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MARGINAL MODELS FOR CATEGORICAL DATA

BY WICHER P. BERGSMA1 AND TAMÁS RUDAS2

Tilburg University and Eötvös Loránd University

Statistical models defined by imposing restrictions on marginal distri-
butions of contingency tables have received considerable attention recently.
This paper introduces a general definition of marginal log-linear parameters
and describes conditions for a marginal log-linear parameter to be a smooth
parameterization of the distribution and to be variation independent. Statisti-
cal models defined by imposing affine restrictions on the marginal log-linear
parameters are investigated. These models generalize ordinary log-linear and
multivariate logistic models. Sufficient conditions for a log-affine marginal
model to be nonempty and to be a curved exponential family are given. Stan-
dard large-sample theory is shown to apply to maximum likelihood estima-
tion of log-affine marginal models for a variety of sampling procedures.

1. Introduction. Several recent papers discuss the theory and application of
models for contingency tables which impose restrictions on marginal distributions
of the contingency table; see, for example, McCullagh and Nelder (1989), Liang,
Zeger and Qaqish (1992), Becker (1994), Lang and Agresti (1994), Glonek and
McCullagh (1995) and Bergsma (1997). While these models are flexible and
useful, certain theoretical questions have remained open in the literature. These
include, first, the existence of a joint distribution with certain restrictions on
some of its marginals, or general conditions under which the existence of such
distributions is guaranteed; second, the determination of the dimension of a model;
and third, conditions for the applicability of large-sample results for maximum
likelihood estimates.

To illustrate the importance of the preceding questions, consider a 2 × 2 × 2
contingency table ABC and the AB , BC and AC marginal tables. Assume
that in the first two marginal tables the cells (1,1) and (2,2), while in the
last table the cells (1,2) and (2,1), have probabilities equal to 1/2. Although
these marginals are (weakly) compatible, because they imply uniform one-way
marginal distributions, there exists no three-way distribution with these two-way
marginals.

The concept of variation independence of parameters plays an important role
in answering the questions above. Two parameters are variation independent when
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the range of possible values of one of them does not depend on the other’s value.
When two parameters are not variation independent, this causes problems in their
interpretation; it leads to the possibility of the definition of nonexisting models
and it frequently also causes problems in various computations. Note that the
multivariate logistic parameters of Glonek and McCullagh (1995) are not variation
independent if there are more than two variables.

In this paper, the preceding questions will be discussed under a general
definition of marginal log-linear parameters. These are log-linear parameters
computed from marginals of the joint distribution. Therefore, a marginal log-
linear parameter is characterized by two subsets of the variables, one defining the
marginal to which it pertains and the other defining the subset of this marginal for
which it is computed.

Section 2 of the paper considers classes consisting of such ordered pairs of
subsets. In this section, certain combinatorial properties of such classes, including
ordered decomposability, are defined. This property, for the models discussed in
this paper, plays a role similar to that of decomposability in the case of ordinary
log-linear models.

In Section 3, marginal log-linear parameters are defined, which are a general-
ization of both the ordinary log-linear parameters and the parameters obtained by
the multivariate logistic transform of Glonek and McCullagh (1995). In fact, these
two parameterizations represent the two endpoints of a wide spectrum of possible
marginal log-linear parameterizations. The main results of the section include that,
for classes of ordered subsets with a certain hierarchy property, parameterizations
based on marginal log-linear parameters are smooth. For such smooth parame-
terizations, a necessary and sufficient condition for variation independence of the
coordinates is that the marginals involved form an ordered decomposable set. In
the latter case, repeated application of the iterative proportional fitting procedure
can always be used to reconstruct the joint distribution from the values of marginal
log-linear parameters.

