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A NOTE ON SEQUENTIAL DETECTION WITH
EXPONENTIAL PENALTY FOR THE DELAY

By M. Beibel

University of Freiburg

We study the continuous time analogue of the Bayes problem of Poor.
As usual the results on the optimal solution are more explicit than in the
discrete time set-up.

1. Introduction. In Poor (1998) the quickest detection problem of
Shiryayev (1963) is investigated when the linear penalty on the detection
delay is replaced by an exponential delay-penalty. Such a delay-penalty might
be more appropriate to describe situations where the losses incurred under the
post-change regime exponentiate with time. See the introduction of Poor (1998)
for a more detailed discussion related to this question. The optimal stopping
rule with respect to the exponential delay-penalty turns out to be a simple
modification of the stopping rule considered by Shiryayev. Poor works in a
discrete time setting. There the optimal threshold cannot be computed expli-
citly. We study the corresponding problem in continuous time and are able to
obtain a more explicit result.

Let B denote standard Brownian motion. Let θ be a fixed real number. Let
τ denote a nonnegative random variable independent of B such that P�τ >
t� = exp�−λt� for all t > 0 for some λ > 0. Put for 0 ≤ t < ∞,

Wt = Bt + θ�t − τ�+

and let �t = σ�Ws
0 ≤ s ≤ t�. The process W is observed sequentially. We
assume that θ and λ are unknown. The goal is to detect τ as soon as possible.
More precisely we seek a stopping time T of W that minimizes the following
Bayes risk:

R�T� = P�T < τ� + cE
(
eα�T−τ�+ − 1

)
�

where c > 0 and α > 0. The technique to solve this problem is similar to the
approach in Beibel and Lerche (1997). The main step in our arguments is to
establish for a sufficiently large class of stopping times R�T� = E�MTf�ψ̃T��,
where M is a positive local martingale, f a positive function assuming its
minimum over �0�∞� at a unique point v∗ ≥ 0 and ψ̃t a suitable nonnega-
tive stochastic process. It is then optimal to stop as soon as ψ̃ reaches the
minimizing argument v∗.
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2. Some lemmas. We first collect some useful auxiliary results. We
employ facts from the theory of stochastic processes and Itô calculus. We
refer to Karatzas and Shreve (1998) as a convenient reference. Let πt denote
P�τ ≤ t��t�. Let ψt and ψ̃t be given by

ψt =
πt

1− πt

and ψ̃t =
E�eα�t−τ�+ ��t�

1− πt

− 1�

Bayes’ theorem provides for 0 ≤ s ≤ t,

P�τ ∈ ds��t� =
λe−λseθ�Wt−Ws�−�θ2/2��t−s� ds∫ t

0 λe−λseθ�Wt−Ws�−�θ2/2��t−s� ds + e−λt
�

Some algebra therefore yields

ψt = eλteθWt−�θ2/2�t
∫ t

0
e−θWs+�θ2/2�sλe−λs ds

and

ψ̃t = e�α+λ�teθWt�θ2/2�t
∫ t

0
e−θWs+�θ2/2�sλe−�α+λ�s ds�

Standard arguments immediately lead to the following representation of R�T�
for all stopping times T with R�T� < ∞:

R�T� = E�1− πT + c�1− πT��ψ̃T + 1� − c��(1)

Let α′ = 2α/θ2 and λ′ = 2λ/θ2. For x ≥ 0 let

g�x� =
∫∞
0 e−uuγ1−1�λ′ + xu�γ2−1 du

�λ′�γ2−1��γ1�
�

where ��l� = ∫∞
0 e−uul−1 du,

γ1 = 1
2�λ′ + α′ − 1� +

√
1
4�λ′ + α′ − 1�2 + λ′

and

γ2 = 1− 1
2�λ′ + α′ − 1� +

√
1
4�λ′ + α′ − 1�2 + λ′�

Note that γ1 > 0 and so g is well-defined. The function g solves [see
Abramowitz and Stegun (1965), Section 13.1; in particular 13.1.35 (with f ≡ 0,
h�z� = λ′/z, A = a = γ1 and b = γ2 + a), 13.1.37 and 13.2.5].

