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Fixed case-control studies separately collect a case sample and a con-
trol sample with the two sample sizes being fixed prior to studies and
sometimes arbitrarily chosen. This often results in loss of efficiency of case-
control designs in terms of cost-saving or time-saving of the studies. We
study sequential case-control designs and, in connection with treatment
allocation and stochastic approximation, derive a simple sampling rule that
leads to optimal case-control designs. Some important issues such as fixed-
width confidence intervals and sequential tests of hypotheses with possible
early stopping to save time or costs, which cannot be answered with fixed
case-control designs, are shown to be naturally solved with the derived
optimal sequential case-control designs.

1. Introduction. The popularity of case-control methodology is mostly
attributed to its two major advantages: cost-saving and time-saving. However,
despite extensive research and practice on case-control studies, the cost-saving
(or sample saving) advantage has not been fully explored or justified and
such an impression only remains vague. In addition, in terms of time-saving,
fixed case-control designs may be inferior when an early stopping of studies
is required for some reason.
Classical fixed case-control studies are carried out by sampling separately

from case and control populations with the two sample sizes being fixed and
often arbitrary. In fact, how much cost-saving a case-control sampling can
achieve depends mostly on the appropriate choice of the ratio of case and
control sample sizes. An arbitrarily chosen ratio may result in loss of cost
efficiency since such an arbitrary choice is rarely optimal. Fixed case-control
designs usually cannot fully achieve cost-saving advantage to our expectation
since the optimal ratio is not known prior to the studies. In addition, fixed case-
control studies are also inferior, in terms of time-saving, to properly designed
sequential case-control studies when cases occur sequentially in time or when
there are ethical motivations for trying to terminate case-control studies early
for reasons such as saving of samples (see the following example of Nurses
Health Study) or reaching a conclusion that requires expeditious public health
policy decisions [see O’Neill (1998)].
The above discussed issue is perhaps most clearly reflected in some cost

conscious matched case-control studies where cases occur sequentially in time
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and one must decide a proper number of controls to be selected to match each
newly available case. In two-phase or multiphase case-control studies, the
proper ratio of case and control sizes must also be determined at each phase.
In practice, many case-control studies have the common characteristic that the
information on cases and controls are collected sequentially. See, for example,
Sartwell, Masi and Arthes (1969), Vessey and Doll (1968), Boston Collabora-
tive Drug Surveillance Project (1973), O’Neill and Anello (1978), Pasternack
and Shore (1981), O’Neill (1983) and O’Neill (1998). O’Neill and Anello (1978)
first pointed out the advantages of sequential case-control designs. Based
on a review of published studies on the relation between breast cancer and
reserpine (a widely used antihypertensive agent), including six fixed case-
control studies that produced inconclusive results [see, e.g., Heinonen, Shapiro
and Tuominen (1974) and Mack, Handerson and Gerkins (1975)], O’Neill
and Anello (1978) concluded that fixed case-control studies may not be effi-
cient designs for studies with confirmatory (e.g., relation/no relation) pur-
poses. Thereupon they proposed a simple stopping rule for case-control sam-
pling based on the Wald SPRT. However, their statistical analysis is limited
to only matched case-control studies with one dichotomous covariable (i.e.,
exposure/nonexposure) and fixed matching ratio. The critical problem of how
many controls should be matched with each case was not studied there [see
also O’Neill (1983) and Pasternack and Shore (1981)]. To the best of our knowl-
edge, there has been no further development in statistical theory or method-
ology regarding optimal sequential case-control designs.
The ethics and advantages of sequential case-control designs may be best

illustrated through a specific example as follows. Consider the Nurses Health
Study [Stampfer, Willett, Coldits, Roser, Speizer and Hennekens (1985); see
also Robins, Rotnitzky and Zhao (1994)]. At the beginning of the study, a blood
serum sample was obtained from each of the 100,000 study subjects and frozen
for later analysis. After a follow-up, some of the subjects developed coronary
artery disease, which are thus classified as cases, and the rest are disease-free,
which are controls. Some coinvestigators wish to study the effect upon the
disease development of the antioxidants serum vitamins A and F recorded at
the beginning of the study. Due to the high cost of the laboratory analysis and
to the small amount of stored serum per subject, only 2% of the stored serum
(namely 2000 subjects) is allowed to be used by the coinvestigators. A natural
problem is how they should decide the sizes of case and control samples so
that the most accurate estimation of the regressor-related (namely, vitamins A
and B) parameters can be obtained. Or, more specifically, if they are allowed
to take one or a number of samples at a time till 2000 samples are taken,
how should they design a rule of allocating the number of case and control
samples at each time so that the final estimator based on all 2000 samples
would be the most accurate? More practically, suppose the goal of the study is
to obtain a confidence interval with a certain confidence level (say 95%) and
a fixed-width for the vitamin A related parameter, then with an appropriate
sequential sampling rule, they may achieve the purpose without using up the
allowed 2000 samples and thus make a considerable saving of blood serum
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for other studies. Only sequential case-control designs rather than fixed case-
control designs can deal with these important issues appropriately.
In this paper, we provide an extensive analysis of sequential case-control

designs. We derive a simple rule of sequential case-control sampling that leads
to the optimal ratio of case and control sample sizes and thus ensures the opti-
mality in terms of the accuracy of the estimation of regression parameters per
sample or per cost unit. The theoretical foundation of such a sequential design
is the extension of the asymptotic normality of the semiparametric maximum
likelihood estimator (MLE) for fixed case-control designs to sequential case-
control designs based on the now popular martingale theory. We show that the
optimality problem is essentially to design the sampling so that the ratio of the
case and control samples approximates the root of an equation. In this regard,
it bears a spiritual resemblance to stochastic approximation [see, e.g., Robbins
and Monro (1951), Lai and Robbins (1979, 1981) and Wu (1985a, 1985b)]. By
so doing we further prove the proposed simple sequential design is indeed opti-
mal, along with a discussion of an important issue related to treatment allo-
cation problems [cf. Efron (1971) and Wei (1977)]. The proposed rule is based
on a key convex property of the asymptotic variance of the semiparametric
MLE as a function of the ratio of case and control sample sizes. For practi-
cal reasons, the sequential sampling rules are extended to group sequential
designs. Fixed-width confidence intervals and sequential tests of hypotheses
are then naturally derived from the optimal sequential case-control designs.
Furthermore, we consider the general cost efficiency with the cost of collecting
a case and a control being possibly unequal.
In the next section, we describe the case-control logistic regression model

