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We study the geometry of the parameter space for Bayesian directed
graphical models with hidden variables that have a tree structure and
where all the nodes are binary. We show that the conditional indepen-
dence statements implicit in such models can be expressed in terms of
polynomial relationships among the central moments. This algebraic struc-
ture will enable us to identify the inequality constraints on the space of
the manifest variables that are induced by the conditional independence
assumptions as well as determine the degree of unidentifiability of the
parameters associated with the hidden variables. By understanding the
geometry of the sample space under this class of models we shall propose
and discuss simple diagnostic methods.

1. Introduction. Graphical models have proved to be a powerful tool for
building Bayesian models to analyze multivariate problems where all vari-
ables are observed [e.g., Spiegelhalter, Dawid, Lauritzen and Cowell (1993)].
In particular it is possible to estimate all the conditional probabilities that
parameterize such models by using a conjugate analysis. However, when all
the data on certain variables in an explanatory model are missing, conjugacy
usually disappears, estimates of these conditional probabilities become highly
dependent on one another and they often cannot be determined from data no
matter how extensive that data is [see, e.g., Settimi and Smith (1998)].

In this paper we propose a geometrical approach to analyze such difficul-
ties. We first observe that conditional independence assumptions implicit in
directed graphical models induce some constraints on the model space, that
can be expressed as polynomial equations among the central moments. We
then exploit such an algebraic structure to explore the geometry and the irreg-
ularities of the parameter space for Bayesian directed graphical models with
hidden variables, defined over a set of binary variables, and such that the
conditional independence assumptions are represented via a directed tree.
Understanding the geometry and the singularities of the parameter spaces
will enable us to investigate practical statistical issues, such as parameter
identifiability, model dimension and diagnostic methods.

In the statistical analyses of problems with missing data it has been com-
mon practice either to use various methods of approximation to calculate the
posterior probabilities of the model parameters [see, e.g., Spiegelhalter and
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Cowell (1992), Cowell (1998), Ramoni and Sebastiani (1997)] or to resort to
numerical algorithms like MCMC approaches [Madigan and York (1995)] or
data augmentation methods [Tanner and Wong (1987)]. Although these meth-
ods are obviously useful tools in problems with missing data where all the
variables are at least partially observed, when used in the context of hidden
variables they are vulnerable to various difficulties.

A typical problem when estimating models from incomplete datasets, when
data on some variables in the model are completely missing, is that different
combinations of values of the conditional probabilities provide equally likely
explanations for the observed data and the approximating methods cited above
may only identify a subset of these. In a Bayesian setting this will mean that
the typical posterior distribution of parameters will have many isolated modes.
When the hidden variables have an interpretative value and help determine
action, as is often the case, for example, in medical models, missing any pos-
sible good explanation may be disastrous. Furthermore there may exist a con-
tinuum of equally likely combinations of parameter values [see, e.g., Settimi
and Smith (1998)]. This feature will make certain inferences within the model
extremely sensitive to the prior density in a Bayesian analysis; some functions
of the parameters being unidentifiable from the data.

For these reasons, when estimating probabilities in directed graphical mod-
els with hidden variables, it is useful to acquire a good understanding of the
geometry of the likelihood of the data before embarking on any numerical
search or approximation algorithm.

A complementary issue is how directed graphical models with manifest and
hidden nodes constrain the joint distribution over the margin of the manifest
variables. It is known that such conditional independence models induce either
equality and inequality constraints over the marginal probabilities of the man-
ifest variables [see, e.g., Spirtes, Richardson and Meek (1997)]. A study of the
geometry of the feasible regions of the probability distributions of the manifest
variables has already begun [see Geiger, Heckerman and Meek (1996), Geiger
and Meek (1998) and Settimi and Smith (1998)].

For the sake of simplicity this paper will concentrate its study on the geome-
try of the parameter space for directed graphical models with hidden variables,
when all the variables are binary and the conditional independence statements
implied by the graphical models are represented by directed trees. In Section 2
we describe a systematic way of analyzing the geometry of these probability
spaces by using polynomial equations of noncentral moments induced on the
sample space [cf. Pistone, Riccomagno and Wynn (1999)] and polynomial equa-
tions on central momentswhich express the assumed conditional independence
structure as discussed in Section 2.2.

Notice that because the geometry of the probability spaces over the binary
trees is expressed in terms of polynomials on the central moments, the additive
parameterization can be regarded as a more natural choice for these categori-
cal models and in this paper is preferred to the commonly used multiplicative
parameterization.
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In Section 3 we give an explicit formula for the dimension of the space of the
unidentifiable parameters of directed graphical models which are described by
arbitrary directed (or equivalently undirected) trees. In Section 4 we present
a few results on the geometry of the parameter space of the marginal distribu-
tions over the manifest variables for such tree models. We show that there is
a very rich structure of inequalities on moment parameters which allow cer-
tain simple diagnostics to be constructed. In Section 5 we shall discuss how
the geometrical study of the sample space can be used to implement effective
diagnostic methods to test whether a given model with hidden variables is
consistent with the observed data and make some initial steps towards con-
structing such diagnostics.

2. Moments of binary variables with dependence structure.

2.1. Noncentral moments of a vector of binary variables. Here we review
some basic results about the noncentral moments of the joint distribution of n
binary random variables Y1� � � � �Yn whose state space is �−1�1�. Write Y �=
�Y1� � � � �Yn� and let p�y� �= p�Y1 = y1� � � � �Yn = yn� for y �= �y1� � � � � yn� be
the probability that the random vector Y takes value y chosen in the set �n.

Given a vector of nonnegative integers a �= �a1� � � � � an�, we shall define
Ya �= ∏n

i=1Y
ai
i . First, note that for any nonnegative integer ai�1 ≤ i ≤ n,

then

Y2a =
n∏
i=1

Y
2ai
i = 1�

Thus it follows that

Ya=Yb�a� for b�a�=�b1�����bn� with bi=ai mod 2� 1≤i≤n�(2.1)

In particular considering the noncentral momentm�a� �= Ɛ�Ya� we have that

m�a� =m�b�a��(2.2)

where b�a� is defined above.
By considering for example its characteristic function, it is clear that any

distribution on Y is uniquely specified by its noncentral moments and hence,
because of (2.2), by the set of moments � �= �m�b�� b ∈ Bn�, where Bn is
the set of nonzero binary n-dimensional vectors. Clearly there are 2n−1 such
moments corresponding to the 2n − 1 probabilities associated with Y.

Second, note that the moments set � is a proper subset of 
−1�1�n since the
probabilities on Y are constrained to lie in a simplex. The simplex constraints
are simply the redundant moment condition

m�0� = ∑
y∈�n
p�y� = 1�

where 0 is a vector of all zeros, together with 2n positivity constraints

p�y� ≥ 0 for all y ∈ �n�(2.3)
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However because each m�b� is a linear function of p�y� for b ∈ Bn, the
2n linear inequalities (2.3) transform into 2n inequality constraints on � �=
�m�b�� b ∈ Bn�. It is easy to check that this admissible region in the �
moment space contains the zero vector, is convex (being the intersection of
convex regions) and contains an open ball of dimension 2n − 1. An example of
this space for n = 4 is given in Section 4.1.

