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ON THE DETERMINATION OF OPTIMAL DESIGNS FOR AN
INTERFERENCE MODEL!

By J. KUNERT AND R. J. MARTIN
Universitdt Dortmund and University of Sheffield

This paper generalizes Kushner’s method for finding optimal repeated
measurements designs to find optimal designs under an interference model.
The model we assume is for a one-dimensional layout without guard plots
and with different left and right neighbor effects. The resulting optimal
designs may need many blocks or may not even exist as a finite design.
The results give lower bounds for optimality criteria on finite designs and
the design structure can be used to suggest efficient small designs.

1. Introduction. Many agricultural and horticultural trials are suscep-
tible to treatment interference, that is the treatment on one unit affecting the
response on neighboring units [see, e.g., Besag and Kempton (1986)]. There is
increasing interest in the practical use of models to analyze data from such
trials [e.g., David, Monod and Philippeau (1998)] and in the design of exper-
iments in which treatment interference may occur [e.g., David and Kempton
(1996)]. A wide variety of possible models have been postulated [e.g., David
and Kempton (1996), David, Monod and Philippeau (1998)]. There are only
very limited results on optimal designs under interference models. Gill (1993)
restricts the class of competing designs to those for which each treatment ap-
pears once in each block. Druilhet (1999) avoids this restriction but considers
the case of very few blocks. Both papers assume a one-dimensional layout of
plots within blocks and that each block has a guard plot at each end, so that
each interior plot has two neighbors. They concentrate on model (1) below, or
its special case of equal left and right neighbor effects.

The present paper presents a general approach to determine optimal de-
signs for contrasts among direct treatment effects that can be useful for many
kinds of interference models. We consider experiments for comparing ¢ treat-
ments using b blocks of size £ with a one-dimensional arrangement of plots in
each block. We demonstrate the theory for the model with no guard plots and
the treatments having different left and right neighbor interference effects.
Similar results to the ones given here will be possible for many other related
models.
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Let d(i, j) € 1, ..., t be the treatment assigned to the plot (i, j) in the jth
position of the ith block. In our model the response at plot (i, j) can be written

ey Yij = K+ Tag,j) T Adi,j-1) t Pdgi, j+1) T Bi € j-
Here:

(i) w is the general mean;

(ii) 74, ;) is the direct effect of treatment d(i, j);

(i) Aq,j-1y and pg(, j11) are, respectively, the left and right neighbor ef-
fects; that is the interference effect of the treatment assigned to, respectively,
the left and right neighbor plots (i, j — 1) and (Z, j + 1);

(iv) B; is the effect of the ith block; and

v) e; jis the random error, 1 <i <b,1 < j<k.

We assume that the errors are i.i.d. with expectation 0. The generalization
of the method to correlated errors and generalized least squares estimation
is straightforward, cf. Kushner (1997). Since we assume there are no guard
plOtS we have Ad(i,O) = Pd(i,k+1) = 0.

We seek the optimal design among designs d € (), ;, the set of all de-
signs with b blocks of size £ and with ¢ treatments. Let T';, be the treatment
design matrix of the direct effects in block u, 1 < u < b. Further define

T,=[TE, ..., Tgb]T as the design matrix of direct effects.

Let Y =[y11, > Y1.> Y210 - - - » yb,k]T be the vector of the observations, 1,
be the k-vector of ones, I, the b-dimensional identity matrix and ® denote
the Kronecker product. Let V denote the %k x % left neighbor incidence matrix

with (i, j)th element v; ; equal to 1 if i — j = 1 and 0 otherwise. For each

u we define L;, = VT,, and R;, = VI'T,,. Then L,; = [Lgl,...,Lgb]T =

(I,® V)T, and R; = [RY, ...,Rgb]T = (I, ® VT) T, are, respectively, the
design matrices of the left and right neighbor effects. Let e be the vector of
the errors and let 7, A, p, and B be the vectors of direct effects, of left neighbor
effects, of right neighbor effects and of block effects, respectively. Then, we can
write model (1) in vector notation as

Y = 1bklu“+TdT+Ld/\+de+(Ib® 1k)B+€

For an n x p matrix M define o*(M)=1,— M(MTM)~MT , where (M M)~
is a generalized inverse (g-inverse) of M7 M. Then [see, e.g., Kunert (1983)]
the information matrix for the least squares estimate of 7, with zero row and
column sums, is

C,= Tgwj‘([lb ®1, Ly, RyDT .