and extend the classical asymptotic normality of the semiparametric MLE for
fixed case-control designs [Anderson (1972), Prentice and Pyke (1979), Bres-
low and Day (1980) and Breslow (1996)] to sequential case-control designs. In
Section 3, we derive a simple sequential sampling rule and prove its optimal-
ity. We also discuss the connection between the problem considered and the
classical statistical problems of treatment allocation and stochastic approxi-
mation. To cope with practical situations, in Section 4 we extend the results
in Section 3 to sequential matched case-control designs and group sequential
case-control designs. Fixed-width confidence intervals and sequential tests of
hypotheses are addressed in Section 5. For simplicity of presentation, Sec-
tions 3–5 deal with scalar covariables. Generalizations to covariables of high
dimension are considered in Section 6, along with a discussion of cost effi-
ciency. All proofs are deferred to the Appendix.

2. Case-control logistic regression model. Let δ be the dichotomous
response given a p-dimensional covariable X with δ = 1 indicating disease
and δ = 0 disease-free. A logistic regression model assumes

P�δ = 1�X = x� = u�α+ β′x� = 1−P�δ = 0�X = x�	(2.1)

where u is the logistic function, that is, u�t� = et/�1+ et�, and α and β are the
intercept and p-dimensional regressor-related parameters. Throughout the
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paper, we let α0 and β0 be the true values of α and β and denote ū = 1 − u
and u̇ = uū. Let φ be the population density of X with respect to a certain
measure µ or Rp and let φ1 and φ0 be, respectively, population case and
control densities (i.e., the conditional densities of X given δ = 1 and given
δ = 0). Then the case-control logistic model assumes

φ1�x� ∝ u�α0 + β′
0x�φ�x� and φ0�x� ∝ ū�α0 + β′

0x�φ�x�	(2.2)

or, equivalently,

φ1�x� = exp�α∗ + β′
0x�φ0�x� with e−α

∗ =
∫
Rp

exp�β′
0x�φ0�x�µ�dx��(2.3)

Notice that the intercept parameter α vanishes and thus is unidentifiable.

Definition 2.1. A sequential case-control sampling takes samples �xi	 δi�,
i ≥ 1, with xi being the observed covariate of the ith sample and δi = 1 or 0
indicating the ith sample being a case or a control, and the sampling scheme
is such that δi is �i−1 measurable and xi is sampled from case or control
population according as δi = 1 or 0, where �i ≡ σ���xj	 δj�	 j ≤ i�	�0� for
i ≥ 1 and �0 is the trivial σ-algebra.

Fixed case-control designs can be viewed as special cases of sequential case-
control designs with δi being nonrandom. For a sequential case-control design,
δi is possibly random but must be predictable with respect to the filtration
��n�, that is, must not be dependent on future samples �xi	 �xj	 δj�	 j > i�.
Throughout the paper, we let n1 = �n

i=1δi and n0 = n−n1 be the sizes of cases
and controls up to the nth sample, and let rn = n1/n be the case percentage
in the first n samples. Observe that n1, n0 and rn are adapted to �n−1 and
can all be random in a sequential case-control design. The full likelihood of
the first n observations ��x1	 δ1�	 � � � 	 �xn	 δn�� is

Lf
n�β	φ0� =

n∏
i=1

exp�δi�α∗ + β′xi��φ0�xi�	(2.4)

which is formally the same as fixed case-control designs. Profiling over φ0, one
obtains the profile likelihood of β, denoted by Ln, and the log-profile likelihood
of β, denoted by ln, ignoring a constant multiplier,

Ln�β� =
n∏
i=1

uδi�α̂n�β� + β′xi�ū1−δi�α̂n�β� + β′xi�	

ln�β� =
n∑
i=1

�δi�α̂n�β� + β′xi� − log�1+ exp�α̂n�β� + β′xi���	
(2.5)

where α̂n�β� is a function of β, being the unique solution to

n∑
i=1

�δi − u�α̂n�β� + β′xi�� = 0�(2.6)
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Differentiating the log-profile likelihood ln�β� with respect to β, one obtains
the semiparametric maximum likelihood estimating equation

l̇n�β� =
n∑
i=1

�xi�δi − u�α̂n�β� + β′xi��� = 0	(2.7)

with α̂n�β� satisfying (2.6). Let β̂n be the semiparametric MLE of β [i.e., solu-
tion to (2.7)] and let α̂n ≡ α̂n�β̂n�. Then, by combining (2.6) and (2.7), we know
(α̂n	 β̂n) is the unique solution to

Gn�α	β� ≡
n∑
i=1

[(
1
xi

)
�δi − u�α+ β′xi��

]
= 0�(2.8)

This gives rise to the remarkable finding in Anderson (1972) and Prentice
and Pyke (1979) that they are formally identical to the prospective maximum
likelihood estimating equation with parameter (α	β) although the two sam-
pling schemes are totally different. However, one should notice that l̇n in (2.7)
instead of Gn in (2.8), is the semiparametric maximum likelihood estimating
function for case-control sampling and that (2.6) should be regarded as only a
restriction condition.
Let E1 and E0 denote the expectation with respect to functions of x with

densities φ1 (case) and φ0 (control), respectively. Throughout the sequel we
define

αr = log�r/�1− r�� − log�p1/�1− p1�� + α0	(2.9)

where p1 is the population case percentage [i.e., p1 = ∫
Rp u�α0 + β′

0x�
×φ�x�µ�dx�]. Then αr is the unique value of α satisfying

rE1�g�x	 r�ū�αr + β′
0x�� = �1− r�E0�g�x	 r�u�αr + β′

0x��(2.10)

for any function g.

