stronger form of condition (i) in
result 3.
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APPENDIX

A.1. Outline proofs of results in Section 4.1. (i) Define

S1�x	 =
s∑

i=r+1
�xi − x̄rs	2� /1�r� s	 =

s∑
i=r+1

g�xi	 �xi − x̄rs	�

b̂�r� s	 = S1�x	−1
s∑

i=r+1
Yi �xi − x̄rs	� b̂0�r� s	 = S1�x	−1

s∑
i=r+1

εi �xi − x̄rs	

and /2�r� s	 = S1�x	−1 /1�r� s	, where x̄rs = �s − r	−1∑r+1≤i≤s xi. Trivially,
b̂�r� s	 = b̂0�r� s	 + /2�r� s	. We claim that /1�r� s	, and hence /2�r� s	, is non-
negative for each r < s, provided g is increasing. To appreciate why, put
δi = g�xi	 − g�xi−1	 for r + 1 ≤ i ≤ s, and observe that by Abel’s method of
summation,

/1�r� s	 =
s∑

i=r+1
�xi − x̄rs	

i∑
j=r+1

δj =
s∑

j=r+1
δj

s∑
i=j

�xi − x̄rs	�(A.1)

Since xr+1 ≤ · · · ≤ xs then
∑
j≤i≤s �xi − x̄rs	 ≥ 0 for r + 1 ≤ j ≤ s. Also, the

monotone increasing property of g implies that each δi > 0. Hence, by (A.1),
/1�r� s	 ≥ 0 for each r� s.

Let T0m have the definition of Tm at (2.2), but in the case where S�r� s	 is
given by (2.3) instead of (2.1). That is, T0m is defined by (2.2) using b̂0�r� s	
instead of b̂�r� s	. Since /2�r� s	 ≥ 0 and b̂�r� s	 = b̂0�r� s	 + /2�r� s	� then
b̂�r� s	 ≥ b̂0�r� s	, and so by (2.2), Tm ≤ T0m with probability 1. Now, P-
measure for T0m is equivalent to P0-measure for Tm, and so for each x,
P�Tm ≤ x	 ≥ P�T0m ≤ x	 = P0�Tm ≤ x	, as had to be shown.

(ii) Let � denote an interval from c1 to c2 > c1, and suppose the derivative
of g is bounded below −C1 on � , where C1 > 0. Let c1 < c3 < c4 < c2, and
put

β�r� s	 = E
b̂�r� s	� = ∑
i

wi g�xi	 � /�r� s	 = b̂�r� s	 − β�r� s	�

�m = {�r� s	 � 0 ≤ r ≤ s−m ≤ n−m� c3 ≤ xr+1 ≤ xs ≤ c4
and xs − xr+1 ≥ 1

2 �c4 − c3	
}
�

Then there exist C2�C3 > 0 such that

sup
�r�s	∈�m

β�r� s	 ≤ −C2 and inf
�r�s	∈�m

Q�r� s	2 ≥ C2
3 n

for all sufficiently large n and for all δ > 0,

sup
�r�s	∈�m

P
{∣∣b̂�r� s	 − β�r� s	∣∣ > δ} → 0
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as n→ ∞. Therefore, for all δ > 0,

sup
�r�s	∈�m

P
{− b̂�r� s	Q�r� s	 ≥ �1− δ	C2C3 n

1/2} → 0 �

which implies the desired result.

A.2. Outline proofs of results in Section 4.2. (i) Since g is constant,
b̂�r� s	 = ∑

i wiεi. Hence, by Rosenthal’s inequality [Hall and Heyde (1980),
page 23] we have for all k ≥ 1,

E0
{
b̂�r� s	2k} ≤ B�k	

{
Q�r� s	−2k +E(�ε�2k) s∑

i=r+1
w2k
i

}
�

where B�k	 depends only on k and E0 denotes expectation in P0-measure.
Now, �wi� ≤ �xs − xr	/Q�r� s	2 for r+ 1 ≤ i ≤ s, and, uniformly in

