
The Annals of Statistics
2000, Vol. 28, No. 4, 1206–1218

A LIKELIHOOD RATIO TEST FOR MTP2 WITHIN
BINARY VARIABLES1

By Francesco Bartolucci and Antonio Forcina
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Multivariate Totally Positive (MTP2) binary distributions have been
studied in many fields, such as statistical mechanics, computer storage
and latent variable models. We show that MTP2 is equivalent to the re-
quirement that the parameters of a saturated log-linear model belong to
a convex cone, and we provide a Fisher-scoring algorithm for maximum
likelihood estimation. We also show that the asymptotic distribution of the
log-likelihood ratio is a mixture of chi-squares (a distribution known as
chi-bar-squared in the literature on order restricted inference); for this we
derive tight bounds which turn out to have very simple forms. A potential
application of this method is for Item Response Theory (IRT) models, which
are used in educational assessment to analyse the responses of a group of
subjects to a collection of questions (items): an important issue within IRT
is whether the joint distribution of the manifest variables is compatible
with a single latent variable representation satisfying local independence
and monotonicity which, in turn, imply that the joint distribution of item
responses isMTP2.

1. Introduction. Let X be a J × 1 random vector of binary variables
with elements Xj taking vales in �0� 1� and joint probability distribution
p�X� defined on the set � of the s = 2J possible response configurations. For
any two vectors x1 and x2 ∈ � , let the functions min�x1�x2� and max�x1�x2�
act elementwise on the two vectors.

Definition 1. If, for any pair of vectors x1 and x2 ∈ � ,

p�min�x1�x2��p�max�x1�x2�� ≥ p�x1�p�x2�
then the random vector X is Multivariate Totally Positive (MTP2).

This defines a stochastic ordering amounting to a strong form of positive
dependence, since it implies Association (A) and Strongly Positive Orthant
Dependence (SPOD) [e.g., Holland and Rosenbaum (1986)]. This condition is
relevant in many fields [see examples in Karlin and Rinott (1980)]. In the
case of binary variables, it is applied within statistical mechanics [where it
is called FKG; see Fortuin, Kasteleyn and Ginibgre (1971) and van den Berg
and Gandolfi (1995)]; to the replacements algorithm in computer storage [van
den Berg and Gandolfi (1992)]; and to Item Response Theory (IRT) models.
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IRT models are latent variable models developed for the analysis of the re-
sults of an aptitude test, made-up of dichotomously-scored items, assigned to
a group of subjects [see Hambleton and Swaminathan (1985) for a general
review and Junker and Ellis (1997) for a deeper discussion of the properties
of these models]. In IRT, assumptions are typically made on the conditional
distribution of the vector of responses X to a set of J items by a randomly
chosen subject, given the levels of a set of latent abilities. Underlying these
assumptions, are usually the non-parametric assumptions of Local Indepen-
dence (LI) and Unidimensional Monotonicity (UM). An approach to maximum
likelihood estimation in IRT models, utilizing Latent Class Models subject to
the explicit constraints of LI and UM, has been attempted by Hoijtink and
Molenaar (1997), who also propose several statistics for model checking. The
connection between Latent Class Models and IRT models has also been inves-
tigated by Lindsay, Clogg and Grego (1991). Holland and Rosenbaum (1986)
have shown that MTP2 is a weaker version of Conditional Association (CA):
violation ofMTP2, and hence of CA, implies that no monotone latent variable
model can exist.
In this paper we provide a method for detecting any possible violation of

MTP2; in doing so we also outline a general approach for handling inequal-
ity constraints in log-linear models. In particular, after recalling that MTP2
is equivalent to the constraint that all possible 2 × 2 conditional subtables
within the multivariate binary distribution of X have non negative log-odds
ratio, in Section 2 we show the equivalence of MTP2 with the condition that
the parameters of a saturated log-linear model belong to a convex cone. We
also describe the additional constraints needed to obtain the CA ordering.
Then, in Section 3, an extension of the approach of Dardanoni and Forcina
(1998), based on iteratively reweighted least squares with linear inequality
constraints, is used to construct an algorithm for maximum likelihood estima-
tion. In Section 4, we show that the usual G2 test statistics for independence
can be partitioned into two components, one measuring departure from in-
dependence in the direction of the MTP2 ordering and the other measuring
violations of the same. We also derive the asymptotic distributions of these
statistics which turn out to be distributions of the chi-bar-squared type, a
mixture of chi-squared variables well known in the literature on multivari-
ate one-sided testing [e.g., Perlman (1969) and Shapiro (1988)]. Though these
distributions depend on nuisance parameters, we derive tight bounds on the
resulting p-values which are very simple to use. Finally, in section 5, we use a
small dataset to illustrate how our approach can be used within IRT models.
Any analysis of the joint probability distribution of X, such as that described