Proposition 2.1. Assume
∫ �x�2φ�x�µ�dx� < ∞. If min�n1	 n0� → ∞ a.s,

α̂n − αrn → 0 and β̂n → β0 a.s. If rn → γ in probability for some constant

γ ∈ �0	1�, (α̂n
β̂n

) − (αrn
β0

)
is asymptotically normal with mean 0 of the order of

n−1/2, and in particular,

�n��rn��1/2�β̂n − β0� → N�0	 Ip�	
�−l̈n�β̂n��1/2�β̂n − β0� → N�0	 Ip�	

(2.11)

where Ip is the p× p identify matrix,

− l̈n�β̂n� =
n∑
i=1

(xi − ∑n
j=1 xju̇�α̂n + β̂′

nxj�∑n
j=1 u̇�α̂n + β̂′

nxj�

)⊗2
u̇�α̂n + β̂′

nxi�
(2.12)

and ��r� is defined in the following (2.13). Equation (2.11) is still true with
l̈n�β̂n� replaced by l̈n�β0� or with ��rn� replaced by ��γ�.
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We now give the definition of ��r�. Define
��r� = r�1�r� + �1− r��0�r�	

with

�1�r� = E1��x−A�r��⊗2u̇�αr + β′
0x��	

�0�r� = E0��x−A�r��⊗2u̇�αr + β′
0x��

and

A�r� = rE1�xu̇�αr + β′
0x�� + �1− r�E0�xu̇�αr + β′

0x��
rE1�u̇�αr + β′

0x�� + �1− r�E0�u̇�αr + β′
0x��

�(2.13)

An estimator of ��r� as a function of r can be naturally derived by plugging
in the estimators of αr, β and the empirical analogues of φ1 and φ0. This will
be presented in (3.3).

3. Optimal case-control designs. For simplicity of illustration, we con-
sider a one-dimensional parameter β and covariate X in this section and the
following Sections 4 and 5. A sequential case-control design requires δn ∈ �n−1
which is equivalent to rn ∈ �n−1. A sequential sampling rule is always char-
acterized by the predictable random sequence �δn� or �rn�.

Definition 3.1. A sequential case-control design with sample case per-
centage �rn� is asymptotically efficient (optimal) if, for any ε > 0,

lim
n→∞P���r̃n� ≤ �1+ ε���rn�� = 1(3.1)

for any predictable sequence �r̃n�.

Differentiating l̇n�β� and taking expectation, one can see ��rn� approx-
imates −El̈n�β0�/n. Thus the above definition fits the general information
criteria with the profile score l̇n�β� treated as the true score by the semi-
parametric nature of the model. The above definition can also be viewed as
motivated from the Pitman efficiency based on the asymptotic variance of
the semiparametric MLF β̂n. To characterize optimal sequential designs, we
examine the variance function 1/��r� as a function of r.

Proposition 3.1. 1/��r� as a function of r on the interval [0	1] is a strictly
convex function with a unique minimum achieved at r = γ0, which is the unique
solution to

D�r� ≡ r

1− r
�1�r� −

1− r

r
�0�r� = 0�(3.2)

A sequential case-control design with sample case percentage �rn� is asymp-
totically efficient if and only if rn → γ0 in probability as n → ∞.
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To obtain an optimal sequential design, we essentially need to adaptively
estimate γ0. Based on the estimation, we then decide the sampling of a case
or a control in the following step so that the combined sample case percentage
approaches the estimated γ0. A natural estimator of γ0 arises as the solution to
the sample analogue of D�r� = 0. One slight complication in the estimation of
D�r� occurs because �0�r� and �1�r� as defined in (2.13) depend on αr which,
by its definition in (2.9), involves the inestimable α0 and p1. Since α̂n−αrn → 0
as min�n1	 n0� → ∞ and αr − αrn = log�r/�1 − r�� − log�rn/�1 − rn��, αr can
be estimated by

α̂r ≡ α̂n + log�r/�1− r�� − log�rn/�1− rn�� = α̂n + αr − αrn�

Now we can analogously define the estimators of �1�r�	 �0�r�	 ��r� and D�r�.
For simplicity, we suppress the subscript n and let

�̂�r� = r�̂1�r� + �1− r�̂�0�r�	
with

�̂1�r� =
1
n1

n∑
i=1

�δi�xi − Â�r��⊗2u̇�α̂r + β̂
′
nxi��	

�̂0�r� =
1
n0

n∑
i=1

��1− δi��xi − Â�r��⊗2u̇�α̂r + β̂
′
nxi��	

(3.3)

where

Â�r� =
�r/n1�

∑n
i=1�δixiu̇�α̂r + β̂

′
nxi�� + ��1− r�/n0�

∑n
i=1��1− δi�xiu̇�α̂r + β̂

′
nxi��

�r/n1�
∑n

i=1�δiu̇�α̂r + β̂′
nxi�� + ��1− r�/n0�

∑n
i=1��1− δi�u̇�α̂r + β̂′

nxi��
�

It is straightforward to check that n�̂�rn� = −l̈n�β̂n�. Define

D̂�r� = r

1− r
�̂1�r� −

1− r

r
�̂0�r�	(3.4)

and let γ̂ be the solution to

D̂�r� = 0�(3.5)

We now present an efficient sequential case-control sampling rule. To avoid
trivialities, we assume that an initial set ofN1 �= 0 cases andN0 �= 0 controls
are always available.

An optimal sequential case-control sampling rule. At stage n with n1 cases
and n0 controls being already sample, if D̂�rn� < 0, one takes the next sample
as a case; if D̂�rn� > 0, one takes the next sample as a control; if D̂�rn� = 0,
one can choose to take the next sample as either a case or a control; that is,

δn+1 =


1	 if D̂�rn� < 0;
0	 if D̂�rn� > 0;
0 or 1	 if D̂�rn� = 0.