2.2. Conditional independence and central moments. It is well known that
two random vectors Y �= �Y1� � � � �Yn1

� and Z �= �Z1� � � � �Zn2
� are independent

if and only if

Cov�f1�Y�� f2�Z�� = 0

for all L2 functions f1�·�� f2�·� [Feller (1971), page 136]. The general forms
and dimensions of such relationships are studied and characterized in some
detail, for example, in Streitberg (1990).

Here we consider only random vectors whose components can each take at
most N integer values (usually N = 2). In this case all functions are equal to
polynomials of order at most �N− 1�n1 and �N− 1�n2 respectively. It follows
by the linearity of the expectation operator that Y and Z will be independent
if and only if

Cov�Y��Z�� = 0

for all monomials

Y� �=
n1∏
i=1

Y
αi
i for αi = 0�1�2� � � � � � �= �α1� � � � � αn1

��

Z� �=
n2∏
i=1

Z
βi
i for βi = 0�1�2� � � � � � �= �β1� � � � � βn2

��
(2.4)

Note that in the particular case when the state space of each component
of the random vector is �−1�1�, the identities of the last sections imply that
Y and Z are independent if and only if equations (2.4) hold for binary vectors
���, that is whenever αi and βi are equal to 0 or 1 for 1 ≤ i ≤ nj� j = 1�2.

Consider now a binary random variable W. Analogous arguments to the
unconditioned case above, provided that W is nondegenerate, that is,
Var�W� > 0, show that Y ⊥⊥ Z�W if and only if

Ɛ�Y� − Ɛ�Y��W���Z� − Ɛ�Z��W�� = 0(2.5)

for all binary vectors of ���.
Furthermore, when W is binary, the conditional expected values Ɛ�Y��W�

and Ɛ�Z��W� must be linear inW. Therefore these expectations can be written
as

Ɛ�Y��W� = Ɛ�Y�� +A
W− Ɛ�W�� for A = Cov�Y��W�Var�W�−1�

Ɛ�Z��W� = Ɛ�Z�� +B
W− Ɛ�W�� for B = Cov�Z��W�Var�W�−1�
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By substituting these into (2.5) and simplifying, we can write

Ɛ�Y�Z�� − Ɛ�Y��Ɛ�Z�� −A�Ɛ�Z�W� − Ɛ�Z��Ɛ�W��
−B�Ɛ�Y�W� − Ɛ�Y��Ɛ�W�� +ABƐ�W− Ɛ�W��2 = 0�

(2.6)

By using the definition of the covariance function in (2.6), we have that Y ⊥⊥
Z�W if and only if

Var�W�Cov�Y��Z�� = Cov�Y��W�Cov�W�Z��(2.7)

for all binary vectors ���. Note that these sets of equations are typically not
independent of each other.

The equations (2.7) characterize the family of distribution on �Y�Z�W� for
which Y ⊥⊥ Z�W by determining explicitly the constraints imposed on the
probability space of Y�Z�W by the conditional independence statement. Even
when � and � are binary vectors, the dimension of the feasible probability
space is not always immediate, but can be determined by solving the set of
central moments equations (2.7).

3. A result for the estimation of hidden variables on directed trees.
In this section we shall examine those moment relationships that describe the
parameter space of directed graphical models whose conditional independence
assumptions are represented via directed trees and when some variables are
hidden. In order to do this we need first to introduce some terminology and
results for directed graphical models that will be used throughout the paper.

3.1. Graphical models and the curved exponential family. A directed
acyclic graph (DAG) � �V�E� consists of a set of nodes V and a set of directed
edges or arrows E, that link ordered pairs of distinct nodes in V; thus if
vi → vj for vi� vj ∈ V, then the edge e�vi� vj� is in E. The graph does not
contain any directed cycle, that is there is no sequence of nodes v1� � � � � vk in
V such that e�vi� vi+1� for i = 1� � � � � k − 1 and e�vk� v1� are in E. Two nodes
vi� vj are neighbors or adjacent if they are linked by an edge, that is if e�vi� vj�
or e�vj� vi� are in E.

A graph �̃ �V�E� is called undirected if the edges in E are undirected or
lines, so for any edge e�vi� vj� in E, also e�vj� vi� is in E. The undirected

version �̃ �V� Ẽ� of a DAG � �V�E� is the undirected graph obtained from
� �V�E�, by replacing the arrows with undirected edges.

Let �Y1� � � � �Yn� be a set of random variables with joint distribution
p�Y1� � � � �Yn�. A DAG � �V�E� whose nodes are the random variables Y1� � � � �
Yn can be assumed to represent the interdependencies among Y1� � � � �Yn. For
convenience, in the rest of the paper, the terms “nodes” and “variables” will be
used interchangeably. The node Yi is said a parent of Yj if e�Yi�Yj� ∈ E and
we let Pa�Yj� denote the parent set of Yj, that is, the set of all its parents.
A path between two nodes Yi and Yj in V is a sequence of distinct vertices
�v1� � � � � vr� in V such that v1 = Yi and vr = Yj and e�vk� vk+1� ∈ E for all
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k = 1� � � � � r− 1. The ancestral set An�Yi� of a node Yi in V is defined as the
set of all the nodes Yj� j �= i in V such that there exists a path from Yj to Yi.

Thus a directed acyclic graphical (DAG) model with graph � �V�E� defines
the set of probability distributions over the sample space of �Y1� � � � �Yn� that
obey the directed Markov property expressed by

Yi ⊥⊥ An�Yi��Pa�Yi�
for each variable Yi in V with respect to the DAG � �V�E� [Lauritzen (1996),
page 50]. Equivalently, the probability distributions on the sample space of
�Y1� � � � �Yn� specified by a DAG model with graph � �V�E� factor as

p�Y1� � � � �Yn� =
n∏
i=1

p�Yi�Pa�Yi��

accordingly to the graph � �V�E�. A probability distribution defined as above
is said to be Markov with respect to the graph � �V�E�.

For the purpose of this paper it is useful to formulate the following definition.

Definition 3.1. The distribution of �Y1� � � � �Yn� is connected, if no vari-
able Yi� i = 1� � � � � n is independent of the rest.

Obviously the results of this section can be applied in a straightforward way
to each connected subvector of �Y1� � � � �Yn�, if the distribution of �Y1� � � � �Yn�
is not connected.

In this paper the attention is focused on a subclass of DAG models that is
defined as follows.

Definition 3.2. A directed tree � �V�E� is a DAG with edgesE and nodes
V = �Y1� � � � �Yn� such that each node in V has exactly one parent, except
one node, called root, which has none. The nodes with no children are called
terminal. A tree model with respect to � �V�E� is the set of probabilities that
factor accordingly to the tree � �V�E�.

We shall call a tree model with graph � �V�E� binary if all the variables
Yi� i = 1� � � � � n in V are binary; that is, Yi can only take two values, coded by
−1 or 1.

Given three distinct subsets A�B�C ⊂ V�C is said to separate A from B
in an undirected graph if for any node vA ∈ A and vB ∈ B there exists a
path between vA and vB intersecting C. Given a DAG � �V�E�, if A�B are
subsets of vertices in V, such that V = A ∪ B�C = A ∩ B separates B from
A in the undirected version of � �V�E�, and e�v�w� ∈ E for any two nodes
v�w ∈ C, then the subgraphs � �A�EA� and � �B�EB� form a decomposition
of � �V�E�.

