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We consider the problem of testing monotonicity of the regression func-
tion in a nonparametric regression model. We introduce test statistics that
are functionals of a certain natural U-process. We study the limiting distri-
bution of these test statistics through strong approximation methods and
the extreme value theory for Gaussian processes. We show that the tests
are consistent against general alternatives.

1. Introduction. Consider two real valued random variables X and Y
related by the regression model

Y = m�X� + ε�(1.1)

where Eε = 0. Occasionally, one assumes that m�·� has a known functional
form containing a few unknown parameters and estimates the parameters by
the method of least squares. In the absence of specific assumptions, m�·� can
still be estimated by various non-parametric methods such as kernel meth-
ods only under certain smoothness conditions. In some situations, one expects
some qualitative structure in the regression function such as monotonicity.
For example, if X stands for income and Y for expenditure on some specific
item such as food or housing, one would naturally expect that m�·� is an in-
creasing function. A similar situation also arises in bio-medical or nutrition
studies where the response variable may be expected to be an increasing func-
tion of the dose of a drug or the level of a nutrient, at least over some range
of interest. Methods of estimation of regression function under a monotonicity
restriction (or the so called isotonic regression) have been widely discussed in
the literature; see, Barlow, Bartholomew, Bremner and Brunk (1972), Robert-
son, Wright and Dykstra (1988), Hanson, Pledger and Wright (1973), Wright
(1981, 1982), Ramsay (1988, 1998), Mukerjee (1988), Mammen (1991) and the
references therein. Somewhat analogous percentile regression estimates have
also been considered; see Cryer, Robertson, Wright and Casady (1972), Casady
(1976) and Wright (1984).

The problem of testing monotonicity of the regression function is relatively
less addressed in the literature. A test for monotonicity may be viewed as a
composite goodness of fit test. In the parametric framework, Robertson and
Wegman (1978) and Robertson, Wright and Dykstra (1988) consider the dis-
crete version of the problem and discuss the likelihood ratio test for the pres-
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ence of order in the means of the normal populations associated with the
different values of a non-stochastic covariate. They also discuss the more gen-
eral case of exponential families of distributions and approximations of the
distribution of the likelihood ratio statistics. In the non-parametric set up,
Schlee (1982) discusses a test based on an estimate of the derivative of the
regression function. Some very recent works consider the problem of testing
monotonicity. Bowman, Jones and Gijbels (1998) construct a test using the
idea of the critical bandwidth, originally introduced by Silverman (1981) for
testing unimodality of a density. The essential idea behind this test is to fit
a local linear regression and look at the smallest value of the bandwidth for
which the estimate becomes monotone. This critical bandwidth is then used
as a test statistic and the P-value is computed by the bootstrap method. Hall
and Heckman (2000) develop a test for monotonicity by calibrating for linear
regression. In their approach, Hall and Heckman (2000) test the positivity
of the slope of the fitted least square linear regression line over each small
block of observations. They also use the bootstrap method and calculate the
P-value. Dümbgen and Spokoiny (1998) consider the white noise model and
construct tests for qualitative hypotheses such as monotonicity or convexity, by
considering the supremum, over all bandwidths, of the L∞-distance between
a kernel estimate and the null hypothesis. Although, the test of Dümbgen and
Spokoiny (1998) has a natural appeal, it requires the computation of kernel
estimates for all bandwidths, and may be difficult to implement. Moreover,
their procedure does not carry over immediately to the regression case. If for
a given sample, the bandwidth is made arbitrarily small, the kernel estimate
would be highly variable, and in fact will not be defined at many points if the
kernel is compactly supported. In the context of densities, Woodroofe and Sun
(1999) test uniformity against monotonicity.

In this article, we consider testing monotonicity of the regression function
and construct tests with a given asymptotic level. Our test statistics are suit-
able functionals of a stochastic process which may be viewed as a local version
of Kendall’s tau statistic and have simple natural interpretations. The process
involved is a degree-two U-process, as in Nolan and Pollard (1987). We deter-
mine the critical regions of the tests by computing the limiting distributions of
the test statistics with the help of the empirical process approximation of the
U-process defined by the Hájek projection, strong approximation of the empir-
ical process by a Gaussian process and the extreme value theory for stationary
Gaussian processes. The test is therefore straightforward to implement. We
neither need to compute kernel regression estimates for different bandwidths
nor need to do bootstrap simulations.

The paper is organized as follows. In Section 2, we introduce two different
types of test statistics. We also formally describe the model and the hypoth-
esis and explain the notation and regularity conditions in this section. In
Section 3, we investigate the asymptotic behavior of the U-process and estab-
lish the Gaussian process approximation. In Section 4, we discuss the limiting
distribution of the first test statistics using the extreme value theory for sta-
tionary Gaussian processes and the results of Section 3. In Section 5, we show
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that this test is consistent against all fixed alternatives and also against al-
ternatives that approach the null sufficiently slowly. The second test statistic
is studied in Section 6. In Section 7, a small simulation study is carried out to
investigate the behavior of the first statistic for finite sample sizes. Technical
proofs are presented in Section 8 and the Appendix.

2. The test statistics. Suppose that we have n independent and iden-
tically distributed (i.i.d.) observations �Xi�Yi�, i = 1� � � � � n, where Yi =
m�Xi� + εi and Xi and εi are independent random variables with distribu-
tion functions F and G respectively. For identifiability, we shall assume that
Eε = 0, though the assumption is otherwise unnecessary. Let T = �a� b� be a
compact interval which is the region of our interest in the domain of definition
of the regression function m�·�. Consider testing the hypothesis

H0 	 m�·� is an increasing function on T�

We assume that F has a density f which is continuous and positive on T
and G has a continuous density g. We also assume that the support of F is a
compact interval containing T. From a practical point of view, this is normally
a satisfactory assumption. Further, it will turn out that our test statistics are
not affected by observations outside an open interval containing T, and there-
fore the condition may be assumed without any essential loss of generality.
Also, we suppose that the function m�·� is continuously differentiable. The
hypothesis H0 can now be written as

H0 	 m′�t� ≥ 0 for all t ∈ T�

Intuitively, for a given t ∈ T, m′�t� ≥ 0 if X and Y are concordant for X-
values close to t. We recall that the degree of concordance may be estimated
from the sample by the Kendall tau statistic. Since we have to restrict our
attention toX-values close to t, it is therefore natural to use a locally weighted
version of Kendall’s tau, where more weight is attached to X-values close to t.

Let k�·� be a nonnegative, symmetric, continuous kernel supported in
�−1�1� and twice continuously differentiable in �−1�1�. Let hn be a positive
sequence converging to 0 and will be referred to as the bandwidth in what
follows. Put kn�x� = h−1

n k�h−1
n x�. With

sign�x� =



1� if x > 0�
0� if x = 0�

−1� if x < 0�

we consider

Un�t� =
2

n�n− 1�
∑

1≤i<j≤n

sign�Yj −Yi�sign�Xi −Xj�
× kn�Xi − t�kn�Xj − t�

(2.1)

as a measure of discordance between X and Y when X is close to t. Ideally, if
m′�t� ≥ 0, Un�t� should be, apart from random fluctuations, less than or equal
to 0. Therefore the U-process �Un�t� 	 t ∈ T� should mostly lie below the level
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0 if H0 is true. Depending on the way we measure the degree of violation, we
may construct different natural test statistics.

We observe that the process Un�·� is invariant under monotone transfor-
mation of Y. Therefore, any test based on Un�·� will work even if only some
monotone transformation of Y satisfies (1.1), that is, the test for monotonicity
of m�·� will work for the bigger model

φ�Y� = m�X� + ε�(2.2)

where φ is a monotone function.
First, we note that EUn�t� ≤ 0 for large n if m′�t� < 0. To see this, let G̃

stand for the distribution of −ε. Note that

EUn�t� =
∫ ∫ ∫ ∫

sign�m�x2� + ε2 −m�x1� − ε1�sign�x1 − x2�
× kn�x1 − t�kn�x2 − t�g�ε1�g�ε2�f�x1�f�x2�dε1dε2dx1dx2

=
∫ ∫ [

2
∫
G̃�m�x2� −m�x1� − ε1�g�ε1�dε1 − 1

]
sign�x1 − x2�(2.3)

× kn�x1 − t�kn�x2 − t�f�x1�f�x2�dx1dx2

=
∫ ∫

�2G∗�m�t+ hnv� −m�t+ hnu�� − 1�sign�U− v�
× k�u�k�v�f�t+ hnu�f�t+ hnv�dudv�

where G∗�ε� = ∫
G̃�ε − ε′�g�ε′�dε′, the convolution of G̃ with G, or alterna-

tively, the distribution of ε1 − ε2. The density g∗ of G∗ exists, is continuous
and g∗�0� = ∫

g2�ε�dε. Therefore,
1
hn

�2G∗�m�t+ hnv� −m�t+ hnu�� − 1� → 2g∗�0�m′�t��v− u��(2.4)

Applying a dominated convergence argument, we therefore conclude that

1
hn

EUn�t�

→ −2
(∫

g2�ε�dε
)
m′�t�

(∫ ∫
�u− v�k�u�k�v�dudv

)
f2�t�

(2.5)

and so the limit is less than or equal to 0 if and only if m′�t� ≥ 0. This partly
justifies the intuition that Un�t� should be less than or equal to 0 under H0,
at least in expectation.