in this paper, is limited by the fact that the set of all possible configurations
and the number of constraints induced by MTP2 are of order 2J; thus our
approach is feasible only for small J. As such, it is still useful within latent
class models where the number of items is usually small. This is also true
of capture-recapture data, in the modeling of which LI and UM are also rele-
vant issues [e.g., Darroch et al. (1993)]; our approach could handle these data
with minor adjustments (see Section 2). With a large number of items one
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could select certain important violations and rely on multiple testing, as in
the original work of Rosenbaum (1984). For instance, one could test for TP2
in the bivariate distribution of the scores associated with two subsets of items
[Dardanoni and Forcina (1998)].

2. Preliminary results. Assume that p�X� is strictly positive for X ∈ � �
The MTP2 condition can be restated as follows. Denote, by � , a nonempty
subset of � = �1�2� � � � � J�, by �̄ , its complement and, by X�� � and X��̄ �,
respectively, the vectors made of the elements of X in � and in �̄ . It is well
known [Karlin and Rinott (1980), page 469] that X isMTP2 if and only if, for
any � = �j1� j2� ⊂ � , the conditional distribution of X�� �, given any value
of X��̄ �, has non negative log-odds ratio, namely

log
p�Xj1 = 0�Xj2 = 0X��̄ ��p�Xj1 = 1�Xj2 = 1X��̄ ��
p�Xj1 = 0�Xj2 = 1X��̄ ��p�Xj1 = 1�Xj2 = 0X��̄ ��

≥ 0�

It is useful to have a concise notation for the conditional log-odds ratios. For
any given � and any subset � of �̄ (including the empty set and �̄ itself), we
denote, by ρ�� ���, the log-odds ratio in the 2× 2 subtable corresponding to
the conditional distribution of X�� � given Xj = 1�∀j ∈ � and Xj = 0�∀j �∈
� ∪�.
We can show that the MTP2 condition can be expressed directly in terms

of a suitable parameterization of a saturated log-linear model. Write p�x� for
p�X = x�. Then, because ∑x p�x� = 1, one of the p�x�, say p�0�, is redundant
and so, by p, we will denote the �s−1�×1 vector with elements arranged so that
the components of x on the right run faster from 0 to 1, with the x = 0 entry
removed. A similar convention will be used for all related vectors and matrices.
However, because of symmetry, certain calculations are simpler if based on the
s-dimensional space so write ṗ = �p�0� p′ �′ for the corresponding extended
vector. More generally, we will use the convention that, if v̇ is a vector on the
s-dimensional space, then v is the corresponding vector obtained by deleting
the first element. This notation will apply also to matrices where the dot on
top will be used to denote the addition of an initial row (or column or both,
in a way made clear by the context) to conform with the full s-dimensional
space.
Now let �̇ = log�ṗ� and define �̇ as

�̇ = Ċ�̇ where Ċ = D ⊗ · · · ⊗ D︸ ︷︷ ︸
J times

and D =
(
1 0
−1 1

)
�(2.1)

Each row of Ċ, and the corresponding element of �̇, may be indexed with the
subset � of � whose elements specify the positions of the contrast vectors
d′ = �−1 1 � within the Kronecker product. Hence β�� � may be interpreted
as interactions among the variables with index in � . The order of such inter-
actions is given by the cardinality of � .
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Lemma 1. On the basis of the parametrization (2.1),

ρ�� ��� =
[⊗
j

vj�� ���
]
�̇�(2.2)

where

vj�� ���=


e′ = �0 1 �=d′E� if j ∈ � �
�1 1 �= e′E� if j ∈ ��
�1 0 � � otherwise,

and E=D−1=
(
1 0
1 1

)
�

Proof. From the definition of log-odds ratios and the ordering of the ele-
ments of �̇,

ρ�� ��� =
[⊗
j

uj�� ���
]
�̇�(2.3)

where

uj�� ��� =


d′ = �−1 1 � � if j ∈ � �
e′� if j ∈ ��
�1 0 � � otherwise.