The separation property is very useful and enables us to read easily off
conditional independence assumptions which are coded in directed trees, as
stated in the following theorem.
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Theorem 3.1 (Separation for directed trees). Let the probability distribu-
tion p�Y1� � � � �Yn� be Markov with respect to the directed tree � �V�E� with
nodes V = �Y1� � � � �Yn� and edges E. If A�B�C ⊂ V are subsets of nodes in
� �V�E�, then

A ⊥⊥ B�C
whenever C separates A from B in the undirected version of � �V�E�.

For the proof, see, for instance, Lauritzen [(1996), page 47].
A directed tree model will be named a nest if, in the associated directed

tree, the root node and all the terminal nodes correspond to observed variables,
and the remaining nodes are hidden. An example of such a tree is displayed in
Figure 1. Nests are particularly interesting directed tree models. Firstly by the
separation theorem 3.1 we notice that no conditional independence statements
between subsets of manifest variables can be deduced in general. Secondly it
is simple to transform an arbitrary tree model with a given set of hidden and
manifest variables into a Markov equivalent tree model which is formed by a
set of nests. Thus in this sense a nest provides a building block for the analysis
of any tree model with hidden variables. Call a tree model triadic, if it is a nest
with respect to a graph in which each hidden variable has one parent and two
children (see the example displayed in Figure 1). An important class of directed
graphical models which usually have a triadic structure is used in phylogenetic
applications [see, e.g., Swofford, Olsen, Waddell and Hillis (1996)].

Throughout the paper we shall denote with � = �H1� � � � �Hm� a set of
hidden or latent variables, which are not observed and we assume Var�Hi� > 0
for 1 ≤ i ≤m, that implies that no hidden variable has a degenerate distribu-
tion. The set of variables 	 = �X1� � � � �Xn� that are assumed to be observed
will be called manifest or observed variables.

Fig. 1. A triadic nest.
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It has recently been shown that multinomial directed graphical models
define a family of probability distributions over the finite set of variables V
that is curved exponential [Geiger and Meek (1998)]. In particular directed
tree models being Markov equivalent to their undirected version define a
linear exponential family of probability distributions [Lauritzen (1996),
Chapter 4]. Recall that a linear or regular exponential family 
 is defined
as the set of probability distributions of the form

f�y� θ� = exp��θ� t�y�� − ψ�θ���
where t is the canonical statistic defined on a sample space � ∈ �n, taking
values in a real Euclidean vector space � ∈ �k with inner product �·�·�. The
natural parameter space is an open set given by

$ =
{
θ ∈ � �

∫
exp��θ� t�y��� ν�dy� <∞

}
�

The dimension of an exponential family, called the order, is the dimension of
the natural parameter space $ when the family is in its minimal form, that is,
when f�x� θ� cannot be represented with a parameter vector θ′ of dimension
smaller than k. We say that a curved exponential family 
C of dimension h is
an embedded subfamily of 
 if and only if its natural parameter space $C is
a smooth manifold of dimension h embedded in $.

When some variables are hidden, the sample space on the manifest vari-
ables 	 of a directed graphical model can be defined as the mapping of the
parameter space $ onto the marginal probability space $X associated to the
observed random variables and we say that there exists a map ν� $ → $X.
For most points θx0

∈ $X� the preimages �x0
= ν−1�θx0

� are manifolds of the
same dimension given by

dim��x0
� = dim�$� − dim�$X��(3.1)

[see, e.g., Hartshorne (1977), Chapter 10]. For a certain class of directed
graphical models with one hidden variable, Geiger, Heckerman, King and
Meek (1998) show that such a mapping is not a smooth manifold and therefore
such models are not curved exponential models.

We shall say that a subspace $H of the parameter space $ associated to
a directed graphical model is unidentifiable for any data x on the observed
variables 	 if for all parameters θ and θ′ in $H, the joint probability dis-
tribution over the directed graphical model is such that p�x�θ� = p�x�θ′�. In
statistical terminology this is commonly known as global unidentifiability and
is a stronger definition than the one used in latent variable models analysis
where it is typically assumed that a parameter θ in $ is locally identifiable if
for any θ′ in a neighborhood of θ p�x�θ� �= p�x�θ′� for all values x.

The dimension of the unidentifiable space is defined as dim��x0
� calculated

in (3.1), that is, the dimension of the preimage at smooth points θx0
of the map

ν�·�. Heuristically, this means that within the space defined by the natural
parameterization of the exponential family for a directed tree model, there
exists an open ball, whose dimension is the dimension of the unidentifiable
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space, in which all combinations of parameter values give the same likelihood
function for all datasets x.

3.2. Results on the identifiability of binary trees. In this section we shall
explore the identifiability issues for binary tree models with hidden variables
by using the algebraic constraints on the probability distribution of the man-
ifest variables induced by the conditional independence models as described
in Section 2.

Because of the local nature of conditional independence in tree models,
a triadic nest forms the building block to develop an understanding of the
statistical properties of more complicated tree models with hidden variables.
In particular it allows us to determine the dimension of the space of the
unidentifiable parameters when (1) the random variables are binary, (2) the
joint probability distribution obeys the Markov properties with respect to a
directed tree and (3) the marginal distribution of its observed variables 	 is
known. In practice, of course, the distribution on 	 will be estimated from
the observed marginal counts. If  is a random sample of the vector 	 , then
clearly, in the notation of Section 3.1, by definition  ⊥⊥ $�$X� In particular
this means that the observed data  are informative about the parameters
of $ only through what they tell us about the marginal parameter space $X.
One important consequence is that this will bound what we could expect to
learn about the set of hidden variables � = �H1� � � � �Hm� from a random
sample of the observed population �X1� � � � �Xn�. In particular for a Bayesian
model it will tell us which features of the prior distribution over �	 �� � will
endure after extensive sampling on 	 or, in other words, to which features of
the prior specification the model will be particularly sensitive.

Lemma 3.2. For any binary triadic model with tree � �V�E� and variables
V = � ∪	 , if the distribution of the manifest variables 	 is connected then
we can calculate:

(i) �Cov�Hi�Hj�� for all hidden variables such that e�Hi�Hj� ∈ E� 1 ≤
i �= j ≤m�

(ii) Var�Hj�� 1 ≤ j ≤m�
(iii) �Cov�Xi�Hj�� for all adjacent variables in V such that e�Hi�Hj� ∈

E� 1 ≤ i ≤ n� 1 ≤ j ≤m�

For the proof, see the Appendix.
The result in Lemma 3.2 can be generalized to directed graphical models

that assume conditional independence statements represented by more com-
plicated tree structures as described in the following theorem.

Theorem 3.3. For any binary directed nest with tree � �V�E� and vari-
ables V = � ∪	 , if the distribution of the manifest variables 	 is connected
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and all hidden variables have at least three neighbors, then we can calculate:

(i) �Cov�Hi�Hj�� for all hidden variables such that e�Hi�Hj� ∈ E� 1 ≤
i �= j ≤m�

(ii) Var�Hj�� 1 ≤ j ≤m�
(iii) �Cov�Xi�Hj�� for all adjacent variables in � �V�E� such that e�Xi�Hj�

∈ E� 1 ≤ i ≤ n� 1 ≤ j ≤m�
Proof. For any directed edges connecting a pair of neighbors e�Hi�Hj�

or e�Hj�Xl� in � �V�E�, where Hi�Hj are hidden and Xl is manifest, there
is a subtree of � �V�E�, say � 
Hi�Hj� or � �Hj�Hl�, which is triadic. To
construct such a tree first find the unique path from the root node to either
Xl orHi and delete all but two children of hidden nodes sequentially together
with their ancestors, always ensuring no edge on this path are deleted.