For each t ∈ T, let cn�t� = cn�t�X1� � � � �Xn� be a positive random variable,
possibly depending on X1� � � � �Xn, but not on Y1� � � � �Yn. Further assume
that, as a process in t, cn�·� has continuous sample paths. Then a general
class of test statistics is given by

Sn = ψn

(
Un�·�
cn�·�

)
�(2.6)

where ψn�·� is a positive functional on C�T�, the space of continuous functions
on T. [By a positive functional ψ�·� on C�T�, we mean that ψ�φ1� ≥ ψ�φ2�
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whenever φ1 ≥ φ2 pointwise.] In order to implement the testing procedure,
however, we need to choose ψn�·� and cn�·� judiciously such that Sn has a
reasonably simple asymptotic null distribution. We shall shortly return to
this issue.

First observe that any test statistic of the form (2.6) satisfies the following
important inequality: Let Pn

m�F�G denote the joint distribution of �X1�Y1�� � � � �
�Xn�Yn�, whereX has distributionF, ε has distributionG and the regression
function in (1.1) is m�·�. Let Pn

0�F�G denote the same when m�·� ≡ 0. Then for
all m ∈ H0,

Pn
m�F�G�Sn ≥ s� ≤ Pn

0�F�G�Sn ≥ s�� s ∈ ��(2.7)

This means that the Type I error probability is maximized in H0 when m�·� ≡
0, and therefore, for the purpose of obtaining the limiting null distribution, it
suffices to look at the case m�·� ≡ 0 only.

To prove (2.7), set

U0
n�t� =

2
n�n− 1�

∑
1≤i<j≤n

sign�εj − εi�sign�Xi −Xj�
× kn�Xi − t�kn�Xj − t��

(2.8)

Note that when m�·� ≡ 0, U0
n�·� ≡ Un�·�, and the distribution of U0

n�·� does
not depend on m�·�.

If m�·� is increasing, then clearly

sign�Yj −Yi�sign�Xi −Xj�
= sign�m�Xj� + εj −m�Xi� − εi�sign�Xi −Xj�(2.9)

≤ sign�εj − εi�sign�Xi −Xj��

and therefore, for all t ∈ T, Un�t� ≤ U0
n�t�. By the nature of Sn, (2.7) now

follows easily.
It may be noted that not every statistic of the form (2.6) is reasonable. The

statistic should only look for the occurrence of large values in the process
and ignore the small values. For example, if the functional is an integral,
then cancellation between large and small values will tend to convince us
that monotonicity is not violated and hence will result in an undesirable test
statistic. Now, largeness of a process may be measured in different ways, for
example, by the largest value of the process or the duration of the excursions
of the process above a pre-determined level. These lead us to the following two
choices of ψn�·�:

(i) ψn�φ� = ψ�φ� = sup�φ�t� 	 t ∈ T�,
(ii) ψn�φ� = meas�t ∈ T 	 φ�t� > un� = ∫

T�t 	 φ�t� > un�dt
for some suitable sequence un.
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(As we did here, we shall use the same notation for indicators and the corre-
sponding sets.) Admittedly, there could be many other natural choices of ψn�·�.
A more general class containing (ii) is mentioned at the end of Section 6. The
first statistic is expected to be more sensitive toward violations of monotonic-
ity in terms of magnitude (measured by the absolute value of the derivative of
the regression function) while the second statistic can be expected to perform
well against alternatives which violate monotonicity on long intervals.

We choose cn�t� such that the variability of Un�t�/cn�t� is approximately
the same for different t’s when m�·� ≡ 0. From a statistical point of view,
this works as a transformation bringing in homoscedasticity and so making
comparisons of the values of the process at different t’s more meaningful.
Technically, this will turn out to be a great advantage, as we shall see that
the process Un�t�/cn�t� can then be approximated by a stationary Gaussian
process, for which the limiting distribution of functionals of the form (i) and
(ii) are already well investigated in the literature. A similar device is employed
by Bickel and Rosenblatt (1973) in their study of global functionals of density
estimators.

We now make the notion “the variability of Un�t��/�cn�t� is approximately
the same over different t” more precise. When m�·� ≡ 0, the Hájek projection
of Un�t� [the linear approximation to Un�t� first found by Hoeffding (1948)] is
given by

Ûn�t� =
1
n

n∑
i=1

ψn�t�Xi� εi��(2.10)

where

ψn�t�x� ε� = 2�1− 2G�ε��
∫
sign�x−w�kn�w− t�dF�w�kn�x− t��(2.11)

Note that EÛn�t� = 0 and the variance of Ûn�t� is given by σ2
n�t�/n, where

σ2
n�t� = 4

∫
�1− 2G�ε��2dG�ε�

∫ (∫
sign�x−w�kn�w− t�dF�w�

)2
×k2

n�x− t�dF�x�
= 4

3

∫ ∫ ∫
sign�x−w1�sign�x−w2�kn�w1 − t�kn�w2 − t�
× k2

n�x− t�dF�w1�dF�w2�dF�x��

(2.12)

One may thus like to choose cn�t� = σn�t�/
√
n. However, σn�t� involves the

unknownFwhich must be estimated. Our final choice of cn�t�will be σ̂n�t�/
√
n

where σ̂2
n�t� is the U-statistic for σ2

n�t�, that is,

σ̂2
n�t� =

4
3n�n− 1��n− 2�

∑
1≤i�j�k≤n

i�=j �=k

sign�Xi −Xj�sign�Xi −Xk�

× kn�Xj − t�kn�Xk − t�k2
n�Xi − t��

(2.13)
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Put

S1�n = sup
{√

nUn�t�
σ̂n�t�

	 t ∈ T

}
(2.14)

and

S2�n = meas
{
t ∈ T 	

√
nUn�t�
σ̂n�t�

> un

}
�(2.15)

We shall refer to S1�n and S2�n respectively as the supremum statistic and the
time spent statistic. The respective tests are given by

Reject H0 at level α if Si�n > τi�n�α� i = 1�2�(2.16)

where

lim
n→∞Pn

0�F�G�Si�n > τi�n�α� = α� i = 1�2�(2.17)

To approximate the critical values, we need the limiting distributions of S1�n
and S2�n. In the following sections, we study these limiting distributions.

3. Gaussian process approximation. Since our test statistics are func-
tionals of the process {√

nUn�t�
σ̂n�t�

	 t ∈ T

}
�

the asymptotic properties of the test statistics may be obtained from the cor-
responding properties of the process. In this section, we show that this process
may be approximated by a stationary Gaussian process with continuous sam-
ple paths.

The technique is based on, among other things, strong approximation and
should be interpreted in the sense that we can obtain a rich enough probability
space and copies of the original observations on it so that the corresponding
copy of theU-process has the desired approximation property. Since ultimately
we are interested in distribution of the process only, we can regard the new
probability space as our given one.