(3.6)
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Remark. The above defined sequential sampling rule has a computational
virtue in that we need not find the solution to (3.5); one only needs to compute
D̂�r� at r = rn. Notice that α̂rn = α̂n. Thus no further computations are
needed except for those involved in the computation of variance estimation
[i.e., −l̈n�β̂n�]. The resulting simplicity of the algorithm is due to the convexity
of 1/��r� given in Proposition 3.1.
A major issue of sequential analysis is the justification of the consistency of

a sequential allocation rule which, in our case, is whether the above naturally
derived sampling rule will indeed lead to an asymptotically efficient design,
that is, whether rn → γ0 as n → ∞. This is not a trivial matter since it must
be rigorously argued that the above defined sampling rule will at least ensure
min�n1	 n0� → ∞ as n → ∞. Sequential case-control sampling appears to
resemble the treatment allocation or multiarmed bandit problems although
their ethics are quite different. In treatment allocation problems in clinical
trials or multiarmed bandit problems in stochastic control, the consistency of
an intrinsically well-defined allocation rule is often rather difficult to justify,
mostly because the samples at early stages may be extremely atypical, lead-
ing to off-range estimation of parameters and derailing the intended sampling
paths. For example, in sequential clinical trials with patients at their entries
facing a choice of two or more treatments, an allocation rule may result in the
persistence of assigning patients to some particular treatments. Hence the
number of patients allocated to other treatments may remain bounded even
when the total number converges to infinity. It then obviously leads to incon-
sistency since the information about the effects of these treatments cannot
be consistently justified based on finite samples. To remedy this drawback,
many ad hoc approaches were proposed to force the balance of allocation by
sometimes artificially assigning patients to treatments that were not previ-
ously much used [see, e.g., Efron (1971)]. In our case, such a situation, if it
occurs, would be particularly disturbing, since it leads to inconsistency of the
estimation of β which is precisely the goal of the study. Fortunately, the design
based on (3.6) automatically converges to the balanced asymptotically efficient
design as shown in the following proposition and thus need not be artificially
adapted to force design balance and consistency.

Proposition 3.2. Assume
∫
eε�x�φ�x�µ�dx� < ∞ for all ε > 0 . The sequen-

tial case-control sampling based on rule (3.6) is asymptotically efficient. In fact,
rn → γ0 a.s as n → ∞.

Remark. From the above analysis, it becomes clear that sequential case-
control sampling can be viewed as a dual problem to stochastic approxima-
tion with binary response [cf. Wu (1985a,b)]. Classical stochastic approxi-
mation designs the covariate to approximate the root of a function whose
response with an error is observed [see Robbins and Monro (1951), Lai and
Robbins (1979, 1981)]. For the binary response model, Wu (1985a,b) consid-
ered a maximum likelihood recursion procedure to approximate the lethal
dose of a certain percentile of response probability which is a solution to an
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Fig. 1. The average of rn versus sample size n.

equation. The similarities between those studied in Wu (1985a,b) and our opti-
mal sequential case-control designs are that both designs are to approximate
the roots of certain nonlinear equations and both are based on the (parametric
or semiparametric) likelihood approach. The differences are that the former
designs the covariates and the latter designs the response and, in addition, the
value of the root is the goal of the former but not the latter. In other words, the
precise value of γ0 in (3.2) plays only an indirect role in our ultimate interest
in accurately estimating β.

Two simulation examples are presented in each of the following figures. In
both examples, we let the density of controls be φ0�t� = 3�2t − 1�2, t ∈ �0	1�.
The true value of β, β0, is chosen to be 0 in example (a) and 4 in example (b).
By some theoretical calculation, it is known that the optimal case percentage
γ0 is 0.5 in example (a) and is 0.68 in example (b). In the simulations, we start
with an initial random sample which contains three cases and seven controls,
sequentially select additional cases or controls by the optimal sampling rule
(3.6) and stop when the sample size n reaches 200. Over 500 simulations,
we compute, for every 10 ≤ n ≤ 200, the average of the case percentage
rn, the empirical standard deviation of rn, the average of β̂n, the empirical
and (the average of) estimated standard deviations of β̂n and the coverage
probabilities of confidence intervals for β at nominal levels of 95% and 90%.
These quantities are plotted against the sample size n in the following figures.
The dotted horizontal bars in Figure 1 indicate the optimal case percentage

γ0, which equals 0.5 in (a) and 0.68 in (b). Figures 1 and 2 clearly demonstrate
that rn converges to γ0, which is theoretically announced in Proposition 3.2.
Figures 3–5 show the empirical evidence of the consistency of β̂n and the valid-
ity of its normal based inferences, which are established in Proposition 2.1.

4. Optimal group sequential case-control and sequential matched
case-control designs. The standard sequential design discussed in the pre-
ceding section assumes one takes one case or control at a time and each time
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Fig. 2. The empirical standard deviation of rn versus sample size n.

Fig. 3. The average of β̂n versus sample size n.

Fig. 4. The empirical and estimated standard deviations of β̂n versus sample size n.
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Fig. 5. The coverage probabilities at 95% and 90% nominal levels versus sample size n.