A t x t matrix M is said to be completely symmetric, if all its diagonal elements
are equal and all its off-diagonal elements are equal. A completely symmetric
information matrix is a scalar multiple of the matrix B, = I, — %1t1tT. Assume
we have a design d* € (), ;, ;, such that C,;. is completely symmetric and that
trC . is maximal over (), ; ;. Then the design d* is universally optimum, that
is, it is optimal under all the optimality criteria considered by Kiefer (1975).
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2. Determination of an upper bound for tr C;. For a partitioned ma-
trix M =[S, U], we can write

2) W ([S, U]) = 0™(S) — o (YU {UT ™ (S)U} UTw'(8).

Applying this formula twice and defining

Cann=Tho (I,®01,)Ty, Caa=Tho (I,®1;)Lg, Caqiz=TGw" (I,®1;)Rg,
Cazo=Ljo*(I;®1;)Ly, Ca3=Ljo"(I,®1;)Ry, Cys3=Rjo"(1,®1;)R,

we get that

Cy=Ca11 — Cg15C30,Cl1y — (Ca13 — Ca12C 755C 423)
N - _ T
x (Cyss — C§ZSCd22Cd23) (Ca13 — Cq12C 395C an3) " -

Note that w'(I, ® 1) = I, ® B;,. The formula for C; contains g-inverses of
C 99 and of C g3 — C1y0C795C go3, both of which depend on the design d. This
makes the determination of trC, for an arbitrary design d difficult. Hence, we
try to find a simple upper bound for trC,.

The derivation of this bound is inspired by the convexity argument of
Pukelsheim [(1993), page 75; see also Kushner (1997), Lemma 5.1]. We give
a slightly different proof, which is also valid if the matrices do not have full
rank. We begin with a technical proposition.

3)

ProPOSITION 1. Assume A4,..., A,,Dq,..., D, are matrices, A; € R™*",
D, e Rmi*s) 1 <i<n.Then

Y ATA - (3 AD) (3D D;) (X D7 A)
= Z {AiTAi - AiTDi (DiTDi)_ DiTAi}

in the Loewner-ordering.

PrROOF. Consider the partitioned matrices

T e R |
L2, ] I

D

The column-space of M is contained in the column-space of the block diagonal
matrix M,. Hence,

wl(Dl)
o (M) = 0™ (M) = .
w*(D,)
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and

Y ATA; - (X AID) (X D/D;) (L DjA)

fA, " A
= : w* (M)
| Ay A,
CA ] [oh(Dy) A
> : :
| A, ] o™(D,) ] LA,

Note that T';1, is in the column-space of I, ® 1,, while R;1, and L;1, are
not. This implies [see Kunert (1983)] that C ;;; has row and column sums zero,
that C ;15 and C ;53 have column sums zero, but not necessarily row sums zero
and that C 99, C 95 and Cg33 need not have zero row sums or column sums.
For our bound, we use the traces of B,C4;; B, and define c;;; = trB,C;; B, for
l<i<j<3.

Since the matrix

B,Cyq11B; B:Cy12B; BCy13B, B,T;
B,Ch3B; B,Cy22 By B,CyssB, | = B,L} o (I, ®1;) [TdBt LyB, RdBt]
B,Cj3B; B,Cjy;B, B,Cy33B, B,R]

is nonnegative definite, this also holds for
Cd11 Cd12 Cd13
Cd12 Cd22 Cdzs | -
€413 Cq23 Cd33

This implies directly that cy; > 0,1 < i < 3 and that cgogcyg3 — c2gq > 0. It
also follows that [see, e.g., Rao and Toutenburg (1995), Theorem A74]

(4) Q= |:Cd22 Cd23] satisfies QQ~ |:cd12j| _ |:cd12] ’
Cd23 Cd33 Cq13 C413
and, consequently, that
_le
[cdlz Cd13] Q [Czﬂ

does not depend on the choice of the g-inverse @ .
We are therefore in a position to define

* _ — | Ca12
9y =cq11 — [Carz ca13 | @ [%13} .
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Then g}; depends on the following four cases (i) to (iv):