We first need to introduce some additional notations. Let K�·� stand for
the distribution function corresponding to the density k�·�, that is, K�x� =∫
z≤x k�z�dz. Set

q�x� =
∫
sign�x−w�k�w�dw = 2K�x� − 1(3.1)

and

ρ�s� =
∫
q�z�q�z− s�k�z�k�z− s�dz∫

q2�z�k2�z�dz �(3.2)

Also set Tn = �0� �b − a�/hn�. It is assumed throughout this section that
m�·� ≡ 0.
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Theorem 3.1. Let the bandwidths satisfy the conditions

hn

√
log n → 0 and nh2

n/�log n�2 → ∞�(3.3)

Then there exists a sequence of stationary Gaussian processes ξn, defined on the
same sample space and indexed by Tn, such that ξn�·� has continuous sample
paths,

Eξn�s� = 0� E�ξn�s1�ξn�s2�� = ρ�s1 − s2� s� s1� s2 ∈ Tn�

and

sup
t∈T

∣∣∣∣√n
Un�t�
σ̂n�t�

− ξn�h−1
n �t− a��

∣∣∣∣
= Op�n−1/4h−1/2

n

√
log n+ hn

√
log n��

(3.4)

The proof of Theorem 3.1 is long and involves several steps:

1. approximation of the U-process Un�·� by Ûn�·�;
2. strong approximation of the empirical process

√
n Ûn�·� by a Gaussian pro-

cess Gn�·�, say;
3. uniform approximation of σ̂n�t� by σn�t�;
4. approximation of the scaled Gaussian process Gn�t�

σn�t� by a stationary Gauss-
ian process ξn�t�.

Below, we state these approximations as Lemmas 3.1–3.4. The proofs of these
lemmas are deferred to Section 7. The condition (3.3) is assumed throughout.

Lemma 3.1.

sup
t∈T

�Un�t� − Ûn�t�� = Op�n−1h−3/2
n ��

Lemma 3.2. There exists a sequence of Gaussian processes Gn�·�, indexed
by T, with continuous sample paths and with

EGn�t� = 0� E�Gn�t1�Gn�t2�� = E�ψn�t1
�X�ε�ψn�t2

�X�ε��� t� t1� t2 ∈ T�

where X has distribution F, ε has distribution G and ψn�t is as defined in
(2.11), such that

sup
t∈T

�√nÛn�t� −Gn�t�� = O
(
n−1/4h−1

n

√
log n

)
a.s.(3.5)

Lemma 3.3. The following assertions hold	
(a) limn→∞ hnσ

2
n�t� = 4

3f
3�t� ∫ q2�x�k2�x�dx uniformly in t�

(b) lim infn→∞ hn inf t∈T σ2
n�t� > 0�

(c) supt∈T �σ2
n�t� − σ̂2

n�t�� = Op�n−1/2h−2
n �.
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Lemma 3.4. For the sequence of Gaussian processes �Gn�t� 	 t ∈ T�
obtained in Lemma 3.2, there corresponds a sequence of stationary Gaussian
processes �ξn�s� 	 s ∈ Tn� with continuous sample paths such that

Eξn�s� = 0� E�ξn�s1�ξn�s2�� = ρ�s1 − s2�� s� s1� s2 ∈ Tn�(3.6)

where ρ�·� is defined by (3.2) and

sup
t∈T

∣∣∣∣Gn�t�
σn�t�

− ξn�h−1
n �t− a��

∣∣∣∣ = Op�hn

√
log h−1

n ��(3.7)

Proof of Theorem 3.1. We have

sup
t∈T

∣∣∣∣√n
Un�t�
σ̂n�t�

− ξn�h−1
n �t− a��

∣∣∣∣ ≤ √
n sup

t∈T

∣∣∣∣Un�t�
σ̂n�t�

− Un�t�
σn�t�

∣∣∣∣
+√

n sup
t∈T

∣∣∣∣∣Un�t�
σn�t�

− Ûn�t�
σn�t�

∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣√n
Ûn�t�
σn�t�

− Gn�t�
σn�t�

∣∣∣∣∣
+ sup

t∈T

∣∣∣∣Gn�t�
σn�t�

− ξn�h−1
n �t− a��

∣∣∣∣ �

(3.8)

The last term on the right hand side (RHS) of (3.8) is Op�hn

√
log h−1

n � by
Lemma 3.4. For the third term, note that, by applications of Lemma 3.2 and
Lemma 3.3(b),

sup
t∈T

∣∣∣∣∣√n
Ûn�t�
σn�t�

− Gn�t�
σn�t�

∣∣∣∣∣ ≤ supt∈T �√n Ûn�t� −Gn�t��
inf t∈T σn�t�

= Op�n−1/4h−1
n

√
log n�O�h1/2

n �(3.9)

= Op�n−1/4h−1/2
n

√
log n��

The second term on the RHS of (3.8) is dominated by

supt∈T
√
n�Un�t� − Ûn�t��

inf t∈T σn�t�
= Op�n−1/2h−1

n �(3.10)

by virtue of Lemma 3.1 and Lemma 3.3(b).
It therefore follows that

√
n sup

t∈T

∣∣∣∣Un�t�
σn�t�

∣∣∣∣− sup
t∈T

∣∣ξn�h−1
n �t− a��∣∣

= Op

(
hn

√
log h−1

n + n−1/4h−1/2
n

√
log n

)
�

(3.11)

Now supt∈T �ξn�h−1
n �t− a��� = sups∈Tn

�ξn�s��, and since ρ′�0� = 0 in view of
the symmetry of k�·�, a Taylor series expansion yields that

E�ξn�s1� − ξn�s2��2 = 2�1− ρ��s1 − s2��� ≤ C1�s1 − s2�2(3.12)
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for some constant C1, independent of n. Also, because of unit variance, the
L2-diameter of the process is clearly bounded by 2. By Corollary 2.2.8 of van
der Vaart and Wellner (1996), it then easily follows that for some constants
C2�C3,

E

(
sup
s∈Tn

�ξn�s��
)
≤ E�ξn�0�� +C2

∫ 2

0

√
log

C3h
−1
n

ε
dε�(3.13)

whence it follows that

sup
t∈T

�ξn�h−1
n �t− a��� = Op

(√
log h−1

n

)
�(3.14)

This shows that

√
n sup

t∈T

∣∣∣∣Un�t�
σn�t�

∣∣∣∣ = Op

(√
log h−1

n

)
�(3.15)

Now, for the first term on the RHS of (3.8), we have

√
n sup

t∈T

∣∣∣∣Un�t�
σ̂n�t�

− Un�t�
σn�t�

∣∣∣∣ ≤ √
n sup

t∈T

∣∣∣∣Un�t�
σn�t�

∣∣∣∣ sup
t∈T

∣∣∣∣σn�t�
σ̂n�t�

− 1
∣∣∣∣ �(3.16)

Since �x− 1� ≤ �x2 − 1� for x ≥ 0,

sup
t∈T

∣∣∣∣ σ̂n�t�
σn�t�

−1
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣ σ̂2
n�t�

σ2
n�t�

−1
∣∣∣∣≤supt∈T �σ̂2

n�t�−σ2
n�t��

inf t∈T σ2
n�t�

=Op�n−1/2h−1
n �(3.17)

as a consequence of Lemma 3.3(b) and (c). Therefore,

sup
t∈T

∣∣∣∣σn�t�
σ̂n�t�

− 1
∣∣∣∣ ≤ supt∈T

∣∣∣ σ̂n�t�
σn�t� − 1

∣∣∣
1− supt∈T

∣∣∣ σ̂n�t�
σn�t� − 1

∣∣∣ = Op�n−1/2h−1
n ��(3.18)

Note that by the assumption on hn, it also follows that log h−1
n = O�log n�.

Thus the first term on the RHS of (3.8) is Op�n−1/2h−1
n

√
log n�. We thus obtain

(3.4) by combining all the above assertions. ✷

4. Distribution of the supremum statistic. From Theorem 3.1, we ob-
tain that

S1�n = sup
s∈Tn

ξn�s� +Op�δn��(4.1)

where

δn = hn

√
log n+ n−1/4h−1/2

n

√
log n�(4.2)

Therefore if for some positive an and real number bn, we have

an

(
sup
s∈Tn

ξn�s� − bn

)
→d Z(4.3)
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for some random variable Z, then we also have

an�S1�n − bn� →d Z�(4.4)

provided that anδn → 0. The study of (4.3) involves extreme value theory
of stationary Gaussian processes. Note that since we are only interested in
distributions and since the covariance function for the process ξn�·� is also free
from n, we may assume that all the ξn�·�’s are the same Gaussian process ξ�·�,
say. To be more precise, we may assume that there is a stationary Gaussian
process ξ�t�, t ≥ 0, with continuous sample paths satisfying

Eξ�t� = 0� E�ξ�t1�ξ�t2�� = ρ�t1 − t2�� t� t1� t2 ≥ 0�

such that ξn is the restriction of ξ to Tn. This brings us to the standard set
up for the extremal theory of stationary Gaussian processes.

Recall that Tn = �0� �b− a�/hn�. We have the following theorem.