θ2

2
x2g′′�x� + ��λ + α�x + λ�g′�x� − λg�x� = 0(2)

on �0�∞�. See also Section 2 of Kramkov and Mordecky (1994) for a related
discussion. We have g�0� = 1 and g′�0� = γ1�γ2 − 1�/λ′ = 1. Obviously,√�λ′ + α′ − 1�2/4+ λ′ > �λ′ + α′ − 1�/2 and so γ2 − 1 > 0. Moreover,

γ2 − 2 = − 1
2�λ′ + α′ + 1� +

√
1
4�λ′ + α′ + 1�2 − α′
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and so γ2 − 2 < 0. Therefore γ2 − 1 ∈ �0�1�. Differentiation under the integral
hence yields g′�x� > 0 and g′′�x� < 0 for x > 0. This implies that g is strictly
increasing and strictly concave on �0�∞�. Moreover,

g�x� = xγ2−1��γ1 + γ2 − 1�
�λ′�γ2−1��γ1�

�1+ o�1��

and

g′�x� = �γ2 − 1�xγ2−2��γ1 + γ2 − 1�
�λ′�γ2−1��γ1�

�1+ o�1��

as x → ∞. Therefore g grows slower than the identity and limx→∞�x/g�x�� =
+∞.

Let Mt = �1− πt�g�ψ̃t� and define Sv = inf�t ≥ 0�ψ̃t ≥ v�.

Lemma 1. �Msv∧t��t� is for all 0 ≤ v < ∞ a closable martingale on 0 ≤
t < ∞. In particular E�MSv

� = M0 = 1 for all v ≥ 0.

Proof. Let �Wt denote the innovation process Wt−θ
∫ t
0 πs ds. Then � �Wt��t�

is a standard Brownian motion [see Shiryayev (1963)]. It is easy to see, using
Itô’s formula [Karatzas and Shreve (1988), Theorem 3.6, page 153], that

dψt = ��λ + θ2πt�ψt + λ�dt + θψt d�Wt

and

dψ̃t = ��λ + α + θ2πt�ψ̃t + λ�dt + θψ̃t d�Wt�

Moreover [see Shiryayev (1963)],

dπt = λ�1− πt� dt + θπt�1− πt� d�Wt�

Itô’s formula and (2) therefore imply

d��1− πt�g�ψ̃t�� = θ�1− πt��g′�ψ̃t�ψ̃t − g�ψ̃t�πt� d�Wt�

and so Mt is a positive local martingale. On 0 ≤ t ≤ Sv we have 0 ≤ ψ̃t ≤ v
and therefore

E

(∫ Sv

0
�1− πt�2�g′�ψ̃t�ψ̃t − g�ψ̃t�πt�2 dt

)
≤ κE�Sv�

for some constant κ depending on v. Now ψ̃t ≥ ψt implies Sv ≤ inf�t ≥ 0�πt ≥
v/�1+ v��. Therefore,

P�Sv > t� ≤ P

(
1− πt >

1
1+ v

)
≤ �1+ v�E�1− πt� = �1+ v�e−λt�

Hence E�Sv� < ∞. The assertion now follows either directly from Problem 2.18
on page 144 in Karatzas and Shreve (1988) or from the Burkholder–Davis–
Gundy inequalities [Theorem 3.28 on page 166 in Karatzas and Shreve (1988)
with m = 1].
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For x ≥ 0 let f�x� = �1+ c�x + 1��/g�x�. Equation (1) can now be restated
as

R�T� = E�MTf�ψ̃T�� − c(3)

for all stopping times T with R�T� < ∞.

Lemma 2. There exists a unique v∗ ∈ �0�∞� such that 0 < inf 0≤v<∞ f�v� =
f�v∗�.

Proof. The properties of g yield inf 0≤v<∞ f�v� > 0 and the existence of
at least one v∗ ∈ �0�∞� with 0 < inf 0≤v<∞ f�v� = f�v∗�. The uniqueness of v∗

follows from �g�x�2f′�x��′ = −�1+ c�x+ 1��g′′�x� > 0. Since g′�0� > c/�1+ c�,
g�x� crosses the line 1+ xc/�1+ c�. Therefore 1+ cv/�1+ c� < g�v� for some
v > 0. This implies f�v� = �1+ c�1+ v��/g�v� < �1+ c� = f�0� for some v > 0.