(1) If cgo9Cqss — €393 > 0, then @ is nonsingular and

2 2
_ Cd12€a33 — 2Ca12Ca13Ca23 T Cq13Case

*
qq = Cq11 262
Cq22Cd33 — 4Cg23

.. 2 2

(ll) If Cq22€C433 — Cgo3 = 0 and Cgqoo > 0, then qz = C411 — Cd12/0d22'
(iii) If cgoo = 0 and cy35 > 0, then g% = cq1q — ¢%13/Cass-
(IV) If Cqo9 = Cg4ss = O, then qz = C411-

With these definitions we can show

PROPOSITION 2. Every design d € (,;; has trC; < q}. If a design f has
all Cpj, 1 <i < j < 3, completely symmetric, then trC, = q5-

ProOF. Using formula (2), C; can also be written as
(5) Cq= Tng([flda Rd])Tda

Where Td = (L)J‘(Ib X ].k)Td, f‘d = (UJ‘(Ib ® 1k)Ld and Rd = (L)L(Ib [ 1k)Rd'

In Proposition 1 let n = ¢! and consider {S; = I,, Sy, ..., S, }, the set of
all ¢ x t permutation matrices. Then define A; = T,;S;, D; = [L,S;, R;S;],
1 < i < n. It can be shown with straightforward algebra, using (3) and (4),
that ATw' (D;)A; = STC4S,; for all 1 <i < n. On the other hand,

Y ATA, - (X AD;) (X DI'D;) (3_DIA)

=Y SITT,S; - [ L STTGLaS:, £ ST RaS; |

Y SILYL,S; > STLIR,S; | | ¥ STLYT,S;
Y STRIL,S; > STRIR,S,; Y STRIT,;S,

Y87 Cu9eS; X 8T Cu03S; | [ XS] CH1yS;
X
> 87CT,.8, Y ST Cys3S; >8] ChisS;

Since the summations are over all permutations of the numbers {1,..., ¢},
we have that SiTCd,sSi is completely symmetric for all 1 < r < s < 3. The
fact that Cgzqy, Cy19 and Cyq5 have column sums zero implies Y ST C,,..S; =
{egrsn/(t — 1)}B, + 2,,1,1T for some z,,, with z,, = 0 if » = 1. To proceed, we
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need a g-inverse of

_ |:{Cd22n/(t — 1)} B, + 2951,17 {cgo3n/(t — 1)}B, + 2231t1tT:|
{cazsn/(t — 1)} B, + 2931,17 {cgaan/(t — 1)} B, + z331,17

n 4 4
B 22 <23 11T
Qe t>+[Z23 233]@ Y

One such g-inverse, for appropriate w;;, is

-1
F-= tT (Q‘@Bt— [w” w23]®1t1?>.

Wa3 W33
Therefore
Y ATA; - (X ATD,) (X DD;) (X D74
n n2 B c
= 1cd11Bt TGo1e ([eg12> cg131® By) F ([Cjii] ® Bt)
n *
= mq(iBt'

Then Proposition 1 implies that trC,; < qJ;.

Finally note that for design f we have C., = }° SiTC rsSi/n for every 1 <
r<s<3. o

3. Methods for determination of a maximal g};. An optimal design d*
should have a completely symmetric C;., with trC,;. = ¢}, and it should have
the right proportions of blocks assigned to the treatment sequences such that
q;. is maximal. Therefore, we need to maximize the bound gj;. Define

et = tr(T5,ByTy,). iy = tr(T5,ByLy,),  ciys = tr(T%, ByRy,),
clizh = tr(B,LY,ByLa,B,), cipy = tr(B.LY,ByRy,B,) and
sy = tr(B,R}, By Ra,By).

We then get that

b
cdrs:Zcilur?s’ 157‘5853.
u=1
Note that each cfiur)s remains unchanged if the treatments are relabelled, i.e.
if Ty,, Ly, and R,, are replaced by T7,,S, Ly, S and R,,S, respectively,
where S is any ¢ x ¢t permutation matrix. We call two sequences of treatments
equivalent if one can be transformed to the other by relabelling the treatments.