Theorem 4.1. For any x, we have

lim
n→∞P

{
an

(
sup
t∈Tn

ξ�t� − bn

)
≤ x

}
= exp�−e−x��(4.5)

where

an =
√
2 log��b− a�/hn��(4.6)

bn =
√
2 log��b− a�/hn� +

log λ1/2

2π√
2 log��b− a�/hn�

(4.7)

and

λ = −6
∫ �2K�x� − 1�k2�x�k′�x�dx+ ∫ �2K�x� − 1�2k�x�k′′�x�dx∫ �2K�x� − 1�2k2�x�dx �(4.8)

We first observe the fact that ξ�t� is a mean square differentiable process,
that is,

ρ�t� = 1− λt2

2
+ o�t2� as t → 0(4.9)

with λ as defined in (4.8). Since ρ�t� = 0 for t > 2 (as k�·� has support in
�−1�1�), Theorem 4.1 is a direct consequence of Theorem 8.2.7 of Leadbetter,
Lindgren and Rootzén (1983).

From Theorem 4.1, we easily obtain the asymptotic distribution of S1�n.

Theorem 4.2. If

hn log n → 0 and nh2
n/�log n�4 → ∞�(4.10)

then

lim
n→∞P

{
an�S1�n − bn� ≤ x

} = exp�−e−x��(4.11)
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so for any 0 < α < 1, the test based on the critical region

S1�n ≥ bn + 1
an

log
(

1
log�1− α�−1

)

=
√
2 log

b− a

hn

− log log�1− α�−1 − log λ1/2

2π√
2 log b−a

hn

(4.12)

has asymptotic level α.

We note that the condition (4.10) is needed to ensure that anδn → 0 and is
therefore slightly stronger than (3.3), which only means that δn → 0. Band-
width sequences such as n−β, β < 1/2, and �log n�−γ, γ > 1, satisfy (4.10)
and so the test given by (4.12) has asymptotic level α. Therefore any sequence
that can be bounded above and below, up to constant multiples, by these two
sequences respectively, also satisfies the required condition.

In this context, it may also be observed that a test for the constancy of the
regression function on T against general alternatives is given by the statistic
sup�√n�Un�t��/σ̂n�t� 	 t ∈ T�. This statistic, centered by bn and then mul-
tiplied by an, where an and bn are defined by (4.6) and (4.7) respectively,
converges in law to the distribution exp�−2e−x�; see Corollary 11.1.6 of Lead-
better, Lindgren and Rootzén (1983).

5. Consistency and rate of separation. In this section, we prove that
the test specified by the supremum statistic is consistent against general al-
ternatives. Also for certain alternatives that approach the null in a specific
manner, we show that the power tends to one.

Theorem 5.1. If, in the model (1.1), the regression function is decreasing
at some point, that is, m′�t� < 0 for some t ∈ �a� b�, then under m�·�, the proba-
bility of the event that (4.12) happens, tends to 1 provided that nh3

n/ log h−1
n →

∞. In other words, the test specified by S1�n is consistent at any level.

In Theorem 5.1, the condition (4.10) is not used although the test with crit-
ical region (4.12) may not have asymptotic level α if (4.10) is not satisfied. The
condition nh3

n/ log h−1
n → ∞, equivalently nh3

n/ log n → ∞, however, implies
the second part of (4.10). Bandwidth sequences such as n−β, β < 1/3 and
�log n�−γ, γ > 1 yield tests that are both level α and consistent.

Proof of Theorem 5.1. Obviously, S1�n ≥
√
nUn�t�/σ̂n�t� for any t∈ �a� b�,

in particular, for the t for which m′�t� < 0. Now, by Lemma 3.3, with proba-
bility tending to one, σ̂n�t� ∼ σn�t�, where ∼ means that the ratio of the two
sides tends to 1. We first show that the behavior of Un�t� is essentially the
same as EUn�t�. For this, we estimate var�Un�t��. Let

Hn�t��x1� ε1�� �x2� ε2�� = sign�m�x2� + ε2 −m�x1� − ε1�
×sign�x1 − x2�kn�x1 − t�kn�x2 − t�

(5.1)
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stand for the kernel for Un�t� and let

H̃n�t�x� ε� = 2
∫
�1− 2G�m�w� −m�x� − ε��sign�x−w�

×kn�w− t�dF�w�kn�x− t��
(5.2)

denote the kernel for the Hájek projection. We note that

EH2
n�t��X1� ε1�� �X2� ε2�� ≤

(∫
k2
n�x− t�dF�x�

)2
= O�h−2

n �(5.3)

and

EH̃2
n�t�X�ε� ≤ 4

(∫
kn�w− t�dF�w�

)2 ∫
k2
n�x− t�dF�x� = O�h−1

n ��(5.4)

Therefore

var�Un�t�� =
4

n2�n− 1�2
{∑

i<j

var�Hn�t��Xi� εi�� �Xj� εj���

+ 6
∑

i<j<k

cov�Hn�t��Xi� εi�� �Xj� εj���

Hn�t��Xi� εi�� �Xk� εk���
}

≤ 1
n2�n− 1�2

{
n�n− 1�O�h−2

n � + n�n− 1��n− 2�O�h−1
n �}

= O�n−1h−1
n ��

(5.5)

Therefore √
nhn�Un�t� −EUn�t�� = Op�1�(5.6)

by Chebyshev’s inequality, and hence from (2.5), we obtain that

h−1
n Un�t�
→p −2

(∫
g2�ε�dε

)
m′�t�

(∫ ∫
�U− v�k�u�k�v�dudv

)
f2�t��(5.7)

which is positive, by assumption. Since by Lemma 3.3, σ̂n�t�/σn�t� →p 1 and

h
1/2
n σn�t� tends to a positive limit, it follows that S1�n is of the order n1/2h

3/2
n ,

which exceeds the order of bn, the dominant term in (4.12), under the condition
nh3

n/ log h−1
n → ∞. This completes the proof. ✷

To compute the limiting power function, we have to compute the limiting
distribution of the test statistics under a sequence of alternatives that ap-
proaches the null in some appropriate sense. While the approximation of the
U-process by the Hájek projection process and the strong approximation of
the Hájek projection by a suitable (non-stationary) Gaussian process may be
established to be valid under a sequence of alternatives by essentially the
same arguments, it however seems difficult to study the limiting distribution
of the supremum functional of that sequence of Gaussian processes. Never-
theless, we can still show that for certain alternatives that approach the null
sufficiently slowly, the power tends to one.
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Set τ2g = ∫
g2�ε�dε, τ2k = ∫ ∫ �U−v�k�u�k�v�dudv and η = inf�f�t� 	 t ∈ T�.

Theorem 5.2. Assume nh3
n/ log h−1

n → ∞ and let the sequence of alter-
native regression functions mn�·� be continuously differentiable such that there
exists tn for which

m′
n�t� ≤ −Mλn on �tn − δn� tn + δn��

Then

lim
n→∞Pn

mn�F�G

{
S1�n ≥ bn + 1

an

log
(

1
log�1− α�−1

)}
= 1(5.8)

if either

δn ≥ hn�

λn ≥ n−1/2h−3/2
n

√
log��b− a�/hn��

M > τ−2g τ−2k

√
2
3η

∫
�2K�x� − 1�2k2�x�dx�

or

δn = o�hn��
m′

n�t� ≤ 0 on �tn − hn� tn + hn��
λn ≥ n−1/2h−3/2

n δ−3n

√
log��b− a�/hn��

M >
1
4
τ−2g �k�0��−2

√
3
2η

∫
�2K�x� − 1�2k2�x�dx�

For instance, we might choose hn = n−α for some α < 1/3. Then the power
tends to one along any sequence of alternatives as in Theorem 5.2 with δn ≥
n−α, λn ≥ n−�1−3α�/2√log n and a sufficiently large constant M. Note that
�1 − 3α�/2 > 0 for α < 1/3. In particular for α = 1/6, which corresponds
to the order of optimal bandwidth for the estimation of the derivative of the
regression function, we obtain δn ≥ n−1/6 and λn ≥ n−1/4√log n.