the sampling decision is made based on previously collected samples. It is
useful when the allowed total sample size is expectedly of a moderate number
(say 20) due to the high cost of covariable ascertainment or different avail-
ability of samples. In some situations, such a standard sequential design may
not be convenient since it may require many steps of sampling if the allowed
total sample size is fairly large. Practitioners often appeal to group sequen-
tial sampling, that is, one takes a batch of samples at a time with the size of
a batch being possibly random but it must be predictable. Consider a group
sequential design with sizes of batches �mi� where mi is the size of samples
at stage i for i ≥ 1. Then mi ∈ �ki

where ki =
∑i−1

j=0mj (with m0 ≡ 0). Group
sequential designs are also special cases of sequential case-control designs
defined in Definition 2.1.
In group sequential designs, mi is usually chosen by practitioners for rea-

sons concerning the expeditions collection or processing of a sample. Consider
first the case of fixedmi. Assume at the completion of stage i−1 we have totally
sampled n =∑i−1

j=0mj subjects which contains n1 cases and n0 controls. Recall

that γ̂ is the solution to D̂�r� = 0. Then at stage i, one takes m1i cases and
mi−m1i controls with m1i = max�0	min��n+mi�γ̂−n1	mi��. In this way, at
the completion of stage i, we will have case percentage �n1 +m1i�/�n+mi� =
max�n1/�n+mi�	min�γ̂	 �n1+mi�/�n+mi��� which is the closest possible to γ̂.
Here and in the following, we assume sample sizes can be fractional numbers
to avoid trivial but notationally difficult truncations. In practice, the step of
solving D̂�r� = 0 may not be necessary if the sizes of batches at each stage are
relatively small (say 10) as compared with the practically limited or allowed
total sample size (say 1000). In this case, one can decide the sampling of the
next stage as being all cases or all controls depending on whether D̂�rn� is less
than 0 or greater than 0. Thus, the computational load of the procedure may
be lessened by skipping the step of solving D̂�r� = 0 or minimizing 1/�̂�r�.
For group sequential sampling with random sizes of batches chosen by prac-

titioners, we propose a sampling rule based on the principle of minimizing
1/��r�. Specifically, suppose n samples containing n1 cases and n0 controls
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have been collected by the end of stage i−1. One solves D̂�r� = 0 for the solu-
tion r = γ̂ and decides the sampling at stage i such that �n1+m1i�/�n+mi� =
γ̂, where m1i and m0i are the sizes of cases and controls to be taken at stage
i and mi = m1i + m0i. Obviously there are infinite solutions to this equa-
tion. To avoid the deviation of �n1 + m1i�/�n + mi� from γ0 resulting from
the inaccuracy of γ̂ as an estimator of γ0, we propose to use the smallest
mi such that (m1i	mi) solves the above equation. Simple algebra shows, at
stage i, that one should take m1i = �nγ̂ − n1�/�1 − γ̂� cases and no controls
if n1/n < γ̂	m0i = −�nγ̂ − n1�/γ̂ controls and no cases if n1/n > γ̂, and any
moderate sizes of cases and controls if n1/n = γ̂.
Sequential matched case-control studies are essentially special cases of

group sequential case-control studies. The feature of matched case-control
design is that there is one new case at each stage and we must decide the
number of controls to be selected to match the case. An optimal design can be
found by the same principal. For sequential matched case-control designs, the
number of cases at every stage is 1. With the same notation and argument
as in the above paragraph, we have m1i = 1 and m0i should be such that
�n1 + 1�/�n+ 1+m0i� = γ̂.
The above proposed group sequential case-control designs and sequential

matched case-control designs can be proved to be asymptotically efficient in a
way similar to the proof of Proposition 3.2. Here we omit the details.

5. Fixed-width confidence intervals and sequential tests of hypothe-
ses. Suppose now the goal of a study is to obtain a fixed-width confidence
interval or a test of hypotheses at a fixed significance level for the parameter
β. For this purpose, an early stopping of sampling may be desired. The advan-
tage of an optimal sequential sampling rule along with a proper stopping rule
is that it achieves the goal with the smallest total sample size.
In sequential analysis, the fixed-width confidence interval is a classical topic

dating back to Stein (1945) [cf. Blum and Rosenblatt (1966) and Chow and
Robbins (1965), among others] and has since been extensively studied. In par-
ticular, Chang and Martinsek (1992) addressed fixed-size confidence regions
for prospective logistic regression models. Although our problem in sequential
case-control designs is of a semiparametric nature, with the available optimal
design, we can adopt with slight modifications the asymptotic consistency and
efficiency for fixed-width confidence intervals given by Khan (1969) for para-
metric models. Along the lines of Khan (1969), we present the definitions in
the following.

Definition 5.1. A fixed-width confidence interval �β̂T − d	 β̂T + d� for β
associated with a sequential case-control sampling �δn� and a stopping time
T = T�d� at length 2d and confidence level (1−ᾱ) is asymptotically consistent if

lim
d→0

P�β0 �∈ �β̂T − d	 β̂T + d�� ≤ ᾱ	(5.1)
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and is asymptotically efficient if, in addition to (5.1),

lim
d→0

d2E�T���γ0�/z2�ᾱ/2� = 1	(5.2)

where γ0 is defined in (3.2), z�ᾱ/2� is the 1 − ᾱ/2 percentile of the standard
normal distribution.

Slightly different from the analogous classical definitions associated only
with the stopping rule, the above definition of asymptotic efficiency is also
associated with sequential sampling rules. In fact, an inefficient sequential
sampling will never produce an asymptotically efficient fixed-width confidence
interval, regardless of how the stopping time is defined. Now we present a
fixed-width confidence interval with stopping time

N = inf

{
n ≥ 1:n ≥ z2�ᾱ/2�

d2�̂�γ̂�

}
�(5.3)

The following proposition shows that a fixed-width confidence interval based
on sampling rule (3.6) and stopping time (5.3) is indeed asymptotically con-
sistent and asymptotically efficient.

Proposition 5.1. In a sequential case-control sampling with sampling rule
(3.6), a fixed-width confidence interval �β̂N−d	 β̂N+d� based on the stopping
timeN defined in (5.3) is asymptotically consistent and asymptotically efficient
under the condition of Proposition 3.2.