Hence, two equivalent treatment sequences give the same cgj‘l' Therefore, for
given ¢ and &, we can divide the set of all possible treatment sequences into
K equivalence classes sy, ..., sg. If, for example, £ = 3 and ¢ > 3, then there
are the K = 5 equivalence classes given in Table 1.
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. u . o . . .
Since Cilrl is the same for each u receiving a treatment sequence in a given

equivalence class s,, 1 < £ < K, we can define c¢,,(¢) = Cizur)s and get cg., =
b K myc.s(€), where 7y, is the proportion of blocks assigned to the class s,.
This, however, implies that the bound g}; of any design d € (), ; ;, is determined
by the proportions 7. Note that the cy;; are linear in the m,,, but that g} is
a quotient, where the 7y, are third order in the numerator and second order
in the denominator. This makes the maximization of ¢}; difficult.

The situation is similar to the models (with carryover effects) for repeated
measurements designs. For these Kushner (1997) showed how to use the lin-
earity of the cy,, to maximize g;. This idea can be generalized to interference
models.

PROPOSITION 3. For any design d € (), ;, , define the function q : R > R
as

qq(x, y) = cq11 + 24192 + 20413 + 2C493%Y + Caz2%” + Ca33 >

Then for every x and y, we have qu(x,y) > qj. There is at least one point
(x4, ¥q) such that q4(x4, ¥q) = qy-

Proor. We can write

qa(x, ¥) = cg1 +2[ cars cars ] [;} +[xy]@Q [;}
= cq11 +2[ cq1z Ca13 | <u _Q [Cde

Cq13

+(u" —[cqzca1s] Q) @ (u -Q |:Cd12:|>

Cd13
x — | Cd12
u= + .
[y} @ [Cdm]

Then equation (4) implies that

where

_fe
qa(x, ¥) = cg11 — [ Ca12 ca13 ] @ Cjiz] +uTQu.

Therefore, g;(x, y) is minimal iff Qu = 0, that is, iff

X1 _ | Cd12 1
? [ y ] [Cdls i
This, however, holds if and only if the partial derivatives of g; with respect to
x and y are both 0. The minimum of g, equals gj;. O

From the proof of Proposition 3, we immediately get the following corollary:
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COROLLARY 1. Consider a point (x4, y4) such that the partial derivatives
dqq(x, ¥)/dx and dqq(x,y)/dy are both 0 for (x,y) = (x4,yq). Then

qq(xq, ¥a) = -

The elegance of g4(x, y) is that it can be written as a linear combination
of functions A,(x, y), which depend on the equivalence classes of treatment
sequences. Define

ho(x, y) = c11(£) + 2¢19(0)x + 2¢13(0) y + 2¢95(£)xy + Con(£)x” + 33(€) ¥,
for every 1 < ¢ < K. Then

K
qq(x,y)=0> Z Taeho(x, y).
=1

PROPOSITION 4. For a design d € €, ), consider a point (x4, y,) for which

qa(xq, ¥a) = qg- If bhy(xq, ¥q) < qa(xq, ya) = q for every 1 < ¢ < K, then
for every f € Q4 1, we have trCy < gy = aj, ;. say.

PROOF. For any f we have

K K K
gy =20 > T ho(xp, ¥r) < > T b hy(xg, ¥q) < > TreQy = qg-
=1 =1 =1

The rest follows from Proposition 2. O

Note that the proportions 7;, must be such that the partial derivatives of
Y mwaeh(x, y) at (x4, y4) are both 0 and that only such classes ¢ of sequences
are included for which A,(xg, v;) = maxy_,. g hy(x4, y4). Therefore (x4, y4)
must be either at the minimum of an 4, or at the intersection of two or more
of the h,.

In many situations there is no design fulfilling both the conditions of Propo-
sition 4 and of Proposition 2. In that case, however, one practical use of the
aj . 1, is the lower bound which it provides for the optimality criteria.

As an example, consider the A-criterion ¢ ,(C), which is the trace of the
Moore-Penrose generalized inverse of C,. From Proposition 2 we get

qr t—1 (t—1)2

With Proposition 4 it follows that

12
oa(Cpyz T2
Qi bk

4. Some examples. In this section we demonstrate the methods derived
in this paper by finding optimal or efficient designs for 2 = 3 and 4 for all
t > 2. Note that, to save space, blocks are represented as columns in Examples
1 to 4.
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4.1. The case of 3 plots per block. Table 1 lists the equivalence classes and
the corresponding c, (¢) for the case that there are £ = 3 plots per block. If
t = 2, then only the first four sequences are possible.