Proof of Theorem 5.2. We proceed as in the proof of Theorem 5.1. As
(5.3) and (5.4) are valid for any regression function, (5.6) also holds for the
sequence mn. By slight extensions of the argument used in the derivation of
(2.5), in the first case, one can show that

EUn�tn� ≥ −2hnτ
2
kτ

2
gf

2�tn� sup�m′
n�t� 	 �t− tn� ≤ hn��1+ o�1���(5.9)

Therefore, by the assumed conditions,

lim inf
n→∞

√
nEUn�tn�/bnσn�tn� > 1�

from which, it is easy to conclude that S1�n exceeds the RHS of (4.12), with
probability tending to 1. The proof for the second case also follows from a
similar computation. We omit the details. ✷
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6. The time spent statistic. In this section, we consider the time spent
statistic S2�n, which is also known as the excursion time or the sojourn time
in the literature. As the following theorem shows, with the choice

un =
√√√√2 log

(√
λ�b− a�
2
√
πhn

)

in (2.15), where λ is as defined in (4.8), a compound Poisson limit is obtained.
We apply Theorem 4.1 of Berman (1980) [see also Cramér and Leadbet-

ter (1967), Chapter 12]. Let U�t�, t ≥ 0, be a Gaussian process with stationary
increments satisfying

U�0� = 0� EU�t� = 0� E�U�t� −U�s��2 = 2�t− s�2(6.1)

Let J�x� be the function defined by

J�x� =
∫ ∞

0
P�meas�s 	 U�s� − s2 + y > 0� > x�e−ydy�(6.2)

Let Z stand for a random variable whose Laplace transform is given by

=�s� = exp
[
−

∫ ∞

0
�1− e−sx�dJ′�x�

]
�(6.3)

In other words, Z has a compound Poisson distribution with −J′�·� as its
compounding distribution.

Theorem 6.1. Under condition (4.10),

h−1
n

√
λ log��b− a�/hn�S2�n →d Z�(6.4)

where Z is as above.

Proof. The basic idea behind the proof is to relate S2�n with similar func-
tionals of the approximating Gaussian process ξn�·�, Note that by Theorem 3.1,
with large probability,

hnmeas�s ∈ Tn 	 ξn�s� ≥ un + cδn�
≤ S2�n(6.5)

≤ hnmeas�s ∈ Tn 	 ξn�s� ≥ un − cδn��
where δn is as in (4.2) and c is a large constant. The probability of the event
(6.5) can be made arbitrarily close to one for all sufficiently large n by choosing
c sufficiently large.

We now show that the two extreme sides of (6.5) have the same weak limit
Z. With α = 2, t = �b − a�/hn, v = √

λ log��b− a�/hn� and u = un ± cδn,
observe that if unδn → 0, or equivalently, if (4.10) holds, then

u ∼
√
2 log t�

P�u < ξ�0� < bu� ∼ P�ξ�0� > u� ∼ 1

u
√
2π

e−u2/2 ∼ 1
tv

� b > 1
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and

u2�1− ρ�1/v�� → 1�
in the last relation we have used the expansion (4.9).

The last three relations are sufficient for an application of Theorem 4.1 of
Berman (1980). Therefore√

λ log��b− a�/hn� meas�s ∈ Tn 	 ξn�s� > un ± cδn� →d Z�(6.6)

Combining (6.5) and (6.6), the result follows. ✷

The test based on S2�n is also consistent against general alternatives.

Theorem 6.2. If nh3
n/ log h−1

n → ∞ and m�·� is a regression function
with m′�t0� < 0 for some t0 ∈ T, then

Pn
m�F�G

{
h−1
n

√
λ log��b− a�/hn�S2�n > τα

}
→ 1�(6.7)

where τα is the �1− α�th quantile of Z.

Proof. By the assumed continuity of m′�t�, there is an η > 0 such that
m′�t� < −η for all t ∈ In = �t0 − hn� t0 + hn�. We claim that

sup
t∈In

�Un�t� −EUn�t�� = Op�n−1/2h−1/2
n ��(6.8)

Then, since clearly (2.5) holds uniformly (by considering tn → t), for all t ∈ In,√
nEUn�t�/σ̂n�t� is uniformly bounded below by a multiple of

√
nh

3/2
n on In. By

(6.8),
√
n�Un�t�−EUn�t��/σ̂n�t� is uniformly bounded above by a constant, and

is therefore of smaller order than
√
nEUn�t�/σ̂n�t� on In under the condition

nh3
n → ∞. The latter exceeds un if nh3

n/ log h−1
n → ∞. Therefore, with a large

probability, S2�n is bounded below by the length of the interval In, and so

h−1
n

√
λ log��b− a�/hn�S2�n →p ∞�(6.9)

This shows that the power tends to one.
To prove that (6.8) holds, we use Theorem A.2 of the Appendix. The no-

tations of Section 8 and the Appendix are followed. We can estimate the en-
tropy numbers used in Theorem A.2 by the same arguments as in the proof
Lemma 3.1. Specifically, the kernels Hn�t��x1� ε1�� �x2� ε2�� defined in (5.1) of
Un, where t ∈ In, form a VC-class of functions [see, e.g., Section 2.6 of van
der Vaart and Wellner (1996) for the definition of a VC-class] with envelope
function

Hn = h−2
n ��x1 − t0� < 2hn���x2 − t0� < 2hn��

This shows that

sup
Q

N�ε�Hn�Q�2� �Hn�t 	 t ∈ In��L2�Q��� ε−V
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for some V and hence

1
n
E

(∫ ∞

0
logN�ε� �Hn�t 	 t ∈ In��L2�Un

2��dε
)

�
1
n

√
E �h−2

n ��X1 − t0� < 2hn���X2 − t0� < 2hn��2
∫ ∞

0
log

1
ε
dε

= O�n−1h−1
n ��

Next, by Lemma A.2, the projections

H̄n�t�x1� ε1� =
∫ ∫

Hn�t��x1� ε1�� �x2� ε2��dF�x2�dG�ε2�

satisfy

sup
Q

N�ε�H̄n�Q�2� �H̄n�t 	 t ∈ In��L2�Q���ε−2V�

Thus

1√
n
E

(∫ ∞

0

√
logN�ε� �H̄n�t 	 t ∈ In��L2�Un

1��dε
)

�
1√
n

√
E

(
h−2
n ��X1 − t0� < 2hn�

∫
��X2 − t0� < 2hn�dF�x2�

)2 ∫ ∞

0
log

1
ε
dε

= O�n−1/2h−1/2
n ��

Finally Theorem A.2 gives (6.8). ✷

In the above, the particular choice of un was made in order to obtain a
limiting distribution using the extreme value theory for stationary Gaussian
processes. Smaller choices, such as un = 0 look very reasonable. However, we
are not aware of the limit theory for such functionals of a stationary Gaussian
process.

A more general class of test statistic may be considered by looking at

∫
T

(√
nUn�t�
σ̂n�t�

− un

)m

+
dt�

where the “+” stands for the positive part and m is a nonnegative integer.
The case m = 0 corresponds to S2�n. For m ≥ 1, the functional is Lipschitz
continuous, and hence its asymptotic distribution may be found easily from
that of

∫
Tn
�ξn�s�−un�m+ds, once the latter is available. Although it seems that

limit theorems for such functionals of a stationary Gaussian process are not
available in the literature yet, expressions for the mean and the variance are
available; see (10.8.7) and (10.8.8) of Cramér and Leadbetter (1967). The case
of m = 1 and un = 0 is particularly interesting, signifying the total area under
the graph of the process

√
nUn�t�/σ̂n�t� above the level 0. The expressions for

the mean and the variance also simplify in this case.
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Table 1
Estimated power of the supremum test statistic

Sample band- Critical Proportion of rejections for

size width value m1�x� m2�x� m3�x� m4�x�
50 0.2287 3.0341 0.027 0.429 0.107 0.026
100 0.1991 3.0510 0.030 0.735 0.509 0.080
200 0.1733 0.0725 0.034 0.964 0.945 0.757
500 0.1443 3.1062 0.038 1.000 1.000 1.000

7. A simulation study. In this section, we report the results of a small
simulation study to get some idea about the behaviour of the error probabil-
ities of the supremum statistic for finite sample sizes. We generated the in-
dependent variable X from the uniform distribution on �0�1� and considered
four different regression functions: m1�x� = 0, m2�x� = x�1 − x�, m3�x� =
x+ 0�415e−50x

2
and

m4�x� =
{
10�x− 0�5�3 − e−100�x−0�25�

2
� if x < 0�5�

0�1�x− 0�5� − e−100�x−0�25�
2
� otherwise.