Thus, after inverting the linear transformation defining �̇, which gives

�̇ = Ż�̇ where Ż = Ċ−1 = E ⊗ · · · ⊗ E︸ ︷︷ ︸
J times

�

the result follows by substitution. ✷

The vector premultiplying �̇ in (2.2) has all elements equal to 0 except for
2� elements equal to 1, where � is the cardinality of �. So (2.2) may also
be written as

ρ�� ��� = ∑
� ⊆�

β�� ∪� �

[recall that β�� ∪ � � represents the interaction among the variables with
index in � or � ]. To see this let, without loss of generality, � = �J − 1�J�.
Then ρ�� ��� is simply β�� �, which is the 4th element of �̇, ρ�� � �J− 2�� =
β�� � +β�� � �J− 2�� and so on. Thus theMTP2 condition places restrictions
only on second and higher order interactions.
To express the relation between each ρ�� ��� and � in matrix notation, it is

convenient to construct first a vector, say ��� � with � = �j1� j2�, containing
all the conditional log-odds ratios between Xj1 and Xj2 arranged so that
values of the remaining variables go from 0 to 1, with those on the right
moving faster. This is equivalent to stacking the vectors �1 0 � and �1 1 �
one below the other, so that

��� � = Ṙ�� ��̇ with Ṙ�� � =⊗
j

Vj�� ��

where Vj�� � is e′ if j ∈ � and E otherwise.
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Now place the u = J�J − 1�/2 vectors ��� � one below the other, ordered
so that the second element of � is greater than the first and runs faster from
J to j1 + 1, into the single vector �. Consider then the matrix Ṙ with blocks
of rows Ṙ�� � arranged in the same way used for �. In the case of J = 4, for
instance, we have that

��� � =




���3�4��
���2�4��
���2�3��
���1�4��
���1�3��
���1�2��


 � Ṙ =




E ⊗ E ⊗ e′ ⊗ e′

E ⊗ e′ ⊗ E ⊗ e′

E ⊗ e′ ⊗ e′ ⊗ E
e′ ⊗ E ⊗ E ⊗ e′

e′ ⊗ E ⊗ e′ ⊗ E
e′ ⊗ e′ ⊗ E ⊗ E


 �

Then theMTP2 condition can be expressed as

� = Ṙ�̇ ≥ 0�(2.4)

Note that the first column of Ṙ is 0 and so condition (2.4) can be restated as
R� ≥ 0 which defines the convex cone � . Although the number of inequalities
is much larger than the dimension of the � space, different inequalities are
active in different regions of the space and so there are no redundancies. To
see this, for any given � a and �a, take 0 < k < l and set

β�� ∪� � =


−k� if � = � a and � = �a�
0� if � = � a and � ⊂ �a�
l� otherwise.

Then ρ�� a��a� = β�� a ∪�a� = −k < 0, whereas any other ρ�� ��� is non
negative.
For binary variables, the stronger notion of CA requires non negative log-

odds ratios for any pair of items � , conditional on the values of h�X��̄ ��,
where h is any arbitrary function [Holland and Rosenbaum (1986)]. In prac-
tice, for any � , in addition to the 2J−2 distinct configurations of the condition-
ing set (which are used in MTP2), one has to condition also on the distribu-
tion obtained by marginalizing with respect to all subsets of the conditioning
set with size greater than 1. These additional constraints can be written as
�Iv⊗�1 −1 −1 1 �� log�Bṗ� ≥ 0, where v = J�J−1�

2 �22J−2 − �2J−2 + 1�� and
Bṗ are v different two-way marginals stacked one below the other. The num-
ber of constraints is huge for even small values of J (almost 1 million with
J = 6).
The above approach could be extended to the capture-recapture context

by letting Xj = 0 if a subject is captured and 1 otherwise. In this way the
missing cell corresponds to the X = 1 configuration and, because p�1� is used
only in the computation of β�� �, which is not identified, to define the cone
of identifiable restrictions induced byMTP2, one need simply remove from R
the last column and all the rows involving β�� �.
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3. Maximum likelihood estimation. With a sample of n observations,
let y�x� be the frequency of the response pattern x and let y be the vector with
elements �y�x�� arranged in the same way as in p. It is convenient to introduce
the canonical parameters φ�x� = λ�x� − λ�0�; thus p�0� = �1 + 1′ exp����−1
and p�x� = p�0� exp�φ�x��, where � = �φ�x�� with elements arranged in the
usual way.
By construction, the first row of Ċ is �1 0′ �, while the block of remain-

ing rows being contrasts may be written as �c C �, with c = −C1. So, by
substitution,