From the separation theorem 3.1, the family of probability distributions,
which are Markov with respect of this subtree, specifies a triadic model over
its variables. The result now follows from Lemma 3.2. ✷

It follows that the unidentifiability will depend solely on the aliasing and the
unidentifiable space is zero-dimensional as proved in the Appendix. Because
different solutions correspond to sign changes on the hidden variables there
are only finitely many of them and so they are topologically separated. So in
common terminology [see Goodman (1974a)] we can assert that such models
are locally identifiable given sufficient data. We are then in a relatively favor-
able situation where we can overcome the identifiability problem in our model
by eliciting a prior distribution for the parameters that assigns probability 1 to
a particular ordering on the probabilities of the hidden variables, for example
by demanding that P�Hi = 1� > 1/2� Note however that most of the standard
directed graphical models do not assume this. Indeed, for reasons of interpre-
tation, such arbitrary restrictions may well be unrealistic. When this is the
case our data gives us no additional information with respect to the prior set-
tings on where the best explanation between these aliasing alternatives lies.

The following result provides a method to calculate the dimension of the
unidentifiable space for triadic models which are nests. We shall assume that
the data arises from a probability distribution on the observed variables 	 �
that is a smooth point in $X. In general the singular points in the parame-
ter space $X correspond either to zeros in the probability tables on 	 or to
degenerate distributions on � ∪ 	 , such that Xi = Hj for some i� j, with
1 ≤ i ≤ n and 1 ≤ j ≤ m� An example of this is shown, for instance, in the
geometrical analysis of the triadic model in Section 4.1. Hence the following
results shall demand that the variables 	 are connected and that the joint
probability table associated to � ∪	 has nonzero entries.

Theorem 3.4. For any binary nest with tree � �V�E� and variables V =
� ∪ 	 , the number of the unidentifiable parameters in the joint parameter
space over �	 �� � is δ�� � = 2k, where k is the number of hidden variables
in � �V�E� with exactly two neighbors.
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Fig. 2. A simple nest in three variables.

For the proof see the Appendix.
Theorem 3.4 embeds the known case of the simplest nest with two mani-

fest variables and one hidden node, displayed in Figure 2, which has a two-
dimensional unidentifiable space as proved in Gilula (1979). The unidentifiable
space corresponds to all the possible binary hidden variablesH1 that are con-
sistent with the observed margins �X1�X2�; see, for instance, Settimi and
Smith (1998) for a discussion on the geometry of the parameter space of this
particular model.

We can extend the result in Theorem 3.4 to directed graphical models
with conditional independence assumptions corresponding to more general
tree structures as stated in the theorem below.

Definition 3.3. A hidden variable in a tree � �V�E� is called bounded if
it lies on a path between two manifest variables in � �V�E�, and unbounded
otherwise.

Let �B�2 denote the set of bounded hidden variables with two neighbors
and �U be the set of unbounded hidden variables in V. We write N��B�2�
and N��U� to denote the number of variables in �B�2 and �U, respectively.
For example, in Figure 3 the node H1 is bounded, H2 is unbounded and H3
is bounded with two neighbors.

Theorem 3.5. For a binary tree model with tree � �V�E� and variables
V = � ∪ 	 , if the distribution of the manifest variables 	 is connected,
then the number of unidentified parameters in the joint parameter space over
�	 �� � is δ�� � where

δ�� � = 2
N��B�2� +N��U���

Fig. 3. A directed tree with bounded and unbounded hidden variables.
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For the proof, see the Appendix.
Despite the fact that we can calculate the dimension of the unidentified

parameter space p�� �	 � in general, unless all hidden variables are
unbounded, the space itself can be very complicated. Even when this space
has zero dimension it will be subject to “aliasing” because alternative admis-
sible solutions can be obtained by switching the sign of any boundedHj giving
2K� K =N��B�2�, separate equally likely solutions to the problem.

4. Some results on the geometry of the observed margins. Recently
there has been an increasing interest in the nature and in particular in the
dimension of the observed space of the manifest variables in a directed graphi-
cal model with hidden variables. The feasible region specified by the marginal
distribution of directed graphical models with hidden variables is generally
very complicated whenever that graphical model contains a nest.

The regularity conditions concerning asymptotic results we might want to
use are typically broken, see Geiger, Heckerman, King and Meek (1998) for
a discussion of related issues. Instead of studying the local geometry of the
space, as these authors do, we try to obtain an insight into the nature of the
more global features of its geometry, focusing our attention on binary tree
models with isolated hidden variables, which correspond to directed trees in
which each hidden variable has its parent and its children that are observed.
In particular notice that the submodels relative to the subgraphs containing a
hidden variable are nests. Hence any probability distribution which is Markov
with respect to a tree with isolated hidden variables can be factored into the
product of probability distributions, that are defined by submodels with at
most one hidden variable. This is shown in the following example.

Example (Tree model with isolated hidden variables). The tree model in
Figure 4 has isolated hidden nodes H1�H2�H3� The corresponding tree can
be decomposed into the subgraphs �i�Vi�Ei�� i = 1� � � � �4 with set of nodes
V1 = �X1�X2�X3�X4�H1�� V2 = �X4�H2�X8�� V3 = �X5�H3�X6�X7�
and V4 = �X4�X5�� Notice that G1�V1�E1��G2�V2�E2�� G3�V3�E3� corre-
spond to nest models. The joint probability distribution defined by this tree
model can be factored as

p�X1�����X8�H1�H2�H3�
=g1�X1�X2�X3�X4�H1� g2�X4�X8�H2� g3�X5�X6�X7�H2� g4�X4�X5��

where each function gi�·�, for 1 ≤ i ≤ 4, belongs to the family of prob-
ability distributions defined by the submodels associated to the subgraphs
Gi�Vi�Ei�� i = 1� � � � �4�

Thus, the parameter space associated to the manifest variables of a binary
tree model with isolated hidden nodes can be analyzed by first decomposing
the tree, representing the conditional independence assumptions of the model,
into the set of subgraphs containing at most one hidden variables and then
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Fig. 4. A directed tree with isolated hidden variables.

Fig. 5. A directed tree with one hidden variable.

exploring separately the marginal subspaces associated to the marginal dis-
tributions of the manifest variables in the corresponding nest models.

The geometry of the parameter space for a nest submodel with two observed
variables is studied in detail in Settimi and Smith (1998) and the case of a
triadic nest with three observed variables is analyzed in Settimi and Smith
(1999). The following section presents the geometry of the projection onto the
marginal space $X of nest model with n = 4 manifest variables.

4.1. Nest with four observed variables. Let us suppose that four variables
X1� X2� X3� X4 are observed and that the interrelationships among them are
represented by a hidden variable model with directed tree structure displayed
in Figure 5. Such a graphical model implies the conditional independence
assumption ⊥⊥4

i=1 Xi�H1� that is X1�X2�X3�X4 are all conditional indepen-
dent given H1� The projection of such a model onto the marginal probabil-
ity space of the observed variables X1� � � � �X4 is analyzed by examining the
algebraic constraints characterizing the family of marginal distributions asso-
ciated to X1� � � � �X4 which are consistent with the model in Figure 5.