Errors are generated from a normal distribution with mean 0 and standard
deviation 0�1. The first regression function m1 gives an idea about the level
while m2 is a standard non-monotone function. A function of the type m3
was used by both Bowman, Jones and Gijbels (1998) and Hall and Heckman
(1999). A function like m4, having a sharp dip at x = 0�25 and a relatively
flat portion on x > 0�5, was used by Hall and Heckman (2000) to demonstrate
that the power of the test of Bowman, Jones and Gijbels (1998) does not tend
to one. In all the cases, we take T = �0�05�0�95� where monotonicity is tested.
We show results for sample sizes n = 50�100�200 and 500. We use the kernel
k�x� = 0�75�1 − x2� for −1 < x < 1 and 0 otherwise. The bandwidth h =
0�5n−1/5 was used for sample size n. In each case, 1000 replications were
generated to estimate the probability of rejection of the null hypothesis. We
used a C program and ran on a Sun SPARC station with time as the seed
for the random numbers. We did not study the dependence of the test on the
bandwidth.

We observe that at m2�x� and m3�x�, the test has a reasonably good power
for n = 100 and very high power for n ≥ 200. The alternative m4�x� is almost
a monotone function except in a small neighborhood of x = 0�25 and so the
power is small for moderate sample size like n = 100. The power does pick up
however for bigger sample sizes. Actually, a smaller bandwidth does a better
job for this function. The actual level [i.e., the power at m1�x�] is however
smaller than the asymptotic level 0�05. It is known that the convergence in
(4.5) is slow, so perhaps it is not totally unexpected. The approximation to the
distribution of the supremum of a Gaussian process may possibly be improved
by considering more terms in its asymptotic expansion as done in Konakov
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and Piterbarg (1984). One may therefore expect to get better approximations
to the actual critical value of the test statistic by replacing the asymptotic
distribution by asymptotic expansions. However, since the level turns out to
be on the conservative side, we do not pursue this possibility here.

8. Proof of Lemmas 3.1–3.4. Since m�·� ≡ 0, the kernel Hn�t in (5.1)
simplifies to

Hn�t��x1� ε1���x2� ε2��= sign�ε2−ε1�sign�x1−x2�kn�x1− t�kn�x2− t��(8.1)

and the kernel for the Hájek projection is given by (2.11). We also note that
EHn�t = Eψn�t = 0, where ψn�t is given by (2.11).

Note that U
�2�
n �t� = Un�t� − Ûn�t� is a degree two degenerate U-process

with kernel

ϕn�t��x1� ε1�� �x2� ε2��
= sign�ε2 − ε1�sign�x1 − x2�kn�x1 − t�kn�x2 − t�
− �1− 2G�ε1��

∫
sign�x1 −w�kn�w− t�dF�w�kn�x1 − t�

− �1− 2G�ε2��
∫
sign�x2 −w�kn�w− t�dF�w�kn�x2 − t��

(8.2)

For a metric space M with a distance d on it, let N�ε�S�M�, ε > 0, de-
note the ε-covering number of S ⊂ M, that is, the smallest integer m such
that m balls of radius ε in M covers S. For a function f, �f�Q�r will stand
for its Lr�Q�-norm �∫ �f�rdQ�1/r and �f�∞ will denote its supremum norm
sup��f�x�� 	 x ∈ ��. From here onward, � will stand for an inequality up to a
constant multiple.

Proof of Lemma 3.1. We use Theorem A.1 in the Appendix applied with
r = 2 and the functions � = �ft 	 t ∈ T�, where

ft��x1� ε1�� �x2� ε2�� = sign�x1 − x2�sign�ε1 − ε2�kn�x1 − t�kn�x2 − t��
These are contained in the product of the classes

�1 =
{
k

(
x1 − t

hn

)
	 t ∈ T

}
�

�2 =
{
k

(
x2 − t

hn

)
	 t ∈ T

}
�

�3 =
{
1
h2
n

sign�x1 − x2�sign�ε1 − ε2���x1 − x2� < 2hn�
}
�

with envelopes �k�∞, �k�∞ and h−2
n ��x1 − x2� < 2hn� respectively.

Since k�·� is of bounded variation, the class of functions x  → k��x− t�/hn�
is the difference of two classes of the type x  → ϕ��x− t�/hn� for ϕ monotone,
and hence is the difference of two VC-classes of index less than or equal to
2 by Lemma 2.6.16 of van der Vaart and Wellner (1996). It then follows, by
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Theorem 2.6.7 of van der Vaart and Wellner (1996) and the fact that the 2ε-
covering numbers of the sum of the two classes are bounded by the product of
the ε-covering numbers of the two classes, that

sup
{
N

(
ε�

{
k

( · − t

hn

)
	 t ∈ T

}
�L2�Q�

)
	 Q is a probability

}
� ε−4�

By Lemma A.1,

sup�N�ε�h−2
n ��x1 − x2� < 2hn��Q�2��1�2�3�L2�Q�� 	

Q is a probability�� ε−8�

By Theorem A.1 and the discussion following Theorem A.1 and Theorem A.2,
it follows that

nE

(
sup
t∈T

�Un
2ft − 2Un

1D1ft�
)

�E
∫ ∞

0
logN�ε�� �L2�Un

m��dε

�
∫ 1

0
log�ε−8�dε

√
E

(
1
h2
n

��X1 −X2� < 2hn�
)2

�h−3/2
n �

The result now follows because Un�t� − Ûn�t� = Un
2ft − 2Un

1D1ft. ✷

Proof of Lemma 3.2. We use the local strong invariance principle—
Theorem 1.1 of Rio (1994). Put u = 2�1− 2G�ε�� and

φn�t�x�u� = ψn�t�x� ε� = u
∫
sign�x−w�kn�w− t�f�w�dwkn�x− t��

and consider the process Ûn�t as function of �X1� u1�� � � � � �Xn�un�. Formally,
Rio’s theorem requires that X and u take values in �0�1� and have a posi-
tive density there which is also continuous in the unit square. Since our F is
supported on compact intervals where the density is positive and continuous
inside the intervals and u has a uniform distribution, we may achieve this
by simple affine transformations. Moreover, applying the same affine trans-
formation to t that applies to X, we can also preserve the structure of a
location family for the kernel k�·�. Finally, an inverse transformation brings
back everything to our original domain. So we may and do assume that Rio’s
invariance applies to the original domain.

Now, since integration over x absorbs a factor h−1
n , it is easy to see that

∫ ∫ (∣∣∣∣∂φn�t

∂x
�x�u�

∣∣∣∣+
∣∣∣∣∂φn�t

∂u
�x�u�

∣∣∣∣
)
dxdu = O�h−1

n �(8.3)
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uniformly in t. This implies that �hnφn�t 	 t ∈ T� satisfies the UBV condition
of Rio (1994). To check the LUBV condition there, let C be a square with sides
of length a. Then for some constant A,

∫ ∫
�x�u�∈C

∣∣∣∣∂φn�t

∂x
�x�u�

∣∣∣∣dxdu+
∫ ∫

�x�u�∈C

∣∣∣∣∂φn�t

∂u
�x�u�

∣∣∣∣dxdu
≤ Ah−1

n

{
h−1
n min�ahn� a

2� +min�ahn� a
2�} �

(8.4)

which is bounded by Ah−1
n a. This shows that the LUBV condition holds for

the class �hnφn�t 	 t ∈ T� [see the proof of Lemma 4.1 of Rio (1994)].
We now show that

sup
{
N

(
ε�

{
hnφn�t�·� ·� 	 t ∈ T

}
�L1�Q�) 	 Q is a probability

}
� ε−V�(8.5)

for some V > 0.
First we observe that hnφn�t�x�u� is bounded by a constant uniformly in t ∈

T, and so can be enveloped by a constant function. The function hnφn�t�x�u�
is obtained by averaging

ηt�x�w�u� = hnu sign�x−w�kn�x− t�kn�w− t�

overw with respect to the probability distributionF. The family �k��·−t�/hn� 	
t ∈ T� is uniformly bounded and is a difference of two VC-classes of index 2
and hence by Theorem 2.6.7 of van der Vaart and Wellner (1996),

sup
{
N

(
ε�

{
k

( · − t

hn

)
	 t ∈ T

}
�L1�Q�

)
	 Q is a probability

}
� ε−2�

The class �ηt 	 t ∈ T� has envelope a constant multiple of h−1
n ��x−w� < 2hn�.