�r� s	 ∈ � = {�r� s	 � 0 ≤ r ≤ s−m ≤ n−m and 2 ≤m ≤ n}�
we have �s − r	 �xs − xr	2 = O
Q�r� s	2�. (Here and below, in the case where
x1 < · · · < xn represents an ordered sequence of independent and identi-
cally distributed random variables, “order” statements should be interpreted
as holding with probability 1 with respect to such sequences.) Therefore,

Q�r� s	2k
s∑

i=r+1
w2k
i ≤ Q�r� s	2k+2 max

r+1≤i≤s
w

2�k−1	
i

≤ Q�r� s	−2�k−3	�xs − xr	2�k−1	 = O�1	
uniformly in �r� s	 ∈ �. Hence,

sup
�r�s	∈�

E0
{�b̂�r� s	Q�r� s	�2k} = O�1	 �

and so by Markov’s inequality, for all k ≥ 1/δ,

sup
2≤m≤n

P
(
Tm > n

δ
) ≤ sup

2≤m≤n

∑ ∑
�r�s	�0≤r≤s−m≤n−m

P
{�b̂�r� s	Q�r� s	� > nδ}

= O(n2 · n−2kδ) → 0�

(ii) Let ν denote the integer part of �n−m	/m, and for 0 ≤ j ≤ ν put
Rj = −b̂
mj�m�j+ 1	�Q
mj�m�j+ 1	� �

Then the Rj’s are stochastically independent random variables, and so

P�Tm > t	 ≥ P
(
max
0≤j≤ν

Rj > t
)
= 1−

ν∏
j=1
P�Rj ≤ t	�(A.2)

Since P��ε� > x	 ≥ const� x−c then either or both P�ε+ > x	 > const� x−c or
P�ε− > x	 > const� x−c. Without loss of generality the former is true. Given
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constants 0 < B1 < B2 <∞, let � �B1�B2	 denote the set of all j ∈ �1� ν� such
that (a) wi ≤ −B1 for some i ∈ �mj + 1�m�j + 1	�, and (b) �wi� ≤ B2 for all
i ∈ �mj + 1�m�j + 1	�. In view of the origin of the xi’s, for any 0 < u < 1 we
may choose B1�B2 such that the number of elements of � �B1�B2	 exceeds νu
for all sufficiently large n. Take u = 1

2 , and select B1�B2 accordingly.
Let C1�C2� � � � denote positive constants. Since P�ε+ > x	 > C1x

−c for large
x then if j ∈ � �B1�B2	,

P�Rj > x	 ≥ P
(
B1 ε1 −B2

m∑
j=2

�εj� > x
)
≥ C2 x

−c

for large x, where C2 depends only on m�B1�B2 and the error distribution.
Therefore, by (A.2),

P
(
Tm > Cn

1/c) ≥ 1− (
1−C2C

−cn−1
)ν

≥ 1− exp
(−C2C

−cνn−1
) ≥ 1− exp

(−C3C
−c)�

where C3 > 0 does not depend on C. The desired result follows from this
formula.

(iii) Without loss of generality, σ = 1. Let N1�N2� � � � denote independent
standard Normal random variables, and define Ui = ∑

1≤j≤i εj and Vi =∑
1≤j≤i Nj. Put Wi = wi −wi−1. If g is identically constant then

b̂�r� s	 =
n∑
i=1
wi �Ui −Ui−1	 =

n∑
i=1
WiUi�(A.3)

When the error distribution has finite moment generating function in a neigh-
borhood of the origin, Theorem 1 of Komlós, Major and Tusnády (1976) im-
plies that the Nj’s may be chosen so that �Ui −Vi� = Op�log n	, uniformly in
1 ≤ i ≤ n, as n→ ∞. Hence, by (A.3),

b̂�r� s	 =
n∑
i=1
WiVi +Op

{
�log n	

n∑
i=1

�Wi�
}
�(A.4)

uniformly in �r� s	 ∈ �m = 
�r� s	� 0 ≤ r ≤ s −m ≤ n −m�. In the cases of
random design and regularly spaced design,