The additive model of the probability distribution of X1� � � � �X4 can be
expressed by

p�X1 = i1� X2 = i2� X3 = i3� X4 = i4�

= 1
16

[ 4∏
j=1

�1 + ijµj� +
∑

1≤j<k≤4

ijikµjk(4.1)

+ ∑
1≤j<k<h≤4

ijikλjkh + i1i2i3i4λ1234

]
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for il ∈ �−1�1� with l = 1� � � � �4 where µijk �= Ɛ��Xj−µj��Xk−µk��Xh−µh��
and µ1234 �= Ɛ�∏4

i=1�Xi − µi��� The usual constraints are imposed on the
moments defining the reparametrization in (4.1) because of the coherence
requirements that probabilities must lie in the simplex. Well-known algo-
rithms in linear programming provide the boundaries on these moments for
fixed means [Chvátal (1983), page 240].

Note that we can express λjkh �= Ɛ�XjXkXh� for 1 ≤ j < k < h ≤ 4 and
λ1234 �= Ɛ�X1X2X3X4� in terms of the central moments, by using the Bahadur
expansion for high-order probability distributions [Streitberg (1990)], that is,

λjkh = µjkh + µjµkµh +
∑
j �=k<h

µjµkh�

λ1234 = µ1234 + µ1µ2µ3µ4 +
∑

j �=k<h<s
µjµkhs(4.2)

+ ∑
j<k �=h<s

µjkµhs +
∑

j �=k �=h<s
µjµkµhs

The conditional independence model can be expressed in terms of the cen-
tral moments as

µjk = �1 − µ2
H�ηjηk� 1 ≤ j < k ≤ 4�

µjkh = −2µH�1 − µ2
H�ηjηkηh� 1 ≤ j < k < h ≤ 4�(4.3)

µ1234 = 2�1 − µ2
H��3µ2

H − 1�η1η2η3η4

for ηj = Cov�Xj�H1�/Var�H1�.
It can be shown that projecting the parameter space $ of the tree model

onto the space of the sample distributions defines a feasible region within the
sample space that can be expressed as

µ2
jkh�1 − µ2

H� = 4µ2
Hµjkµjhµkh for 1 ≤ j < k < h ≤ 4�

µ3
1234�1 − µ2

H� = 8�3µ2
H − 1�3 ∏4

j �=k=1
µjk�

(4.4)

These equations give the condition

2µ3
1234µ

4
H�1 − µ2

H� = �3µ2
H − 1�3�µ123µ124µ134µ234�

Notice that the solutions of the set of equations (4.3) must satisfy the fol-
lowing inequalities:

0 ≤ τjk =
√

4µjkµjhµkh + µjkh2

/
�2�µjk�� ≤ 1�

0 ≤ τjh =
√

4µjkµjhµkh + µjkh2

/
�2�µjh�� ≤ 1 for 1 ≤ j < k < h ≤ 4�(4.5)

0 ≤ τkh =
√

4µjkµjhµkh + µjkh2

/
�2�µkh�� ≤ 1�

The quantities τjk for 1 ≤ j < k ≤ 4 provide useful and simple test statistics
to check whether the data are compatible with the conditional independence
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assumptions implied by the model. In Section 5 we show an application of
these statistics through an example.

Hence from the system of equations (4.4) we can deduce the set of restric-
tions which are imposed by the conditional independence tree model of
Figure 5 on the parameters of the marginal distribution

µ12µ34 = µ14µ23�

µ13µ24 = µ14µ23�

µ123µ14 = µ124µ13�

µ123µ14 = µ134µ12�

µ124µ23 = µ234µ12�

µ2
124µ

2
134 = �µ1234µ124µ134 + 2µ123µ234µ

2
14�µ14�

(4.6)

Incidentally we notice that these relationships suggest a reparametrization
of the sample space in terms of the sample means µi� i = 1� � � � �4 and a subset
of the central moments, for example considering the parameters µjk�µhs for
j �= k �= h �= s and µjhk for 2 ≤ h < k ≤ 4�

From the first equation of (4.4) the admissible region in the parameter space
$X is defined by the second-order moments that satisfy the sign conditions
µjkµjhµkh > 0 for each j� k� h�

We can also write down boundary constraints on the sample distributions
of all triplets Xj�Xk�Xh given by

2�µjk� ≥ �µjh��µhk� +
√
µ2
jhµ

2
hk + µ2

jhk for �µjk� ≤ �µjh��µhk��(4.7)

for 1 ≤ j < k �= h ≤ 4.
Because of the sign constraints above, the region in the second-order

moments given in (4.7) is defined as the union of four symmetrical noninter-
secting regions contained in the four quadrants in which those sign conditions
hold. Figure 6 displays one of these regions in the positive quadrant relatively
to the triplet X1�X2�X3 for µ1 = 0�3� µ2 = 0�2� µ3 = 0�1� µ123 = 0�1.

Further constraints on the higher order moments can be derived. It can
be easily seen that the third-order moments, satisfying the system of
equations (4.4), must lie within the region defined by

4

3
√

3
≥ �µjkh� ≥

4��µjhsµjks − µjsµ1234��µ2
hks

��µjhsµjks��1/2 �3µjhsµjks − 2µjsµ1234��3/2
�(4.8)

for 1 ≤ j < h < k < s ≤ 4�
The marginal distributions which are consistent with the model in Figure 5

have moments which lie in the nonlinear subspace defined by (4.6), (4.7)
and (4.8). Even in this simple case we have that the constraints imposed on
the sample space by the conditional independence trees become quite severe,
defining restrictions also on the high-order moments. The boundary points
of the feasible sample space correspond to zeros in the marginal table of
the distributions of Xi�H1 for i = 1� � � � �4� Therefore they define degener-
ate distribution on H1�Xi for i = 1� � � � �4� The three-way interaction terms
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Fig. 6. The feasible region in the positive quadrant relative to the tripletX1�X2�X3 for µ123 = 0�3
and the mean values µ1 = 0�3, µ2 = 0�2, µ3 = 0�1.

µjkh can take values less or equal to 4
√

3/3. Notice that the maximum value
of µjkh corresponds to cusp in the feasible region, defined by the boundary
point µjh = µjk = µhk = 2/3� µ1234 = 0, that is, the degenerate distribution
Xj = Xk = Xh = H1. Thus the extrema of the feasible region all correspond
to models which are in some way degenerate because they set some cell prob-
abilities to zero.

In the statistical literature for latent variable models these degeneracies
have been studied for a long time. In particular when data are not con-
sistent with the conditional independence assumptions, a most likely model
will have some structural zeroes in the table of the conditional probabilities,
implying that certain functional relationships among the variables hold [see,
e.g., Goodman (1974a), De Leeuw, van der Heijden and Verboon (1990)]. As a
practical consequence, the likelihood will often take its maximum value on a
boundary of the parameter space. In discrete directed graphical models with
hidden variables, this feature has only recently attracted attention. This focus
is timely because many of the logistic or informative Dirichlet priors currently
used in practice have densities which tend to zero at their extremes and so
obscure these boundary solutions.