Therefore by Lemma A.1,

sup
{
N

(
εh−1

n ���x−w� < 2hn��Q�1� �ηt 	 t ∈ T��L1�Q�) 	
Q is a probability

}
� ε−4�

An application of Lemma A.2 now proves (8.5).
Therefore, by Rio’s theorem (and switching back to the original variable ε),

it easily follows that there exists a sequence of centered Gaussian Processes
Gn with the stated covariance satisfying (3.5). Further, the processes has con-
tinuous sample paths, where continuity is with respect to the L2-metric on the
class of functions �ψn�t 	 t ∈ T�. Now, as is easily seen, the mapping t  → ψn�t

is continuous from T to L2�P�, and so the processes Gn�·� has continuous
sample paths with respect to the usual metric on T. ✷

Remark 8.1. Letting Ûn�h stand for Ûn when the bandwidth is h in-
stead of hn, one may actually make a stronger claim: If hn satisfies (3.3),
then for any 0 < β1 ≤ β2 < ∞, there exist centered Gaussian processes
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Gn�h with continuous sample paths and covariance E�Gn�h�t1�Gn�h�t2�� =
E�ψ̃h�t1

�X�ε�ψ̃h�t2
�X�ε�� such that

sup
t∈T

sup
β1hn≤h≤β2hn

�√nÛn�h�t� −Gn�h�t�� = O�n−1/4h−1
n

√
log n��(8.6)

where ψ̃h�t is obtained by replacing hn by h in (2.11). This additional flexibil-
ity allows us to handle some data-driven choices of bandwidths as well. We,
however, do not pursue this possibility.

Remark 8.2. Because Rio’s construction of the approximating Gaussian
process is based on a more basic construction of Komlós, Major and Tusnády’s
(1975), one may actually assert the following: On a suitable probability space,
there exists a copy �X∗

1� ε
∗
1�� � � � � �X∗

n� ε
∗
n� of the original random variables

�X1� ε1�� � � � � �Xn� εn� such that the copy of Ûn�t� admitting the strong ap-
proximation is obtained by replacing �X1� ε1�� � � � � �Xn� εn� by �X∗

1� ε
∗
1�� � � � �

�X∗
n� ε

∗
n� in (2.10). Therefore, we can also copy Un�t� on this new probability

space so that the conclusion of Lemma 3.1 is respected.

Remark 8.3. Let �n denote the class of functions �gn�t 	 t ∈ T�, where
gn�t�x� ε� = ψn�t�x� ε�/σn�t�. Let � ′

n stand for the class of functions �g̃n�t 	 t ∈
T�, where

g̃n�t�x� ε� =
√
3�1− 2G�ε�� ∫ sign�x−w�kn�w− t�dwkn�x− t�(∫ �∫ sign�z−w�kn�w− t�dw�2 k2

n�z− t�dz
)1/2

f1/2�x�
�(8.7)

The Gaussian process �Gn�t�/σn�t� 	 t ∈ T� may be thought of as a Brownian
bridge on �n. We can actually increase the domain of definition to �n ∪ � ′

n.
To do that, we might well have started with the index set �n ∪� ′

n in Rio’s in-
variance principle. Arguments similar to those used in the proof of Lemma 3.2
will also show that � ′

n has all the properties necessary for an application of
Theorem 1.1 of Rio (1994), and so the same is true for �n ∪ � ′

n. Therefore,
we have a Brownian bridge, say �Bn�g� 	 g ∈ �n ∪ � ′

n� [i.e., EBn�g� = 0,
E�Bn�g1�Bn�g2�� = cov�g1� g2� for all g�g1� g2 ∈ �n ∪ � ′

n] with continuous
sample paths with respect to the L2-metric such that Gn�t� = σn�t�Bn�ψn�t�
satisfies the conclusion of Lemma 3.2. This extension will be used in the proof
of Lemma 3.4 to get hold of the claimed stationary Gaussian process on the
same probability space.

Proof of Lemma 3.3. Since T is compact, part (a) amounts to showing
that for any convergent sequence tn → t, we have

hnσ
2
n�tn� → 4

3f
3�t�

∫
q2�x�k2�x�dx�

This follows by replacing t by tn in (2.12) and applying the dominated conver-
gence theorem. Since the limit on the RHS of (a) is always positive, part (b)
also follows.
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Now to prove part (c). Set
f̃t�x�y� z� = 4

3sign�x− y�sign�x− z�k2
n�x− t�kn�y− t�kn�z− t�

and let ft be f̃t symmetrized in �x�y� z�. Then σ̂2
n�t� = Un

3ft and σ2
n�t� = Pft.

We shall show that
E�sup��σ̂2

n�t� − σ2
n�t�� 	 t ∈ T���n−1/2h−2

n �

As argued in the proof of Lemma 3.1, we have

sup
Q

N

(
ε�

{
k2

( · − t

hn

)
	 t ∈ T

}
�L2�Q�

)
� ε−4

and similarly for the functions y  → k��y− t�/hn� and z  → k��z− t�/hn�. The
functions f̃t, t ∈ T, are contained in the product of the classes

�1 =
{
k2

(
x− t

hn

)
	 t ∈ T

}
�

�2 =
{
k

(
y− t

hn

)
	 t ∈ T

}
�

�3 =
{
k

(
z− t

hn

)
	 t ∈ T

}
�

�4 =
{

4
3h4

n

sign�x− y�sign�x− z����x�y� z� −D� < 2hn�
}
�

where D stands for the diagonal in �3. These classes have envelopes �k2�∞,
�k�∞, �k�∞ and 4

3h4
n
���x�y� z� −D� < 2hn�. By Lemma A.1,

sup
Q

N

(
ε

4
3h4

n

����x�y� z� −D� < 2hn��Q�2��1�2�3�4�L2�Q�
)

� ε−12�

By Lemma A.2, the projections D1f̃t also have polynomial covering numbers
relative to the envelope a multiple of

x  → h−4
n

∫ ∫
���x�y� z� −D� < 2hn�dP�y�dP�z��h−2

n �

The projections D2f̃t similarly have polynomial covering numbers relative to
the envelope a multiple of

�x�y�  → h−4
n

∫
���x�y� z� −D� < 2hn�dP�z��h−3

n ��x− y� < 2hn��
It follows by Theorem A.2 that

E�sup��σ̂2
n�t� − σ2

n�t�� 	 t ∈ T��
�n−1/2

√
�h−2

n �2 + n−1
√
E�h−3

n ��x− y� < 2hn��2

+ n−3/2
√
E�h−4

n ���x�y� z� −D� < 2hn��2

�
1√
nh2

n

+ 1

nh
5/2
n

+ 1
n3/2h3

n

�

which is O�n−1/2h−2
n � under (3.3). ✷
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Proof of Lemma 3.4. Put ξ̃n�t� = Bn�g̃n�t�, where Bn is the Brownian
bridge explained in Remark 8.3 and g̃n�t�·� is as defined in (8.7). We note that
γn�t� = Gn�t�/σn�t� − ξ̃n�t� is also a mean zero Gaussian process with

E�γn�t1�γn�t2�� = E�gn�t1
− g̃n�t1

��gn�t2
− g̃n�t2

��(8.8)

First, we claim that

sup
t∈T

E�γn�t��2 = O�h2
n��(8.9)

that is, the L2-diameter of γn�·� is O�hn�. Note that∫ ∫
�gn�t�x� ε� − g̃n�t�x� ε��2dG�ε�dF�x�

=
∫ 


∫
sign�x−w�kn�w− t�f�w�dwkn�x− t�f1/2�x�{∫ �∫ sign�z−w�kn�w− t�f�w�dw�2 k2

n�z− t�f�z�dz
}1/2

−
∫
sign�x−w�kn�w− t�dwkn�x− t�{∫ �∫ sign�z−w�kn�w− t�dw�2 k2

n�z− t�dz
}1/2



2

dx�

(8.10)

where, since F has a compact support, the integral is actually over a compact
interval. To prove (8.9), it suffices to show that the RHS of (8.10) is O�h2

n�
uniformly in t. Writing x = t+hnu, z = t+hnv and w = t+hns, we can write
the RHS of (8.10) as

∫ 


∫
sign�u− s�k�s�f�t+ hns�dsk�u�f1/2�t+ hnu�{∫ �∫ sign�v− s�k�s�f�t+ hns�ds�2 k2�v�f�t+ hnv�dv

}1/2

−
∫
sign�u− s�k�s�f�t�dsk�u�f1/2�t�{∫ �∫ sign�v− s�k�s�f�t�ds�2 k2�v�f�t�dv

}1/2


2

du�

Since k�·� has also a compact support and f is Lipschitz continuous, the de-
nominators in the two terms inside the integral in the last display differ by
O�hn�. Similarly the numerators also differ by O�hn� uniformly in u, and so
do the ratios. Since u ranges only in �−1�1�, it follows that the integral is also
O�h2

n�. This proves (8.9).
Next, we claim that there exists a constant C such that for all t1� t2 ∈ T,