� = λ�0�c+C� = −λ�0�C1+C� = C��− 1λ�0�� = C�

and the log-linear model can be rewritten in terms of the canonical parameters,
as � = Z� with Z = C−1. Maximum likelihood estimates of such a model,
subject to theMTP2 condition, can be obtained by a constrained Fisher-scoring
algorithm similar to the one described in Dardanoni and Forcina (1998). The
basic idea is to approximate the proper log-likelihood locally at each step using
a quadratic function with the same first derivative and the same information
matrix.
More precisely, we want to maximize the multinomial log-likelihood

L���y� = ẏ′ log�ṗ� + constant = y′�− n log�1+ 1′ exp���� + constant
subject to the constraint � ∈ � .
The score vector and the information matrix have, respectively, the form

s = ∂L
∂�

= ∂�
′

∂�

∂L

∂�
= Z′�y − np��

H = − 1
n

∂

∂�

(
∂L

∂�

)′
= Z′FZ�

where F = diag�p�−pp′. To construct a quadratic approximation to L���y� at
� = �m, first define the pseudo dependent variable bm = �m+Z−1F−1m �y/n−pm�
and then let

Q�bm��� = −
n

2
�bm − ��′Hm�bm − ���

The Constrained Fisher-Scoring algorithm (CFS) works as follows: (i) set the
starting value �0 = Z−1 log�y/y�0�� (the unrestricted maximum likelihood es-
timate), (ii) at step m + 1, maximize Q�bm��� subject to � ∈ � , (iii) iterate
until convergence.
By an argument similar to the one used in Dardanoni and Forcina (1998),

it can be shown that, if the elements of ṗ are strictly positive, CFS converges
to the maximum of L, which is unique because R� ≥ 0 defines a convex cone
and −nH, the matrix of second derivatives, is negative definite. If �0 ∈ � ,
then �1 = �0 and the algorithm stops. Otherwise updated estimates will lie on
the boundary and satisfy the orthogonality condition �′m+1Hm�bm−�m+1� = 0
so that, at convergence, we have

�′mHm�bm − �m� = �′msm = 0
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because the first derivative of Q�bm��� at �m equals sm. This implies that
�m is the maximum of L within the linear subspace orthogonal to the direc-
tion of steepest ascent. To implement the algorithm one has to solve, at each
step, a constrained least squares problem; for this purpose, several reliable
procedures are available in the literature [e.g., Lawson and Hanson (1995) or
Dykstra (1983)].
A computer program that implements the algorithm inMatlab is available

from the authors on request. Our experience is that the algorithm is extremely
stable and capable of reaching convergence in a few steps. Special care is
needed in dealing with zeros in the vector y. The main issue concerns the
computation of the starting values. In this respect recall that, due to the
concavity of the likelihood function and the convexity of the parameter space,
starting values can only affect the efficiency of the algorithm, not the results
at convergence. However, especially with sparse data, replacing zeros with
a very small value would be equivalent to starting the algorithm near the
boundary of the parameter space and this, apart from being rather inefficient,
is likely to cause numerical difficulties. So, our recommendation in this respect
is to replace zeros with something close to 1 (0.5 or larger, depending on the
sparseness of the data).

4. Hypothesis testing. LetH0 denote the hypothesis of independence in
the distribution of X which is equivalent to R� = 0, HP the hypothesis that
� ∈ � , HU the hypothesis that � is unrestricted. The approach proposed here
for testing HP against HU is based on the likelihood ratio test.
Let Lh�y�, with h = 0�P�U, denote the maximum log-likelihood underHh.