Remark 1. v∗ solves the implicit equation

g�x�
g′�x� − x − 1 = 1

c
�

Now g�x�/g′�x� = �x/�γ2 − 1���1+ o�1�� as x → ∞. Therefore

v∗ = 1
c

γ2 − 1
2− γ2

�1+ o�1��

as c → 0 for fixed α� λ and θ.

3. Main result. Let v∗ ∈ �0�∞� be as in Lemma 2 above. We now prove
that T = Sv∗ minimizes R�T� among all stopping times T of W.

Theorem 1. For all stopping times T of W, R�T� ≥ f�v∗� − c = R�Sv∗�.

Proof. Let T be a stopping time of W with R�T� < ∞. Lemma 2 implies
for any n ≥ 1 that E�MT∧Sn

� = 1 and so (3) gives

R�T ∧ Sn� + c = E�MT∧Sn
f�ψ̃T∧Sn

��
≥ f�v∗�E�MT∧Sn

� = f�v∗��
Now limn→∞ R�T ∧ Sn� = R�T� yields R�T� ≥ f�v∗� − c. The equality for
T = Sv∗ follows from R�Sv∗� + c = E�MSv∗f�ψ̃Sv∗ �� = f�v∗�E�MSv∗ � = f�v∗�.

Remark 2. If α goes to zero and simultaneously cα goes to some constant
c̃ > 0, then the exponential delay penalty c�exp�α�t − τ�+� − 1� converges to
the linear delay penalty c̃�t− τ�+ considered in Shiryayev (1963). Let R̃�T� =
P�T < τ� + c̃E��T − τ�+� and

F�x� = 2
θ2

(
1− x

x

)λ′

eλ′/x
∫ x

0
e−λ′/w

(
w

1− w

)λ′
1

w�1− w�2 dw�
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In Shiryayev (1965) it is shown that T̃ = inf�t ≥ 0�ψt ≥ ṽ� minimizes R̃�T�,
if ṽ is the solution of F�ṽ/�ṽ + 1�� = 1/c̃. Obviously, ψ̃t → ψt when α → 0.
A substitution argument yields

F�x/�1+ x�� = 2x
θ2�λ′ + 1�

(
1+ 1

λ′

∫ ∞

0
e−u

(
λ′

λ′ + xu

)λ′+1

du

)
�(4)

We will now show that

1
α

(
g�x�
g′�x� − x − 1

)
→ F�x/�1+ x��

for fixed θ and λ. We have

g�x�
g′�x� − x − 1 = 2− γ2

γ2 − 1
�x + 1� + �λ′ − γ1���γ1�

�γ2 − 1� ∫∞
0 e−uuγ1�λ′ + xu�γ2−2 du

+
∫∞
0 e−uuγ1−1�λ′ − u���λ′ + xu�γ2−2 − 1� du

�γ2 − 1� ∫∞
0 e−uuγ1�λ′ + xu�γ2−2 du

�

This yields after some algebra

lim
α→0

1
α

(
g�x�
g′�x� − x − 1

)
= 2x

θ2�λ′ + 1�
(
1+ 1

��λ′ + 1�
∫ ∞

0

e−uuλ′

λ′ + xu
du

)
�(5)

Equalities of (4) and (5) follows from

∫ ∞

0
e−uuλ′−1 du

∫ ∞

0
e−u

(
λ′

λ′ + xu

)λ′+1

du

= �λ′�λ′+1
∫ ∞

0
e−u

(∫ u

0

(
u − z

λ′ + xz

)λ′−1 1
�λ′ + xz�2 dz

)
du

= �λ′�λ′+1
(∫ ∞

0
e−u 1

λ′ + xu

∫ u/λ′

0
wλ′−1 dw

)
du

=
∫ ∞

0
e−u uλ′

λ′ + xu
du�
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