Another important issue in sequential analysis is sequential tests of hypoth-
esis which may also lead to an early stopping of sampling with desired signif-
icance level and power and thus save samples or costs of the study. There are
at least three classical asymptotically equivalent test procedures (Wald test,
score test and χ2 test) that are widely used and studied in the literature and
extended in sequential analysis. In sequential tests of hypotheses, it is often
convenient to consider the score function-based test procedures. For sequential
case-control sampling, since the full likelihood is unknown by the semipara-
metric nature of the model, it is natural to use the profile score function l̇n�β�
defined in (2.7).
There are rich literatures on a variety of sequential test procedures, and the

important issues such as identification or approximation of the power func-
tion and expected sample sizes are rather well studied, especially for the score
function-based test procedures. In our case, the problem is slightly compli-
cated by the sequential sampling rules; however, with the optimal sequential
sampling rule in (3.6), the classical theory of sequential tests can largely be
carried over with no further difficulty. To ensure the validity of such appli-
cations, the essential ingredient is Gaussian approximation as follows. For
rn → γ in probability for some nonrandom γ ∈ �0	1�, as a process of n,

Gn�αrn	 β0� ≈
n∑
i=1

[(
1
xi

)
�δi−u�αγ+β0xi��−E

[(
1
xi

)
�δi−u�αγ+β0xi��

∣∣∣�i−1

]]
�
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The approximation implies

l̇n�β0� ≈
n∑
i=1

[
�xi −A�γ���δi − u�αγ + β0xi��

−E
[
�xi −A�γ���δi − u�αγ + β0xi��

∣∣∣�i−1
]]
	

where the function A is defined in (2.13). Thus, l̇n�β0�, as a process of n,
is approximately a Brownian motion on a time scale of n��γ�. The above
approximations can be derived similarly to the proof of Proposition 2.1.
The fact that the score function at the true β0	 l̇n�β0�, behaves like a

Brownian motion in a changed time scale makes the sequential test prob-
lem fall in the framework of classical sequential analysis. In particular, the
approximation of power function becomes regular. For β in a neighborhood
of the true β0 of distance O�n−1/2�, the test statistic based on l̇n�β� can be
written as

l̇n�β� ≈ l̇n�β0� + l̈n�β0��β− β0� ≈ l̇n�β0� − n��γ��β− β0�	
which is approximately a Brownian motion on time scale n��γ� with a drift
−n��γ��β − β0�. To illustrate the point, consider the hypotheses H0:β = βo

versus Ha:β > βo. Then one can typically choose a stopping time

T = inf�n ≥ No: l̇n�βo� > b0 − b1l̈n�βo��	
for some fixed integer No and positive constants b0 and b1, and decide to
stop sampling and reject H0 at T if T < M, and stop sampling at M and
accept H0 otherwise, for some large but fixed M. Then the power function at
β in the neighborhood of βo of distance O�n−1/2� can be found through the
analogous test for a Brownian motion with a drift. In fact, for this particu-
lar typical test, the power functions are tabulated in the literature [see, e.g.,
Siegmund (1985)]. In addition, the expected sample sizes E�min�T	M�� can
also be approximated.
In sequential case-control sampling with rn → γ, the power function of

the sequential test described above is associated with ��γ� by the Brownian
approximation. Since ��r� is minimized at r = γ0, it is clear that the asymptot-
ically efficient sequential sampling given in (3.6) which ensures rn → γ0 gives
the best power function for typical sequential test procedures such as those
above. This also highlights yet another advantage of employing the asymptot-
ically efficient sequential sampling rule in (3.6).

6. Cost efficiency and generalizations. One major concern in design-
ing a case-control sampling is to acquire the desired accuracy while keeping
to a minimum the cost of sampling for covariable ascertainment. A special
feature is that the cost of collection of a case and of a control is often different.
As seen in the nurse study example, the cases are often required by many
investigators for different purposes and are thus more precious than controls.
While the cost of collecting each case can be reasonably assumed equal as is
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that of each control, the different collection cost of a case and a control may be
difficult to be quantitatively described. In spite of this, we choose a reasonable
way of defining the cost of collecting a case to be a quantitative number c, and
of comparatively defining the cost of collecting a control to be 1. Then, for n
samples containing n1 cases and n0 controls, the total cost is n1c + n0. We
shall discuss in the following the asymptotic cost efficiency by considering the
asymptotic variance ��rn�−1/n associated with the cost n1c+ n0.
When the regression parameter β is a scalar, the definition of the efficient

case-control design in (3.1) is natural. However, when dealing with a general
p-dimensional parameter β, � becomes a p×p matrix and a straightforward
generalization of (3.1) by considering ��r̃n� as smaller than ��rn� is inad-
equate. Here the inequality between two p × p matrices, B1 ≤ B2, means
b′B1b ≤ bB2b for all b ∈ Rp. This is because no such optimal �rn� may exist.
It can be seen from the expression of the matrix ��r� as a matrix function of r
that there may not in general exist a γ such that ��γ� ≤ ��r� for all r ∈ �0	1�.
We choose to consider a fairly general criterion through minimizing

trace�H′E��β̂n − β0�⊗2�H�(6.1)

for some fixed p × p matrix H �= 0. A typical choice of H is a diagonal
matrix with the diagonal elements being nonnegative real numbers, denoted
by �w1	 � � � 	wp�, where wi can be viewed as a weight attached to the accu-
racy of estimating the ith component of β. If wi = 1 for all i = 1	 � � � 	 p (i.e.,
H = Ip), (6.1) becomes E�β̂n −β0�2. If one is only concerned with estimating
the ith component of β, he can choose wi = 1 and wj = 0 for all j �= i. We also
note that if the criterion is to minimize Eg�β̂n−β0� for a smooth and strictly
convex function g on Rp with minimum at the origin, asymptotically it can
be reduced to minimizing (6.1) with H being the second derivative matrix of
g at the origin.
Now consider the cost efficiency of minimizing (6.1) at a level of cost n1c+

n0. Similarly to Definition 3.1, we can define an asymptotically cost efficient
sequential case-control design �rn� as one satisfying, for any ε > 0,

lim
n→∞P�trace�H′��rn�−1H��crn + �1− rn��

≤ �1+ ε�trace�H′��r̃n�−1H��cr̃n + �1− r̃n��� = 1
(6.2)

for all �r̃n� with r̃n ∈ �n−1. If c = 1, that is, the costs of collecting a case
and a control are equal, the terms crn + 1 − rn and cr̃n + 1 − r̃n vanish in
(6.2). If, furthermore, β and x are scalars, (6.2) agrees with (3.1). The strict
convexity of trace�H′�−1�r�H��cr + 1 − r� as a function of r is still retained
and its derivative function is