Then the G2 statistics for testing independence may be partitioned as

G2 = 2�LU�y� −L0�y�� = 2�LU�y� −LP�y�� + 2�LP�y� −L0�y��
= TPU +T0P (say)

where T0P and TPU are two measure of discrepancy, respectively, against H0
in the direction ofHP and againstHP in the direction ofHU. Notice also that
the log-likelihood for the unrestricted model is undefined when one or more
observations are 0 and the usual approach is to replace zeros with a small
value ε, say 10−8. However, when the data are very sparse, the asymptotic
results that we derive in this section have to be used carefully as they will no
longer provide a reliable approximation to the distribution of the test statistics.
To derive the asymptotic distribution of TPU and T0P underH0 recall that,

in such a case, the asymptotic distribution of
√
n��̂ − ��, where �̂ is the un-

constrained ML estimate of �, is N�0��� with � = CF−1C′. For any cone (or
linear space) � , let �̄ denote its dual (or orthogonal complement) in the �−1

metric. Moreover, for v ∼ N�0���, let v̂�� ��� be its projection onto � again
in the �−1 metric, namely, the solution to the problem min

v̂∈�
�v− v̂�′�−1�v− v̂�.

Let 	 denote the linear space �� � R� = 0� and 
 = � ∩ 	̄ .
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Theorem 1. Under independence, when n increases while J remains con-
stant, TPU converges in distribution to

Q�̄ = �v − v̂�� ����′�−1�v − v̂�� ���� = v̂��̄ ���′�−1v̂��̄ ��� ∼ χ̄2��̄ ����
while T0P converges in distribution to

Q
 = �v − v̂�	 ����′�−1�v − v̂�	 ���� −Q�̄

= v̂�
 ���′�−1v̂�
 ��� ∼ χ̄2�
 ����

Proof. The convergence of TPU to Q�̄ may be derived from Theorem 2.1
in Shapiro (1985) because the log-likelihood ratio, as can be easily verified,
belongs to the general class of discrepancy functions for which the result holds.
A more direct derivation is contained in Wolak [(1989a), Section 3] and is
based on a second order Taylor series expansion of the log-likelihood. The
distribution of the quadratic form Q�̄ follows from standard results on the
χ̄2 distribution and the theory concerning projection of normal vectors onto
convex cones [see, e.g., Shapiro (1988) and Wolak (1989b) for details].
The convergence of T0P to Q
 can be deduced from Shapiro [(1988), page

52] by recalling that G2 converges in distribution to

Q	 = �v − v̂�	 ����′�−1�v − v̂�	 ���� ∼ χ2t �

where t = s−J− 1. ✷

This is how the p-value corresponding to an observed value of TPU, say c,
could be computed. The first part of Theorem 1 and the survival function of
the χ̄2 distribution imply that

lim
n→∞P�TPU > c� =

t∑
0

wj��̄ ���P�χ2j > c��

where wj��̄ ��� is the probability that the projection of v ∼ N�0��� onto �̄ ,
the dual of � , is contained on a face of dimension j. Assume, for the moment,
that the value of �, and hence p under H0, was known; though there is no
explicit formula for computing the probability weights wj with t > 3, they can
be estimated to any desired accuracy by projecting a sufficiently large number
of pseudo-randomly generated normal vectors onto �̄ [Dardanoni and Forcina
(1998), page 1117].
The dependence of the null distribution on the value of unknown parame-

ters poses a more serious problem. One possible approach would be to replace
the unknown parameters with their ML estimates. Although this procedure
does not guarantee that the actual significance level will not exceed the size
of the test, we would expect that, if n is reasonably large relative to J, the
difference between the nominal and the actual significance level will not be
appreciable in most cases.
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A formally correct approach would require knowledge of the least favorable
distribution of TPU, which is the one giving the largest p-value. Such a dis-
tribution, which is determined in Theorem 2, by being conservative relative
to the null HP, leads to the most frequent acceptance of MTP2. In contexts
where a greater caution relative to HP is required, one should search for a
distribution of TPU which is the smallest distribution under H0; this is also
derived in Theorem 2. One could go even further in this direction by search-
ing for the smallest distribution of TPU within the entire boundary of HP.
Such an extreme distribution would be achieved when all elements in R� are
strictly positive except for one which is exactly 0; although it can be shown
that such a � exists, in this case TPU would be distributed as a mixture with
weights (1/2) to the constant 0 and a χ21 variable; this would lead to a too
severe procedure with theMTP2 condition almost always being rejected.
Before introducing Theorem 2, we need two intermediate results, in the

first of which, under H0, an explicit Choleski decomposition for � under H0
is derived. This exploits the fact that ṗ = ⊗pj, where pj = P�Xj = 1�,
qj = 1−pj and pj = �qj pj �′. Moreover, to work with Kronecker products,
we formally define �̇ = Ċdiag�ṗ�−1Ċ and show that � may be obtained from
�̇ by removing the first row and the first column.