A design d* which has half of its sequences from s, and half of its sequences
from s, has

003, ) = b | gh. )+ hale )]

4 1 1 4t —2 3t—-2 , 3t-2 ,
=bl-—zx—-y-— xy + x° + ¥y,

3 373 3¢ 3¢ 3

If x = y = t/{2(t — 1)}, then the derivatives of q4.(x, y) with respect to x and
y are both 0. Therefore from Corollary 1, we have

, ) Tt-8
R I N C =i

To prove the optimality of g;. we have to calculate A,(x ., y4.) for every 1 <
¢ <5, and to verify that q;./b — h,(x4:, ¥4-) is nonnegative for every £. Some
algebra shows that ¢¥./b — h,(x4., y4.) equals (3¢ —4)/(4¢ —4) > 0,0, (3t —
5t)/(3t> —6t+3) > 0,0, (t —2)/(3t> —6t+3) > 0 (since t > 2)for £ =1,...,5,
respectively.

Hence, we have shown:

THEOREM 1. If k=3 and t > 2, then for any design d € (), ;, 3 we have

. 7t — 8
ter < at’b’3 = (m) b.

If a design d* has half of its blocks with treatment sequences which are equiv-
alent to [1 1 2] and half of its blocks with treatment sequences equivalent to
[12 2] and if Cg11, Cge19, Cge1zs Cgrans Cgeaz, and C g3 are completely sym-
metric, then d* is universally optimal over (), 5.

TABLE 1
The classes s, of sequences and adjusted c,4(¢) for k=3,t > 2

Repre-
¢ sentative 8c11(6)  Bepa(€)  Bes(f) 3?22“) Bea3(6) 3?;(2)
sequence t t t
1 [111] 0 0 0 2 -1 2
2 [112] 4 -1 0 2 -2 4
3 [121] 4 -3 -3 4 1 4
4 [122] 4 0 -1 4 -2 2
5 [123] 6 -2 -2 4 -1 4
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ExamMpPLE 1. If ¢+ = 2, then a 4 block example of a design fulfilling the
conditions of Theorem 1 is

1212

di = 1221 € Oy 45
2121

If t = 3 then a 12 block example of a design fulfilling the conditions of Theorem
lis
112233112233
dy=1112233231312| cQy,y,.
231312231312

If ¢t = 4, then a 24 block example is

111222333444111222333444
dj=|111222333444234134124123|cq,,,,.
234134124123234134124123

4.2. The case of 4 plots per block. If k = 4 and ¢ > 4, then we have 15
equivalence classes. The representative sequences and the c,,(¢) for the 15
classes are given in Table 2. For ¢ = 3, only the 14 classes s; to s;4 are possible.
For ¢ = 2, only the 8 classes sy, s9, S3, S4, Sg, S7, Sg and s;, are possible.

We start with the case ¢ = 2. Then consider a design d* with half of its
blocks from s, and half of its blocks from sq. In that case

qa-(x, y) = b{3hy(x, y) + Fho(x, y)} = b (2 + % — 2xy + L y?) > 20,

with equality holding iff x = y = 0. Now, £,(0, 0) = ¢;;(¢) < 2 for all 8 possible
classes s, of sequences, with equality for £ = 4, 7 and 9. Thus we have shown

THEOREM 2. If t = 2 and k = 4, then for every design d € Qy; 4 we have
trCq < ay;, 4 = 2b. If a design d* has b/4 of its blocks with each of the sequences
[1122],[2211],[1221]and [2 11 2], then d* is universally optimal over

Q'2,b,4'

Note that sequences [1 1 2 2] and [2 2 1 1] are from s4, while [1 2 2 1] and
[2 11 2] are from sg. Because %(0,0) = 2, it is possible to show that there
is another design f that has gy = ayy ;- Design f has 3b/4 of its blocks with
sequences from s, and b/4 with sequences from s;.