DH�r� ≡ trace
(
H′��r�−1

(
cr

1− r
�1�r� −

1− r

r
�0�r�

)
��r�−1H

)
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which has a unique 0 solution γH. Now define

D̂H�r� = trace
(
H′�̂�r�−1

(
cr

1− r
�̂1�r� −

1− r

r
�̂0�r�

)
�̂�r�−1H

)
�

Let γ̂H be the solution to D̂H�r� = 0. All the efficient sequential case-control
designs defined in Sections 3–5 for scalar β can be proved to be cost efficient
with γ̂ replaced by γ̂H and D̂ replaced by D̂H.
For fixed-width confidence intervals for one component of β, say the ith

component (or, more generally but without further technical difficulty, a lin-
ear function of β), one can choose H to be the diagonal matrix with the ith
diagonal element being 1 and the rest being 0. The asymptotic consistency can
be defined by (5.1) with β0 and β̂T replaced by their ith components, and the
asymptotic cost efficiency by (5.2) with ��r� replaced by 1/trace�H′�−1�γH�H�.
With the cost efficient case-control sampling and a stopping rule defined in
(5.3) with �̂�γ̂� replaced by 1/trace�H′�̂−1�γ̂H�H�, the fixed-width confidence
interval is also asymptotically consistent and asymptotically cost efficient.
Notice that, in this case, trace�H′�̂−1�r�H� is simply the ith diagonal element
of �̂−1�r�.
For sequential tests of hypothesis, if the null and alternative hypotheses

are divided by a p − 1 dimension hyperplane, the score test discussed in
Section 5 can actually be straightforwardly adapted. For example, consider
the hypotheses H0:β1 = 0 versus Ha:β1 > 0, where β1 is the first coordinate
of β. Treating the other components β2	 � � � 	 βp of β as nuisance parameters,
one can obtain the profile score of β1 at β1 = 0,

l̇n�β1�
∣∣∣
β1=0

=
n∑
i=1

�xi1�δi − u�α̂∗
n + xi2β̂n2 + · · · + xipβ̂np���	

where xik is the kth coordinate of xi, and β̂nk, k = 2	 � � � 	 p are the values that
maximize Ln�β� with β = �0	 β2	 � � � 	 βp�′ in (2.5) and α̂∗

n ≡ α̂n��0	 β̂n2	 � � � 	

β̂np�′� as defined in (2.6). The asymptotic analysis in Section 5 can also be
applied with like modifications. However, more general form hypotheses with
null and alternative not divided by a p−1 dimension hyperplane can be diffi-
cult to analyze except for special cases such as H0:β = βo versus Ha:β �= βo

which can be handled by the χ2 test. This is essentially because problems
associated with boundary crossing for high-dimensional Brownian motion is
rather complicated to investigate.

APPENDIX

Proof of Proposition 2.1. The proof uses the established strong consis-
tency and asymptotic normality of MLE for fixed case-control designs. Details
of the proofs of related results may be found in Anderson (1978), Prentice and
Pyke (1979), Qin and Zhang (1997) and Chen, Jing and Ying (1999).
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Let x1i and x0i denote the ith case sample and the ith control sample,
respectively, that is, for s = 0	1, xsi = xj if

∑j
l=1 δl = i and δj = s. Since

xn given δn is independent of �n−1, it can be shown �x1i� and �x0i� are two
independent sets of iid random variables with, respectively, case and control
population densities φ1 and φ0 as their common densities. Let �k1�	 �k0� be
two sequences of nonrandom integers. Write the semiparametric maximum
likelihood estimating equation based on the independent case samples x1i,
1 ≤ i ≤ k1, and control samples x0i, 1 ≤ i ≤ k0, as

1∑
i=0

ki∑
j=1

(
1
xij

)
�i− u�α+ βxij�� = 0�

Let k = k1 + k0, r
∗
k = k1/k and denote by (α̂∗

k	 β̂
∗
k) the solution to the above

equation. Then, by the strong consistency of semiparametric MLE for fixed
designs, we know for any ε > 0, with probability 1, �α̂∗

k−αr∗k � < ε, �β̂∗
k−β0� < ε

for all large k1 and k0. It is clear that α̂
∗
k − αr∗k → 0 and β̂∗

k → β0 a.s as
min�k1	 k0� → ∞. Consequently, the same convergence still holds if �k1� and
�k0� are two sequences of random integers such that min�k1	 k0� → ∞ a.s.
Set k1 = n1 and k0 = n0. Then apparently (α̂∗

k	 β̂
∗
k) is identical to (α̂n	 β̂n).

Therefore α̂n − αrn → 0 and β̂n → β0 a.s if min�n1	 n0� → ∞ a.s.
To show asymptotic normality, the key step is to show the asymptotic nor-

mality of n−1/2Gn�αrn	 β0� [Gn is defined in (2.8)] and the rest, with the help
of the strong consistency proved above, can be proved through the mean value
theorem and law of large numbers, following the proofs in, for example, Qin
and Zhang (1997) and Chen, Jing and Ying (1999). Consider the sequence

Qn�α	β0� ≡ n−1/2
n∑
i=1

[(
1
xi

)
�δi−u�α+β′

0xi��−E
((

1
xi

)
�δi−u�α+β′

0xi��
∣∣∣�i−1

)]
�

It is clear that n1/2Qn�α	β0�, n ≥ 1, is an L2 martingale sequence for every
fixed α. Then it can be straightforwardly verified that Qn�αγ	β0� converges to
a normal distribution by the martingale central limit theorem. Furthermore,
one can show with a little calculation that there exists a constant c0 > 0 such
that

E�Qn�α1	 β0� −Qn�α2	 β0��2 ≤ c0�α1 − α2�2

for all −M ≤ α1	 α2 ≤ M and n ≥ 1, where �·� is the Euclidean norm. Notice
that Qn�α	β0� is a continuous function of α. It follows from Pisier (1983) [see
also Pollard (1990), page 13] that there exists a constant c∗0 > 0 such that