4.2. Extension to nests with n observed variables. In this section we con-
sider a nest with n observed variables X1� � � � �Xn such that

∐n
i=1 Xi�H1;

that is, all variables are conditionally independent on each other given a
binary hidden variable H1. Such a conditional independence model can be
expressed in terms of a set of equations in the central moments over the
variables X1� � � � �Xn�H1 that will describe the geometrical structure of the
parameter space of a nest.
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To find such a set of equations, the expressions of the central moments are
simplified by exploiting some algebraic results on the classification of com-
plementary set partitions and on the Moebius inversion function that are
described in McCullagh [(1987, pages 65 and 251)] and Streitberg (1990). Such
results show how to write the kth central moment µi1 � � �ik �= Ɛ�∏kj=1�Xij −
µij��� for 1 ≤ ij ≤ n and k = 2� � � � � n� as a polynomial function in terms of the

kth noncentral moments λi1···ik �= Ɛ�∏kj=1Xij�� and of the central moments of
order lower than k.

For instance, the expressions of the central moments for k = 3 and k = 4
can be derived from equations (4.2). The fifth order moment can be expressed
as

Ɛ

( 5∏
j=1

�Xj − µj�
)
= λ12345 − µ1µ2µ3µ4µ5 −

5∑
i=1

i�=j<k<r<s

µiµjkrs

−
5∑

1≤i<j≤5
i� j �=k<r<s

µijµkrs −
5∑

1≤i<j≤5
i� j �=k<r<s

µiµjµkrs(4.9)

−
5∑

1≤i≤5
i�=j<k �=r<s

µiµjkµrs −
5∑

1≤i<j<k≤5
i� j� k�=r<s

µiµjµkµrs�

From the results discussed in Section 2.2 each variable Xi� 1 ≤ i ≤ n is a
linear function of H1 and can be written as

Xi = µi + ηi�H− µH� + εi for Ɛ�εi� = Ɛ�εiH� = 0� i = 1� � � � � n�(4.10)

where ηi = Cov�Xi�H1�/Var�H1� for each i = 1� � � � � n�
Hence the noncentral moments of the joint distribution over X1� � � � �Xn

can be easily found from (4.10) as functions of the central moments of the
distributionH1. Substituting these expressions into the polynomial equations
of the central moments, we obtain the set of simultaneous equations describing
the parameter space of the given nest.

For instance, the noncentral moments for n = 5 are given by

λij = µiµj+ηiηj�1−µ2
H� for 1≤i<j≤5�

λijk = µiµjµk+�µiηjηk+µjηiηk+µkηiηj��1−µ2
H�

+ηiηjηkƐ�H1−µH�3 for 1≤i<j<k≤5�

���(4.11)

λ12345 = µ1µ2µ3µ4µ5+
∑
µiµjµkηrηs�1−µ2

H�
+∑

µiµjηkηrηs�−2µH�1−µ2
H��

+∑
µiηjηkηrηs�1+2µ2

H−3µ4
H�
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+4µH�µ4
H−1�η1η2η3η4η5

sums are for 1≤i �=j �=k �=r �=s≤5�

The first fourth-order central moments are derived from (4.3) and the equa-
tion relative to the fifth central moment µ12345 is obtained by substituting the
equations (4.11) in (4.9). After some algebraic simplifications we can write

µjk = �1 − µ2
H�ηjηk� 1 ≤ j < k ≤ 5�

µjkr = −2µH�1 − µ2
H�ηjηkηr� 1 ≤ j < k < r ≤ 5�

µijkr = 2�1 − µ2
H��3µ2

H − 1�ηiηjηkηr� 1 ≤ i < j < k < r ≤ 5�

µ12345 = 8µH�µ2
H − 2��3µ2

H − 4�η1η2η3η4η5�

Hence the computation of these polynomial equations for a conditional inde-
pendence model with n observed variables such that

∐n
i=1Xi�H1 is straightfor-

ward. Notice that computer algebra packages, such as Maple [Char, Geddes,
Gonnet, Leong and Monogan (1995)], can be used to calculate automatically
such sets of simultaneous equations.

The explicit algebraic characterization of these models allows us to ana-
lyze the geometrical structure of the region of the probability distributions
over 	 that belong to any binary tree model with isolated hidden variables.
For instance, the geometrical analyses of nest models with two, three or four
observed variables, discussed above, can be applied in an analogous way to
nest models with n ≥ 4 manifest variables.

4.3. Probability spaces over the manifest variables. We conclude this sec-
tion with a result that arises from a generalization of the TETRAD condition
[Cox and Wermuth (1996), page 72] and is valid for general trees. This result
forms the basis for a simple check on the compatibility of data with directed
graphical models that are nests, whenever we have extensive data on the
manifest variables 	 so that we can reasonably assume that the estimates of
the marginal probabilities over 	 can be calculated up to a negligible sample
error. In fact for large datasets we assume that these marginal probabilities
can be substituted by their sample proportions without loss.

For an arbitrary random vector Y = �Y1� � � � �Yn�, define the matrix S�Y� =
�si� j�i� j where

si� j =




1� if Cov�Yi�Yj� > 0�

0� if Cov�Yi�Yj� = 0 for 1 ≤ i� j ≤ n�
−1� if Cov�Yi�Yj� < 0.

Theorem 4.1. For any nest with tree � �V�E� and variables V = 	 ∪� �
if the distribution of the manifest variables 	 is connected, then the rank of
S�X� is 1, where X is the random vector X = �X1� � � � �Xn��

For the proof, see the Appendix.
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Remark. Although this is just one of the constraints on the covariance
matrix of the terminal and root node of a conditional independence structure
on binary variables with m hidden interior nodes, it does give a simple initial
check to see whether a sample might be described in this way. It appears that
we can get anything of rank up to n�n ≥ 3� Thus if n = 2� then S�X� = (1 1

1 1

)
or S�X� = ( 1 −1

−1 1

)
both of which are of rank 1, so we have no restrictions.

However for n = 3 we can have matrices that are not acceptable, that is of
rank greater than 1, such as, for instance,


 1 −1 −1
−1 1 −1
−1 −1 1


 �


1 1 1

1 1 −1
1 −1 1


 �


 1 1 −1

1 1 1
−1 1 1


 �


 1 −1 1
−1 1 1
1 1 1




5. Toward simple diagnostics on trees. An important motivation for
our study is that commonly used methods for model selection cannot be applied
to directed graphical models with hidden variables. Indeed we have seen that
the projection of the model space $ onto the marginal space of the observed
variables defines a region with singular points on the boundaries that cor-
respond to degenerate distribution on the manifest variables. The existence
of such singularities implies that the usual regularity conditions, that jus-
tify the use of asymptotic tests such as χ2 test, likelihood ratio test and
Laplace approximations yielding the Bayesian information criterion, are vio-
lated. Rather than develop general criterial which do not necessarily provide
an explanation on how a possible model is inappropriate, we shall propose a
small number of diagnostic statistics based on the values of sample moments.
This sort of diagnostics has a long tradition in statistics; for instance, the
well-known TETRAD condition on the second-order moments can be used to
check the conditional independence assumption between two variables [Cox
and Wermuth (1996), page 72].