1738 J. KUNERT AND R. J. MARTIN

TABLE 2
The classes s; of sequences and adjusted c,4(¢) for k =4

Repre-

¢ sentl;tive 4eq1(L) de15(0) 4ey5(0) 4‘223(5) 402%(5) 40_533(0

sequence ; t ;
1 [1111] 0 0 0 3 -1 3
2 [1112] 6 -1 1 3 -2 7
3 [1121] 6 -3 -3 7 -1 7
4 [1122] 8 2 2 7 —4 7
5 [1123] 10 -1 0 7 -3 9
6 [1211] 6 -3 -3 7 -1 7
7 [1212] 8 -6 -6 7 4 7
8 [1213] 10 -5 —4 7 1 9
9 [1221] 8 -2 -2 7 -5 7
10 [1222] 6 1 -1 7 -2 3
11 [1223] 10 -1 -1 7 —4 7
12 [1231] 10 —4 —4 9 -3 9
13 [1232] 10 -4 -5 9 1 7
14 [1233] 10 0 -1 9 -3 7
15 [1234] 12 -3 -3 9 -2 9

ExXAMPLE 2. Theorem 2 requires that b is divisible by 4. Suppose b = 2
and consider the two designs

11 12
12 11
d=1gg| and f=1g,
21 21

While q; = a3,, = 4, for d we have trC; = 16/7 < 4, because Cy33 is
not completely symmetric. Design f, for which the C;;, except for C 53, are
completely symmetric, has trC,; = 3. Calculating the information matrix for all
256 possible designs, we find that f is universally optimal (since rankC,; = 1).

As hi4(0,0) = ¢11(14) = 10/4 > 2, an optimal design for ¢ = 3 must have
other sequences than just s,, s; and sq. The case k = 3 suggests the candidate
design d* with 7.5 = 7414 = % In fact, we find that q4.(x, y) = b (g - %x -
1y — sxy+ 1224+ Iy?), with a minimum at x,;. = y,;. = 3/26. Therefore g7 =
Qa-(Xge, ¥g-) = (257/104)b. It is easy to check that for every ¢, 1 < ¢ < 14,
we have 257/104 — hy(x 4, y4-) > 0, with equality holding only for £ = 5 and
£ = 14. Hence, we have shown:

THEOREM 3. If k = 4 and t = 3, then for any design d € Q3,4 we have
trCq < a3, = (257/104)b. If a design d* has b/2 blocks with treatment
sequences which are equivalent to each of [1 1 2 3] and [1 2 3 3], and if
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Ca11> Cge1as Cgerzs Cgeog, Cyiog and C 433 are completely symmetric, then d* is
universally optimal over (g4 4.

ExXAMPLE 3. The design

123312123231

[123231123312}

d"=1931123312123 | € P12s
L312123231123

fulfills the conditions of Theorem 3. The first 6 blocks of d* form a design d
which maximizes ¢} in ()5 ¢ 4 but for which trC,; < ¢}, since C ;15 and C ;3 are
not completely symmetric. However, when we calculate the A-criterion ¢ 4(C)
of d and compare it to the unattainable lower bound ¢% = (t —1)*/aj , 4, then
we find that ¢% /¢ 4(Cy) = 0.996; that is, d has an efficiency of 99.6% and is
likely to be A-optimal.

Finally, we consider the case & = 4 and ¢ > 4. We try a design with a
proportion 7 of sequences from the class s;5 and proportions (1—)/2 of classes
s5 and sy, each. The three A,(x, y) intersect at x = y = (5 — V/17)/4 = x*,
say. For x = y = x*, we have

(135 — 23V/17)¢ — (42 — 10V/17)
16t '

Note that h5(x, ¥) = hi5(y, x). Thus the derivative of h5(x + 6, x — §) with
respect to 8 is zero if § = 0. The same holds for %hf,(x, ¥)+2hi(x, ¥). It hence
remains to find a 7 such that

hs(x, y) = hyg(x, y) = hys(x, y) =

1-—7 1-—m

3 e )+ 5 ()

Jd
Ix <7Th15(x, x) —

is zero for x = x* ~ 0.219. Therefore, set

_(28-5V1T)t— (10 —2V17)
"= 217t -7

It is easy to see that the differences hs(x*, x*) — h,(x*, x*), for £ =1,2,...,15
are all positive, except for £ =4, 5, 14 and 15, when they are 0.

Hence we have an optimal design using sequence classes sz, s;4 and sy5.
Since hgz(x*, x*) —h4(x*, x*) = 0, we can construct an optimal design with
some sequences from the class s,. In fact, a second optimal design exists which
consists of s, and s;5 only having a proportion

say.

_ (23 -3V1T)t — (10 - 2V17)

6*
417t
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of sequences from the class s;5 and a proportion of 1 — 6* of sequences from s,.