E sup
−M≤α1	 α2≤M

�α1−α2 �≤ε

�Qn�α1	 β0� −Qn�α2	 β0�� ≤ c∗0ε
1/2

for all n ≥ 1 and ε > 0. Thus Qn�α	β0� as a sequence of random functions of
α ∈ �−M	M� is stochastically equicontinuous. This implies that Qn�αrn	 β0�
has the same limiting distribution as Qn�αγ	β0� if rn → γ in probability.
Applying (2.10), one can show the second term in the definition of Qn�α	β0�
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equals 0 when α = αrn . Therefore n
−1/2Gn�αrn	 β0� = Qn�αrn	 β0�. The variance

computations in (2.11) are nothing more than regular.

Proof of Proposition 3.1. By a direct calculation with an application of
(2.10), we obtain

∂

∂r
�1/��r�� =

(
r

1− r
�1�r� −

1− r

r
�0�r�

)/
�2�r� = D�r�/�2�r��

Further differentiation shows that
∂

∂r
D�r� = 2

r2�1− r�
[
E0��x−A�r��2u�αr + β0x�u̇�αr + β0x��

+
(
∂

∂r
A�r�

)2
E0u�αr + β0x�

]
> 0	

for all r ∈ �0	1�. Thus,
∂2

∂r2
�1/��r�� = 2D2�r�

�3�r� +
(
∂

∂r
D�r�

)/
�2�r� > 0	

all r ∈ �0	1�. The second claim of the proposition is then obvious.

Proof of Proposition 3.2. We first show that the sequential sampling
rule in (3.6) ensures min�n1	 n0� → ∞ a.s. Assume there is a collection S of
sample paths with positive probability such that the sequence of n1 remains
bounded. This implies, in S, rn → 0 at the order of 1/n and D̂�rn� ≥ 0 for all
large n. Without loss of generality, we assume, by excluding a probability 0
set, that almost sure convergences in the rest of the proof hold on every sam-
ple path in S. It is seen via the empirical approximation that, for any fixed
M> 0,

Gn�α+ αrn	 β�

→
∞∑
i=1

[(
1
xi

)
δi

]
−
( ∞∑

i=1
δi

)�1− p1�eα0
p1

E0

((
1
x

)
exp�α+ β′x�

)
	

(A.1)

uniformly over ��α	β�: �α� ≤ M	 �β� ≤ M� for every sample path in S. Notice
that

∑∞
i=1 δi is finite in S. Equate the right-hand side of (A.1) to 0 and let (α̃	 β̃)

denote the solution of the equation. Then clearly (α̃	 β̃) is finite. It follows from
the uniqueness of the solution (α̂n	 β̂n) to Gn�α	β� = 0 that, in S, α̂n−αrn → α̃

and β̂n → β̃. Since α̂n−αrn and β̂n are bounded, one can apply the law of large

numbers to show that, in S, rn/�1 − rn�̂�1�rn� → 0 and �1 − rn�/rn�̂0�rn� is
bounded below away from 0 for all large n. Hence D̂�rn� < 0 for all large n
for every sample path in S. This clearly contradicts the preceding statement,
D̂�rn� ≥ 0 in S for all large n. We conclude that S must be a set with zero
probability and, equivalently, that n1 → ∞ a.s. Similar arguments show n0 →
∞ a.s. Thus we have shown min�n1	 n0� → ∞ a.s.
The almost sure convergence of min�n1	 n0� to ∞ implies, by the strong

consistency in Proposition 2.1, that α̂n−αrn → 0 and β̂n−β0 → 0 a.s. Following
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the notation in the first part of the proof of Proposition 2.1, let �k1� and �k0� be
two sequences of nonrandom integers. Based on independent iid case samples
�x1i	1 ≤ i ≤ k1� and iid control samples �x0i	1 ≤ i ≤ k0�, define �̂∗

1�r�,
�̂∗
0�r� and D̂∗�r� in an obviously similar fashion to the definitions of �̂1�r�,

�̂0�r� and D̂�r� in (3.3) and (3.4). Let again k = k1 + k0 and r∗k = k1/k. It is
seen via the empirical approximation and the strong consistency of (α̂∗

k	 β̂
∗
k)

that ��1− r�/r��̂�∗
i�r� −�i�r�� converges to 0 a.s. uniformly over r ∈ �0	1� for

i = 1	0 as min�k1	 k0� → ∞. Observe that ��1 − r�/r��i�r� is bounded above
and bounded below away from 0 if r is bounded away from 1. Since D�r� is
increasing and negative for r < γ0, we know that, with probability 1 for all
large k1 and k0, D̂∗�r� has the same sign as D�r� if r is bounded above away
from γ0. The same assertion also holds for r bounded below away from γ0
through an analogous argument.
Let �k1� and �k0� be two random sequences of integers. Similar to the proof

of Proposition 2.1, we conclude that, with probability 1 for all large k1 and k0,
D̂∗�r� has the same sign as D�r� if r is bounded away from γ0. Set k1 = n1,
k0 = n0 and notice that �̂i = �̂∗

i , i = 0	1 and D̂∗ = D̂. The almost sure
convergence of min�n1	 n0� to ∞ proved before ensures that, with probability
1 for all large n, D̂�rn� < 0 �> 0� if rn is bounded above (below) away from
γ0. Hence, by the definition of the sequential sampling rule in (3.6), it is true
that, with probability 1 for all large n, rn strictly increases (decreases) if rn
is bounded above (below) away from γ0. Therefore, rn → γ0 a.s. as n → ∞.

Proof of Proposition 5.1. With the asymptotic normality of β̂n proved
in Proposition 2.1 and rn → γ0 a.s. proved in Proposition 3.2, the proof of
this proposition can be carried out along the lines of Khan (1969) with no
additional difficulty. We omit the details.
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