Lemma 2. Under H0, � may be obtained from �̇ by removing the first row

and the first column. Moreover �̇ factorizes as L̇L̇′ where the upper triangular
matrix L̇ is equal to

⊗
j Lj with

Lj =
(
1 −√pj/qj
0 1/√pjqj

)
�

by removing the first row and first column from L̇, we have � = LL′.

Proof. Recall that the last s− 1 rows of Ċ may be written as C �−1 I �
and so the matrix obtained by removing the first row and the first column
from �̇ is

C �−1 I �
(
1/p�0� 0′

0 diag�p�−1
)(−1′

I

)
C′ = CF−1C′ = ��

UnderH0, both Ċ and ṗ factorize into a Kronecker product so that �̇ =
⊗

�j,
where �j = Ddiag�pj�−1D′ = LjL

′
j. Thus �̇ is also equal to L̇L̇′. Since the

first column of L̇ is �1 0′ �′, � may be written as LL′ where L is also upper
triangular. ✷

The following lemma concerns transformation of the cone � into the Eu-
clidean metric:

Lemma 3. The matrix ṘL̇ may be written as diag�a�Ṙp where a is a vector

of positive constants and Ṙp has the same structure as Ṙ except that, in the
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Kronecker product within each block of rows, any E in the jth position is
replaced by the orthogonal matrix

Mj =
(√
qj −√pj√
pj

√
qj

)
�

Then

Q�̄ = �z− ẑ�� ��′�z− ẑ�� �� = ẑ��̄ �′ẑ��̄ � ∼ χ̄2��̄ ��
where z ∼ N�0� I�, � is the cone defined by �z � Rpz ≥ 0� and ẑ�� �, ẑ��̄ � are
the projections of z onto � and �̄ , respectively, in the Euclidean metric.

Proof. Each block of rows of ṘL̇ is the Kronecker product of two terms of
the form e′Lj = �qjpj�−1/2e′ and s− 2 terms of the form

ELj =
(
1 −√pj/qj
1

√
qj/pj

)
= diag�pj�−

1
2Mj�

Thus, apart from scaling constants, e′ turns into itself and E into Mj.
Then apply the linear transformation z = L−1v ∼ N�0� I� and recall that

�−1 = �L−1�′L−1,
Q�̄ = min

Rv̂≥0
�v − v̂�′�−1�v − v̂� = min

Rpẑ≥0
�z− ẑ�′�z− ẑ� = �z− ẑ�� ��′�z− ẑ�� ���

The result follows because, in a system of linear inequalities defining a convex
cone, each row may be multiplied by arbitrary positive constants. ✷

Theorem 2. Under H0 and for any c > 0,

P�χ̄2�� t� ≥ c� ≤ lim
n→∞P�TPU ≥ c� ≤ P�χ

2
t−u + χ̄2�� u� ≥ c��

where u = J�J− 1�/2, t = s−J− 1, � t and � u are the positive orthants in t

and u, respectively, and the covariance matrix in the χ̄2 distributions is the
identity matrix.

Remark 1. Recall that, when the cone is the positive orthant and the met-
ric is Euclidean, the probability weights of the χ̄2 distribution are the probabil-
ities of the symmetric binomial distribution with index equal to the dimension
of the space.

Proof of Theorem 2. Asymptotically, TPU tends to Q�̄ = ẑ��̄ �′ẑ��̄ �,
where z ∼ N�0� I� and � = �z � Rpz ≥ 0�. Because �̄ , the dual cone of � ,
is spanned by the columns of −R′

p and this is equivalent to the cone spanned
by the columns of −Ṙ′

p (obtained simply by adding a first row of zeros), we
can switch temporarily to the s-dimensional space.
To show that �̄ always contains a (suitably rotated) orthant of dimension t,

we give a rule to construct, for every �, a matrix of non negative constants P
and an orthogonal matrix Q, such that PṘpQ = �O It �. The matrix P will
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be block-diagonal with u blocks. Let � = �j1� j2� be a pair of indices from � ,
with j1 < j2. The block P�� � is defined as

⊗
jPj�� �, where

Pj�� � =


1� if j ∈ � �
I2� if j > j2�
a′j = �√qj √

pj � � otherwise.