Q�r� s	
n∑
i=1

�Wi� = O
�xs − xr	/Q�r� s	� = O{�s− r	−1/2}(A.5)

uniformly in �r� s	 ∈ �m. Combining (A.4) and (A.5) we see that if �log n	3+2ε =
O�m	 for some ε > 0 then

b̂�r� s	Q�r� s	 = Q�r� s	
n∑
i=1
WiVi +Op

{�log n	−�1/2	−ε}�(A.6)

uniformly in �r� s	 ∈ �, as n→ ∞. If E�ε�c <∞ for some c > 3 then a similar
argument, using Theorem 2 rather than Theorem 1 of Komlós, Major and
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Tusnády (1976), shows that (A.4) holds with log n replaced by n1/c and “big
oh” replaced by “little oh.” This again leads to (A.6), provided n2/c�log n	1+2ε =
O�m	.

The first term on the right-hand side of (A.6) has the distribution that Tm
would enjoy if the errors were Normally distributed with the same variance
as the original errors. Therefore, the claimed result will follow from (A.6) if we
show that in the Normal-error case, stochastic perturbations of smaller order
than δn = �log n	−1/2�log log n	−1 have asymptotically negligible effect on the
distribution of Tm. In establishing this property we shall consider only the
case of regularly spaced design, where xi = i/n.

Let Tm�Norm denote the version of Tm in the case of standard Normal errors
(and g ≡ const�), let W�·	 be a standard Wiener process on the positive half-
line, and for 0 < s ≤ 1 put

T1�s	 = sup
{(
12/v3

)1/2 ∫ t+v
t

(
u− t− 1

2v
)
dW�u	� 0 ≤ t ≤ 1− v � s ≤ v ≤ 1

}
�

T2�s	 = sup
{(
3/v3

)1/2 ∫ t+v
t


W�t+ v	 +W�t	 − 2W�u	�du �

0 ≤ t < s−1 − v � 1 ≤ v < s−1
}
�

It can be proved that in the case of regularly spaced design and for sufficiently
small δ > 0, the processW may be chosen (depending on n) so that Tm�Norm =
T1�m/n	 +Op�n−δ	. Furthermore, it may be proved that

lim sup
s↓0

�log � log s�	 sup
−∞<x<∞

P
{
T2�s	 ∈

(
x� x+ ε � log s�−1/2 �log � log s�	−1)} → 0

as ε ↓ 0, and T1�s	 and T2�s	 have identical distributions. [We may obtain
T1�s	 from T2�s	 by replacing W�·	 in the definition of the latter by Ws�·	,
where Ws�t	 = s−1/2W�st	 and integrating by parts in the formula for the
integral.] The conditions imposed on m in result 3 in Section 4.2 imply that,
with s = m/n, we have � log s� � log n. This establishes the desired immunity
of Tm to perturbations of smaller order than δn.

(iv) Without loss of generality, σ = 1. Under the assumption that the er-
ror distribution is Normal N�0�1	, each −b̂�r� s	Q�r� s	 is Normal N�0�1	.
Since Tm equals the maximum of at most n2 such variables then with t =
C1 �log n	1/2 and C1 > 2 we have

P0�Norm�Tm > t	 ≤ n2P
N�0�1	 > t� ≤ n2 exp
(− 1

2 C
2
1 log n

) → 0�

Therefore,

inf
2≤m≤n

P0�Norm
{
Tm

/�log n	1/2 ≤ C1
} → 1 �(A.7)
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Letm0 equal the integer part of nρ, let ν equal the integer part of �n−m0	/m0,
and put Nj = −b̂
m0j�m0�j + 1	�Q
m0j�m0�j + 1	�. Then the Nj’s are
independent standard Normal random variables, and so

P0�Norm�Tm ≤ t	 ≤ P0�Norm

(
max
0≤j≤ν

Nj ≤ t
)
= P
N�0�1	 ≤ t�ν �

Now, ν > n�1−ρ	/2 for all sufficiently large n, and P
N�0�1	 > t� ≥ exp�−t2	
for all sufficiently large t. Hence, if t = C2 �log n	1/2 and C2 < 
�1 − ρ	/2�1/2
then

P0�Norm�Tm ≤ t	 ≤ {
1− exp

(−C2
2 log n

)}ν → 0 �

The desired result follows from this formula and (A.7).
(v) Let C1�C2� � � � denote positive constants. We may assume without loss

of generality that 0 ≤ γ < 1, in which case the inequality f ≥ C1 F̄ � log F̄�γ
implies that the derivative of �− log F̄	1−γ/�1− γ	 exceeds C1, and hence that

F̄�±x	 ≤ exp
(−C2 �x�1/�1−γ	

)
�(A.8)

It follows from (A.8) that the distributionF has a bounded moment generating
function in a neighborhood of the origin.