E�gn�t1
− g̃n�t1

− gn�t2
+ g̃n�t2

�2 ≤ Ch−2
n �t1 − t2�2�(8.11)

After a change of variable x = t1 + hnu, we may rewrite the LHS of (8.11) as

∫ 


∫
sign�u− s�k�s�f�t1 + hns�dsk�u�f1/2�t1 + hnu�{∫ �∫ sign�v− s�k�s�f�t1 + hns�ds�2 k2�v�f�t1 + hnv�dv

}1/2
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−
∫ ∫

sign�u− s�k�s�dsk�u�{∫ �∫ sign�v− s�k�s�ds�2 k2�v�dv
}1/2

−
∫ ∫

sign�u− s�k�s+ t1−t2
hn

�f�t1 + hns�dsk�u+ t2−t1
hn

�f1/2�t1 + hnu�{∫ �∫ sign�v− s�k�s�f�t2 + hns�ds�2 k2�v�f�t2 + hnv�dv
}1/2

+
∫ ∫

sign�u− s�k�s+ t1−t2
hn

�dsk�u+ t2−t1
hn

�{∫ �∫ sign�v− s�k�s�ds�2 k2�v�dv
}1/2



2

du�

We pair the first term with the third and the second with the fourth. The third
term is similar to the first term except that some of the arguments inside the
functions k�·� and f�·� differ by h−1

n �t1 − t2� or �t1 − t2�. By the Lipschitz
continuity, the terms differ by O�h−1

n �t1 − t2�� uniformly in u. Similarly, the
fourth term differs from the second by O�h−1

n �t1 − t2�� uniformly in u. Thus
the integral is O�h−2

n �t1 − t2�2� and (8.11) is obtained.
Therefore,

N�ε� �gn�t − g̃n�t 	 t ∈ T��L2�P�� ≤ N

(
hnε√
C
�T� � · �

)
�

1
hnε

�

Applying Corollary 2.2.8 of van der Vaart and Wellner (1996), we obtain

E

(
sup
t∈T

�γn�t��
)
�

∫ ∞

0

√
logN�ε� �gn�t − g̃n�t 	 t ∈ T��L2�P��dε

�
∫ O�hn�

0

√
log

1
hnε

dε

= O�hn

√
log h−1

n ��

Now choose ξn�s� = ξ̃n�a+ hns�, s ∈ Tn, as the desired process. ✷

APPENDIX

Suppose we have i.i.d. observations X1�X2� � � � �Xn that take values in a
sample space � and have probability law �. Let f 	 �m → � be symmet-
ric in its arguments and let Un

mf be the U-statistic with kernel f based on
�X1�X2� � � � �Xn�. Let Dcf�X1� � � � �Xc� stand for the projection of
f�X1� � � � �Xm� onto the space of all functions of �X1� � � � �Xc� that are ortho-
gonal to every function of less than c arguments. Then

Un
cDcf = 1(

n
c

) ∑
�i1�����ic�∈� n

c

Dcf�Xi1
� � � � �Xic

��

where � n
c denotes the set of all combinations of c numbers from �1� � � � � n�.
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Note that

Dcf�X1� � � � �Xc� = E�f�X1� � � � �Xm��X1� � � � �Xc�
− ∑

�i1�����ic−1�∈�m
c−1

E�f�X1� � � � �Xm��Xi1
� � � � �Xic−1�

+ ∑
�i1�����ic−2�∈�m

c−2

E�f�X1� � � � �Xm��Xi1
� � � � �Xic−2�

− · · ·
+�−1�c−1 ∑

�i1�∈�m
1

E�f�X1� � � � �Xm��Xi1
�

+�−1�cE�f�X1� � � � �Xm��
and Un

cDcf is the projection of Un
mf onto the set of all functions that are sums

of functions of at most c variables from X1� � � � �Xn that are orthogonal to all
functions of less than c variables. Also,

f�X1� � � � �Xm� =
m∑
c=0

∑
A∈�m

c

Dcf�Xi 	 i ∈ A�

and

Un
mf =

m∑
c=0

(
m

c

)
Un

cDcf�

We can also consider Un
m as the random discrete measure putting mass(

n
m

)−1 on each of the points �Xi1
� � � � �Xim

� ∈ �m, �i1� � � � � im� ∈ � n
m.

Let � be a class of functions. The following two theorems are implicit in
Arcones and Giné (1993). See also Arcones and Giné (1995).

Theorem A.1. There exists a constant C depending only on m such that

E

(
sup

{
�Un

mf−
r−1∑
c=0

(
m

c

)
Un

cDcf� 	 f ∈ �

})

≤ Cn−r/2E
∫ ∞

0
�logN�ε�� �L2�Un

m��r/2dε�

Theorem A.2. There exists a constant C depending only on m such that

E �sup ��Un
mf−EUn

mf� 	 f ∈ � ��

≤ C
m∑
c=1

n−c/2E
∫ ∞

0
�logN�ε�Dc� �L2�Un

c ��c/2dε�

In each of the integrals, the covering number N�ε�Dc� �L2�Un
c �� may also be

replaced by N�ε�� �L2�Un
m��.
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Let F be an envelope for the class � . Then the integrals above can be
further bounded by means of the inequality∫ ∞

0
�logN�ε�� �L2�Un

m��c/2dε

≤ �F�Un
m�2

∫ 1

0
�sup�logN�ε�F�Q�2�� �L2�Q�� 	 Q discrete��c/2dε�

where �F�Q�2 stands for the L2�Q�-norm of F. Further,

E�F�Un
m�2 ≤

√
E�Un

mF�2 ≤
√
EF2�X1� � � � �Xm��

The following Lemma is implicit in Pollard [(1990), Chapter 5] and van der
Vaart and Wellner [(1996), Section 2.10.3].

Lemma A.1. Let � and � be classes of functions with envelopes F and
G respectively. If � � stands for the class of pointwise products of functions
from � and � , then for 1 ≤ r < ∞,

supQ N�2ε�FG�Q�r�� � �Lr�Q��
≤ supQ N�ε�F�Q�r�� �Lr�Q�� supQ N�ε�G�Q�r�� �Lr�Q���

(A.1)

where the supremum is over all discrete probability measures.

The functions Dcf arise from f by taking linear combinations of functions
obtained by integrating out variables from f. To control the entropies of the
classes Dc� , the following Lemma may be useful. It is in the spirit of Lemma 5
in Sherman (1994). However, since we are unable to find it in its present form
in the literature, its short proof is also included.

Let � be a class of functions f 	 � × � → � with envelope F and R a fixed
probability measure on �. For a given f ∈ � , let f̄ 	 � → � be the function

f̄�x� =
∫
f�x�y�dR�y��

Set �̄ = �f̄ 	 f ∈ � �.
Note that F̄ is an envelope of �̄ .

Lemma A.2. For any r� s ≥ 1,

sup
Q

N�2ε�F̄�Q�r� �̄ �Lr�Q��� sup
Q

N�εr�F�Q×R�s�� �Ls�Q×R���

where the supremum ranges over all probability measures.

Proof. By Jensen’s inequality,

EQ�f̄− ḡ� ≤ EQ×R�f− g��
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Hence N�ε� �̄ �L1�Q�� ≤ N�ε�� �L1�Q×R�� for every ε > 0 and Q. Because
�F̄�Q�1 = �F�Q×R�1, we obtain

sup
Q

N�ε�F̄�Q�1� �̄ �L1�Q�� ≤ sup
Q

N�ε�F�Q×R�1�� �L1�Q×R���

The RHS does not decrease if the L1-norm is replaced by the Ls-norm (s ≥ 1),
by Problem 2.10.4 of van der Vaart and Wellner (1996). By the second part of
the proof of Theorem 2.6.7 of van der Vaart and Wellner (1996), we also have
that

sup
Q

N�2ε�G�Q�r�� �Lr�Q�� ≤ sup
Q

N�εr�G�Q�1�� �L1�Q��

for any class of functions � . The result follows. ✷

It follows, for instance, if � is a VC-class of index V, then the class �̄ has
polynomial covering numbers relative to the envelope F̄ in that

sup
Q

N�ε�F̄�r�Q� �̄ �Lr�Q��� ε−r�V−1��
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