The most obvious way for a Bayesian to perform a diagnostic check of a
given model is to compare the value of the observation vector with its predic-
tive probability [see, e.g., Geisser (1993)]. Although we throughly recommend
such methods, it is also true that, because of the complexity of directed graph-
ical models, in common practice the prior probabilities are typically chosen to
be in common families with assumptions of independence made for no other
reason than convenience, for example, local and global independence. Other
safeguards are therefore helpful. From the analysis above we suggest that a
possible additional diagnostic is to check whether the posterior probabilities of
the hidden variables in a Bayesian tree network appear to be close to zero or
one. This will happen if the likelihood takes maximum values on the bound-
ary of the parameter space. If this is so then we might suspect that the given
model does not explain adequately the observed data. Identifying where these
extreme values occur helps to indicate which aspects of the embedded condi-
tional independence assumptions might be suspect. Two other features of tree
models are worth checking routinely. When we have reasonably extensive data
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we should examine whether:

1. The sample distribution on the manifest variables satisfies the sign con-
straints and the rank condition above;

2. The algebraic constraints on the sample estimates of lower order moments
are satisfied, in particular the sign conditions on the second-order moments
given in the example of Section 4.1 for any three manifest variables that
form a triadic subtree.

Theorem 5.1. For any nest with tree � �V�E� and variables V = � ∪	 ,
all triples of manifest variables �Xi�Xj�Xk� for 1 ≤ i �= j �= k ≤ n in � �V�E�
have probability distributions which define a triadic model, with H one of the
hidden variables in the nest.

Proof. From the separation theorem 3.1, the set of probability distribu-
tions which are Markov with respect to the directed tree � ∗�V�E� with the
same undirected tree as � �V�E� but with root node Xi belong to the nest
with tree � �V�E�. To verify the assertion of the theorem we now just choose
a hidden variable H to be the unique hidden node lying on both the paths
�Xi�Xj�� �Xi�Xk� and which is closest to Xi. Hence the separation theorem
on � ∗�V�E� allows us to assert that

∐
Xi�Xj�Xk�H. ✷

It follows that, with reasonably extensive data, we can expect that all
(
n
3

)
triples of the n manifest variables lie within or close to their corresponding
three dimensional regions of the type given in Figure 6 in Section 4.1.

Example (Application to a simple dataset). We consider a dataset ana-
lyzed by Goodman (1974b) where the responses of 3,398 schoolboys to two
interviews about their self-perceived membership in the “leading crowd” are
cross-classified with respect to four dichotomous variablesX1�X2�X3 andX4.
The variables X1 and X2 correspond to questions on self-perceived member-
ship and on the attitude with respect to it at the first interview, respectively,
and X3 and X4 correspond to the same questions at the second interview.
The sample proportions of the responses to the two interviews are displayed
in Table 1.

Our geometrical approach is used to explore whether the nest model, such
that the manifest variables Xi for i = 1� � � � �4 are independent of each other
conditionally on a binary hidden variable H1, is supported by such a dataset.

Table 2 shows the sample estimates of the moments for the probability dis-
tribution on X1�X2�X3�X4. Recalling the results in Section 4.1, the sample
values of the statistics �τjk� τjh� τkh� defined in (4.5) for each triplet, Xj� Xk�
Xh for 1 ≤ j < k < h ≤ 4 are given by

�τ12� τ13� τ23�=�0�8339�0�1579�0�6388��
�τ12� τ14� τ24�=�0�1569�0�8364�0�6475��
�τ13� τ14� τ34�=�0�5341�0�5390�0�1822��
�τ23� τ24� τ34�=�0�1994�0�5341�1�2234��
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Fig. 7. A simple directed acyclic graph with one hidden variable.

Since these values lie outside 
0�1� they suggest that the conditional inde-
pendence assumption

∐
X2�X3�X4�H1 might be inappropriate to explain the

data and confirm the analysis carried out by Goodman (1974b) in his paper,
where this conditional independence model is rejected and the data are ana-
lyzed by using models with a more complicated hidden structure. More formal
Bayesian data analyses for hidden variables models with tree structure will
be presented in a later paper where we shall discuss more sophisticated diag-
nostic methods.

6. Discussion. The extension of our geometrical analysis to more com-
plicated graphical models, defining set of probability distributions which are
Markov with respect to directed acyclic graphs that are not trees, is not
straightforward. However, there are obvious generalizations to certain models,
whose conditional independence assumptions are not represented by directed
trees, that can be derived directly from our results, such as, for instance,
the simple DAG model represented in Figure 7 that has zero-dimensional
unidentifiable space and the class of DAG models which assume a condi-
tional independence structure over the hidden variables that is described via
a directed tree.

Further extensions that will be explored in a future paper include non-
binary DAG models. The algorithm of identifying the noncentral moments
equations determined on the sample spaces of the different variables and
also the conditional independence statements of the graph in terms of central

Table 1

Sample proportions of the responses of 3,398 schoolboys classified according to two interviews
about self-perceived membership in “leading crowds”

Second interview
X3 membership + + − −
X4 attitude + − + −

First interview
X1 membership X2 attitude

+ + 0.135 0.041 0.032 0.014
+ − 0.050 0.054 0.016 0.026
− + 0.055 0.022 0.156 0.083
− − 0.025 0.029 0.099 0.163
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Table 2
Sample estimates of moments associated to the observed variables X1�X2�X3�X4

Covariances

Means X2 X3 X4 Three-way interaction

X1 µ̂1 = −0�2625 0.0976 0.5627 0.0606 µ̂123 = 0�0295
X2 µ̂2 = 0�076 0.1274 0.2861 µ̂124 = 0�0082
X3 µ̂3 = −0�181 0.1249 µ̂134 = 0�0357
X4 µ̂4 = 0�1377 µ̂234 = −0�2742

µ̂1234 = −0�0865

moments equations are still valid. However, there is no longer a binary tree
structure on the hidden variables, the equations become much more compli-
cated and it is often necessary to resort to computer algebra techniques, such
as Gröbner bases [Cox, Little and O’Shea (1991)]. Interestingly it appears that
similar techniques as given in this paper can be used when all variables are
Gaussian. Here, however, the sample space restrictions need to be specified in
terms of cumulants rather than in terms of noncentral moments.

APPENDIX

A. Proofs of lemmas and theorems.

Proof of Lemma 3.2. Proceed by induction on m. There is only one bin-
ary triadic model when m = 1, namely the triadic model represented by the
tree in Figure 8. It is easy to show that the theorem holds in this case. Such
a triadic model implies the conditional independence assumptions

∐
X1� X2�

X3�H� which are equivalent to the statements

Xi ⊥⊥Xj�H1 for 1 ≤ i �= j ≤ 3� �X1X2� ⊥⊥X3�H�
By using (2.7) where we set W = H1� Y = Xi� Z = Xj for 1 ≤ i �= j ≤ 3 and
α = 1� β = 1 the conditional independence assumptions Xi ⊥⊥ Xj�H1 can be
written as

Var�H1�Cov�Xi�Xj� = Cov�Xi�H1�Cov�Xj�H1��(A.1)

The other relationship �X1X2� ⊥⊥X3�H1 can be expressed by

Var�H1�Cov�X1X2�X3� = Cov�X1X2�H1�Cov�X3�H1��(A.2)

By substituting (A.1) into (A.2) and rearranging, equation (A.2) can be replaced
by

Ɛ��X1 − µ1��X2 − µ2��X3 − µ3��
= −2Ɛ�H1�Cov�X1�H1�Cov�X2�H1�Cov�X3�H1�/Var�H1�2�

(A.3)

Hence (i), (ii) and (iii) hold as solutions of the system of equations (A.1) and
(A.3) and the theorem is true for m = 1. Suppose now that the statement
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Fig. 8. A triadic nest with one hidden variable.

is true for all binary triadic trees with m = k� k ≥ 1. Consider a binary
triadic model with k + 1 binary hidden variables, corresponding to the tree
� �V�E�. Then � �V�E� will have at least one hidden variable, sayH1, whose
node has as its neighbors two manifest variables, say X1�X2, and one hid-
den variable, say H2. It is easily checked, using the separation theorem 3.1,
that the directed tree � ∗�V�E�, obtained from � �V�E� deleting the edges
e�H2�H1�� e�H1�X1�� e�H1�X2� and the nodes H1 and X1 and adding the
edge e�H2�X2� represents a set of conditional independence assumptions that
define a triadic model with k hidden nodes. From the inductive hypothesis
therefore, we can immediately state that (i), (ii) and (iii) are true if we can
prove that �Cov�H1�H2���Var�H1�� �Cov�X1�H1�� and �Cov�X2�H1�� can be
evaluated.