The block P�� � has 2J−j2 rows and, because for a given element j of � there
are j−1 pairs of indices which have j as second element, the number of rows
of P is

J∑
j=2
2J−j�j− 1� =

J−1∑
k=1
�2k − 1� = 2J −J− 1 = t�

PṘp also has u blocks of rows; let S�� � be any of these which has the form⊗
j Sj�� �, where

Sj�� � =


e′� if j ∈ � �
Mj� if j > j2�
u′ = �1 0 � � otherwise.

Then it is sufficient to set Q = �Q1 Q2 �, where Q2 = Ṙ′
pP

′ and Q1 is any
matrix such that Q′

1Q2 = O and Q′
1Q1 = I. To see why the columns of Ṙ′

pP
′

are orthogonal, let S�� �S�� ′�′ be equal to⊗j Tj�� �� ′�. It is easily verified
that, for � = � ′,

Tj�� �� ′� =
{
I2� if j > j2�
1� otherwise,

while, for � �= � ′, Tj�� �� ′� = 0 whenever j ∈ �� ∪� ′�/�� ∩� ′�, a set which
is never empty.
To show that �̄ is always contained is a cone spanned by u halflines and

t − u axes let, � k be the set of indices of the positions in the vector � of the
interactions of order k. It follows easily from the construction of Ṙp that its
lth column is equal to 0 when l ∈ � 1, has only positive and zero elements for
j ∈ � 2 (involving the first column of Mj) and has both positive and negative
elements otherwise. This completes the proof. ✷

Corollary 1. The lower bound can be achieved in the limit if either pj→
1�∀j or pj → 0�∀j. The upper bound cannot be achieved, except when J ≤ 4;
a tight upper bound is given by χ2t−g + χ̄2�� g�, where

g = u+ �2G − 1−G−G�G− 1�/2�
+�2J−G − 1−J+G− �J−G��J−G− 1�/2��

with G = J/2 if J is even and �J− 1�/2 otherwise.
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Proof. Both extreme distributions require that the columns of −Ṙ′
p

(which span �̄ ) converge to vectors with only one non zero element; let us
call these unitary vectors. For this to happen, each pj must tend to either 0
or 1 so that the corresponding M′

j matrix converges to �u e � or �−e u �,
respectively. If we recall the construction of Ṙ (and hence Ṙp), it is clear that
each unitary vector, being essentially a Kronecker product of u and e vectors,
is characterized by the pair � indexing the block of columns to which it be-
longs and the set of indices � for which an e vector is used; so write u�� �� �
with � ⊆ � for a single unitary vector. Then two cases are possible for a
given � : (i) all u�� �� � have the same sign irrespective of � and so they
define a half-line or (ii) unitary vectors with plus and minus signs appear in
different blocks defining a full line. Also, by construction, u�� �� � appears in
a single block and is negative.
Clearly, if pj→ 0� ∀j, all unitary vectors are negative and the lower bound

follows because χ̄2�� t) = χ̄2�−� t�. For the upper bound, we need to establish
when the largest number of full lines may be obtained. Let � 0 and � 1 be,
respectively, the set of indices for which pj→ 0 and pj→ 1. It is easy to see
that the sign of u�� �� � is independent of � whenever � ⊆ � 0 (negative
sign) or � ⊆ � 1 [the sign depends on the number of times that the first
column of �−e u � is used and this equals the cardinality of� /� ]. Otherwise
the sign will be negative or positive depending on whether the cardinality of
�� ∩� 1�/� is even or odd and this depends on the number of elements of �
that belong to � 1. Thus the number of full lines is maximized by minimizing
the number of sets � which are entirely contained in either � 0 or � 1 and
this happens when they have J/2 elements each with J even or �J+1�/2 and
�J− 1�/2 with J odd. ✷

5. An application. As an illustration, we apply the methods discussed
in this paper to a dataset concerning the responses of n = 150 students to a
test made-up of J = 4 items. These data are collected within a computerized
system of assessment for a basic course in Statistics at Perugia University.
The frequencies of the corresponding contingency table are

ẏ′ = �0 0 1 1 4 24 0 3 0 0 4 10 0 3 10 90 � �

The value of TPU equals 12�0603 and, on this basis, the MTP2 condition
cannot be rejected at the 5% significance level since the p-value is bounded be-
tween 0�0599 and 0�1564. The local estimate, based on replacing the unknown
parameters with their maximum likelihood estimates, equals 0�1114.
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Università di Perugia
Perugia
Italy 06100
E-mail: bart@stat.unipg.it

forcina@stat.unipg.it