Write ε̂i = εi + ε̃i, where ε̃i = g�xi	 − ĝ�xi	. Conditional on ε∗i = ε̂j, put
ε∗1i = εj and ε∗2i = ε̃j. Then, b̂∗�r� s	 = b̂∗1�r� s	 + b̂∗2�r� s	 where b̂∗j�r� s	 =∑
i wiε

∗
ji. Using Rosenthal’s and Markov’s inequalities, and the fact that ĝ −

g = Op�n−η	, we may prove that for all 0 < δ < 1 and λ > 0,

P
{�b̂∗2�r� s	Q�r� s	� > n−�1−δ	η∣∣� } = Op

(
n−λ

)
�

Hence we may write T∗
m = T∗

1m +R∗
1m, where

T∗
1m = max

{− b̂∗1�r� s	Q�r� s	� 0 ≤ r ≤ s−m ≤ n−m}
and P�R∗

1m > n
−�1−δ	η�� 	 = Op�n−λ	.

Put ξj = F−1�j/n	 for 1 ≤ j ≤ n − 1, ξ0 = −∞ and ξn = +∞. Conditional
on ε (denoting a generic εi) lying in �j = �ξj� ξj+1	, take ε′ to have the
distribution of ε given that ε ∈ �j. Given that ε∗1i ∈ �j, let ε

#
i have the

distribution of ε given that ε ∈ �j and be such that the pairs �ε∗i � ε#i 	 for
1 ≤ i ≤ n are independent. Define b̂#�r� s	 = ∑

i wi ε
#
i and /j =

∑
i≤j �ε∗1i−ε#i 	.

Let T#
m be the version of T∗

m that arises if, in the definition at (2.4), we replace
b̂∗ by b̂#. Then,

b̂∗�r� s	 − b̂#�r� s	 =
n∑
i=1
Wi /i�(A.9)

We shall prove that

E�ε− ε′	2 ≤ C3 n
−1 �log n	−2�1+γ	�(A.10)
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whence it follows via a square-function inequality for sums of independent
random variables [e.g., Hall and Heyde (1980), page 23] and properties of
conditional expectations that

E
(
sup
1≤i≤n

/2i

)
≤ C4 �log n	−2�1+γ	�(A.11)

Combining (A.5), (A.9) and (A.11) we deduce that

E

[
sup

�r�s	∈�m
Q�r� s	2 {b̂∗�r� s	 − b̂#�r� s	}2

]
= Op

[{
m �log n	2�1+γ	}−1] �

Therefore, T∗
1m = T#

m+R∗
2m, where E�R∗

2m	2 = o
�log n	−2�2+γ	�. The distribu-
tion of T#

m, conditional on the data, is exactly the P0-distribution of Tm, and
so the desired result (5) in Section 4.2 follows on noting result (3) there.

It remains to prove (A.10). If 1 ≤ i ≤ 1
2 n then for some θi ∈ �0�1� we have,

by Taylor expansion,

0 ≤ F−1
�i+ 1	/n� −F−1�i/n	 = n−1
(
f
[
F−1
�i+ θi	/n�

])−1

≤ C−1
1 �i+ θi	−1 � log
�i+ θi	/n��−γ�

with a similar bound holding for 1
2 n < i ≤ n− 2. Hence,

∑
C5�log n	2≤i≤n−C5�log n	2

[
F−1
�i+ 1	/n� −F−1�i/n	]2 ≤ C5 �log n	−2�1+γ	 �

Result (A.10) follows from these bounds.
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