Any convex combination of these two designs is also optimal. Hence, we have
shown:

THEOREM 4. If k =4 and t > 4, then for every design d € (), ; 4 we have

(135 — 23V17)t — (42 — 104/17)
16¢ ’

* —_—
trCy < ajpq = b

To achieve this bound, we would need to construct a design d* as follows:
Define

. (23— 5v17)t — (10 — 24/17) and & 2 3V17)t — (10 — 24/17)
B 217t B 417t '

Choose 0 < a < 1. Let proportions (1 — a)(1 — 6*), a(1 — 7*)/2, (1 — 7*)/2
and (am* + (1 — a)8*) of the blocks of d* have treatment sequences which are
equivalent to [1122],[1123],[123 3] and [12 3 4], respectively, such that
Ca11s Cge12> Cge13> Cge99, Cgra3 and C z.33 are completely symmetric.

REMARK. The design d* in Theorem 4 cannot exist for finite 5. To see this,
note that 1 — 6* = (1 — 7*)/2, which is irrational. Therefore, (1 — a)(1 — §*) =
(1 — a)(1 — 7*)/2 and there is no «a such that both (1 — &)(1 — 7*)/2 and
a(l — 7*)/2 are rational.

Despite the non-existence of d*, Theorem 4 has two useful aspects. First, it
suggests the structure of an efficient design, and second, a; , , gives a lower
bound for the A-value. This is demonstrated in Example 4.

EXAMPLE 4. It is possible to construct highly efficient designs if we can
approximate reasonably well the fractions 7* or 6* from Theorem 4. If ¢ = 4,
then the upper bound aj , , for trC, is approximately b x 2.49852. To construct
an efficient design, we select « = 0. We would need a proportion of &6* ~
0.617995 of blocks with a sequence from s;5. We use 2/3 instead and construct
the 36 block design

111222333444123412431432123412431432
111222333444241323144213241323144213

f= 234134124123314241323124314241323124 € Oy 36,4
234134124123432134212341432134212341

It is easy to verify that Cfyy, ..., Cr33 are completely symmetric and that
trC, ~ 89.8064. This is extremely close to the upper bound which is ap-
proximately 36 x 2.49852 = 89.94672, so that f is highly efficient (efficiency
~ 0.9984).
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With 12 blocks, a design similarly constituted to f is
123412341243

123424132314

1= 1234131424132
234143213421

€ Q4,12,4-

Its C, is not completely symmetric. However, its relative A-efficiency with

respect to the bound (¢ — 1)%/aj 15 4 is 0.968.
If we prefer not to repeat treatments, we have the universally optimal bi-
nary design using a type I orthogonal array with efficiency 0.924:

123412341234
314224132341
241331424123
432143213412

With 6 blocks, a design with relative A-efficiency 0.885, similarly constituted
to f is

131234

132413

82719243142

244321

€ 94,6,4'

For 8 treatments and 24 blocks, similar ideas lead to the design g5 € (g 94 4,
where

123456781136226547883547

123456782417583632618754
83= | 567812343261875424175836 |

L567812344788354711362265J

This design has a relative A-efficiency of 0.910. Note that each treatment is
replicated 12 times in the design g3, as in g;.

The methods of the present paper can be used for blocks with 2 > 4 as
well. However, with larger k£ the number K of equivalence classes increases
rapidly. For 2 = 5 and ¢ = 5 there are 52 classes of sequences. It is possible,
though, to show that a design d with a proportion

4\/_ (25t—3\/_t—7+\/_)

of blocks with a sequence equivalent to [1 2 3 4 5] and the other blocks with
a sequence equivalent to [1 1 2 3 3] has a maximal g = aj, 5. In the special

*
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instance ¢ = 5 (with #* ~ 0.6643), then a binary type I orthogonal array
h, which uses only sequences equivalent to [1 2 3 4 5], has an efficiency of
qr/at , 5 = 0.959. This is slightly higher than for &£ = 4.

Further work is aimed at obtaining bounds on the c;;(£) to get results for
a general k. We conjecture that ay, , is achieved by a design with a majority
of sequences from the class containing [123 --- £ —2 k£ — 1 k] and the rest of
the sequences equivalent to [112--- £ —3 k£ — 2 k — 2]. We also conjecture
that for ¢ > &k > 5, a binary type I orthogonal array will have an efficiency of
more than 0.95.
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