Also by the separation theorem 3.1, labelling the root manifest variableX3
we have that

∐3
i=1Xi�H1. From the example in Section 4.1 we can therefore

assert that Var�H1�� �Cov�X1�H1�� and �Cov�X2�H1�� are determined.
Finally, we can read from the tree using separation that X2 ⊥⊥ H2�H1

which implies

Var�H1� �Cov�X2�H1�� = �Cov�X2�H1�� �Cov�H1�H2���(A.4)

Note that �Cov�X2�H1�� is calculated above and also nonzero, for otherwise
we would have X2 ⊥⊥H1 because X2 and H1 are binary.

By separation on � �V�E� we would then have X2 ⊥⊥ �X1�X3� � � � �Xn�;
this would mean that the distribution of 	 is not connected, which is not
allowed in the hypotheses. The variance Var�H1� is calculated from (A.4).
Finally, �Cov�X2�H2�� is determined from the inductive hypothesis applied to
� ∗�V�E�.

So we have shown that if the hypothesis is true for m = k it is also true for
m = k+ 1; thus by induction the theorem holds for all m. ✷

Proof of Theorem 3.4. First note that if δ�� � = 0, then Lemma 3.3
proves this result since all second moments of the distribution are determined
in modulus and so up to possible sign changes in the hidden variables.

So suppose H2 is a hidden node in � �V�E� with exactly one parent, H1,
and one child, H3.

Let V be the vertex set and E denote the edge set of the tree � �V�E� and
construct a new directed tree � ′�V′�E′� where

V′ = V\�H2� and E′ = �E\�e�H1�H2�� e�H2�H3��� ∪ �e�H1�H3���
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It is easy to check that the separation theorem 3.1 implies that the set of
conditional independence statements represented in � �V�E� are equivalent
to those coded in the tree � ′�V�E�, none of which directly concern the joint
distribution of functions of H2, together with the two further statements

H1 ⊥⊥H3�H2�(A.5)

H2 ⊥⊥ V\�H1�H2�H3��H1�H3�(A.6)

Because all nodes are binary, the second statement (A.6) tells us that,
given 
Ɛ�H1��Ɛ�H3��Cov�H1�H3��, the quantities Ɛ�H2��Cov�H1�H2� and
Cov�H2�H3� are functionally independent of all the other parameters deter-
mining the conditional distributions of the hidden variables given the manifest
variables. The first equation (A.5) is equivalent to demanding

Var�H2�Cov�H1�H3� = Cov�H1�H2�Cov�H2�H3��(A.7)

where Var�H2� = 1 − Ɛ�H2�2. Note that Cov�H1�H3� �= 0, for otherwise
H1 ⊥⊥ H2 and so the distribution of 	 would not be connected, contrary
to the hypothesis. So (A.7) defines a solution space of dimension 2. By replac-
ing � �V�E� by � ′�V�E� in the above argument and repeating this argument
successively a residual DAG having only hidden variables with at least three
neighbors is constructed. Hence the directed graphical model defined by the
probabilities that are Markov with respect to such a residual DAG has an
unidentifiable space of dimension 2k, where k is the number of hidden vari-
ables with two neighbors as required. ✷

Proof of Theorem 3.5. A simple application of the separation theorem 3.1
shows that all DAG models which assume conditional independence state-
ments coded via directed trees that have the same undirected version are
Markov-equivalent; that is, they induce the same conditional independence
restrictions on the joint distribution of �	 �� �. So without loss we can assume
that the root node is a manifest variable.

Directly from the definition of a DAG model, we have that the implied condi-
tional independence statements in � �V�E� concerning the conditional distri-
bution p�� �	 � are equivalent to those coded in the directed trees
��1�V1�E1�� � � � ��J�Vj�Ej�� where V = ⋃J

j=1Vj and E = ⋃J
j=1Ej. The set

Vj is defined as Vj = 	 
j� ∪ � 
j� where 	 
j� is a set of manifest vari-
ables and � 
j� is a set of hidden variables, together with a set of conditional
independence statements over V given below.
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Thus we have for 1 ≤ j �= j′ ≤ J,

	 
j� ∩	 
j′� =
{� or�
�Xj�j′ ��

where Xj�j′ denotes a manifest variable which is terminal or root in both �j
and �j′ . Besides,

� 
j� ∩� 
j′� = � and
J⋃
j=1

� 
j� = � �1 ≤ j �= j′ ≤ J�

Ej ∩Ej′ = �� 1 ≤ j �= j′ ≤ J�
where �j�1 ≤ j ≤ J is a nest or its vertex setVj contains exactly one manifest
variable, which is its root node, and the other nodes are hidden.

The additional conditional independence statements needed are

� 
j� ⊥⊥ V\Vj�	 
j�� 1 ≤ j ≤ J�(A.8)

Because of (A.8), to find the dimension of the required unidentifiable space
we need only to add the dimension of the unidentifiable space associated
with the J models corresponding to these J trees �j�Vj�Ej�. If �j�Vj�Ej�
corresponds to a nest model then the dimension of the unidentifiable space
associated to this model is given in Theorem 3.4. Otherwise it clearly con-
tains 2N�� 
j�� undetermined parameters, namely, for each variable Hi ∈
� 
j� those are the probabilities p�Hi = 1�parent�Hi� = 1� and p�Hi =
1�parent�Hi� = 2�. Adding over J now gives the result of the theorem. ✷

Proof of Theorem 4.1. For convenience, define the hidden vector H =
�H1� � � � �Hn�. First note that the distribution of the manifest variable X is
invariant to sign changes in the hidden variables � . Therefore, by considering
the vector form, if H′ = BH where B is an arbitrary diagonal matrix whose
eigenvalues are either −1 or 1, then if H′ is given the same distribution as
another H, the margin on X will be the same in two cases provided that
p�X�H� = p�X�H′� under the transform B above.

Beginning with the parent node X1, change the sign of its hiddden child,
say H1, if and only if Cov�H1�X1� < 0. Moving from parent Xi to child Hi of
the hidden node, change the sign of Hi to −Hi if and only if Cov�Xi�Hi� <
0. The root node and all the transformed hidden variables H′ will now be
positively correlated. Now consider the linear transformation X′ = AX where
A = diag�ai� 1 ≤ i ≤ n� with entries ai = �−1�d� d = 1 + sign�Cov�Xi�Hj�i��
where Hj�i� is the unique parent of Xi in � . By the string rule and the
assumption that Cov�Xi�Xj� �= 0, we therefore have that S�X′� = Jn where
Jn is the n× n matrix of ones.

In particular it follows that

rank�S�X�� = rank�S�A−1X′�� = rank�S�X′�� = rank�J� = 1� ✷
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