In Section 4, log-affine marginal models are defined by restricting the values of
certain marginal log-linear parameters. This class of models generalizes ordinary
log-linear and multivariate logistic models and contains models which do not seem
to have been considered before. The main result of the section establishes that
a hierarchical marginal model is a curved exponential family, and it is proved
that log-affine marginal models, if based on an ordered decomposable class of
marginal log-linear parameters, are not empty. As an application, it is shown that
log-affine marginal models can also be used to describe many types of sampling
procedures, which provides a unified view of sampling and model restrictions.
Also, Whittemore’s (1978) collapsibility conditions can be described by a log-
linear marginal model.

Finally, in Section 5, standard large-sample theory is shown to apply to certain
log-affine marginal models, implying asymptotic normality of the maximum
likelihood estimates. The large-sample results hold under a wide range of sampling
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procedures, such as Poisson, multinomial and other distributions with given
marginals. This section, however, does not attempt to discuss maximum likelihood
estimation of log-affine marginal models in any depth, and detailed results
concerning the existence and uniqueness of maximum likelihood estimates will
be considered in a forthcoming manuscript.

2. Sets of ordered pairs of subsets. Let V be a finite set. The pair (L,M),
with L ⊆ M ⊆ V, is an ordered pair of subsets of V, where the ordering is with
respect to inclusion. For a set P of ordered pairs, let

M = {
M | ∃L ⊆ V : (L,M) ∈ P

}
.

For a certain ordering M1, . . . ,Ms of the elements of M and for i = 1, . . . , s, let

Li = {
L | (L,Mi ) ∈ P

}
(2.1)

and let

K1 = P(M1),(2.2)

and for i = 2, . . . , s let

Ki = P(Mi) \ (P(M1)∪ · · · ∪ P(Mi−1)
)
,(2.3)

where P(V) is the class of subsets of V. Note that Li is not empty and, for i �= j ,

Ki ∩ Kj = ∅.(2.4)

To illustrate, suppose V = {A,B,C} and

P = {({A}, {A,B}), ({B}, {A,B}), ({A,C}, {A,B,C})}.(2.5)

Then M = {{A,B}, {A,B,C}}, L1 = {{A}, {B}}, L2 = {{A,C}}, K1 = {∅, {A},
{B}, {A,B}} and K2 = {{C}, {A,C}, {B,C}, {A,B,C}}.

Below, three properties applicable to sets of ordered pairs of subsets P are
defined: hierarchy, completeness and ordered decomposability.

The set P is called hierarchical if it has an ordering M1, . . . ,Ms of the
elements of M such that

Mi �⊆ Mj if i > j,(2.6)

Li ⊆ Ki .(2.7)

Then M1, . . . ,Ms is called a hierarchical ordering of the elements of M. Note that
the P defined in (2.5) is hierarchical. Some examples of nonhierarchical sets P
are given next.
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EXAMPLE 1. Suppose V = {A,B}. If P = {({A}, {A}), ({A},V)}, then L1 =
L2 = {{A}}. Hence, if (2.7) holds, then (2.4) cannot hold; therefore, P is
nonhierarchical. If P = {({A}, {A}), (∅,V)}, then M = {{A},V}. For (2.6) to
hold, M1 = {A} and M2 = V, so that

K1 = {
∅, {A}},

K2 = (
P(V) \ K1

)= {{B}, {A,B}},
L1 = {{A}},
L2 = {∅}.

Since L2 �⊆ K2, (2.7) is violated, so P is nonhierarchical.

The set P is called complete if, for all L ⊆ V, there is exactly one M ⊆ V such
that (L,M) ∈ P . Note that the P defined in (2.5) is incomplete. It follows that P
is hierarchical and complete if and only if there is a hierarchical ordering of the
elements of M for which Ms = V and there is equality for all i in (2.7). A list of
all hierarchical and complete P ’s for which |V| ≤ 2 is given below.

EXAMPLE 2. If V = {A}, then there are two possible hierarchical and
complete P ’s: {

(∅,∅),
({A}, {A})},{(

∅, {A}), ({A}, {A})}
and if V = {A,B}, then there are nine different possibilities:{

(∅,∅),
({A}, {A}), ({B}, {B}), ({A,B}, {A,B}) },{ (

∅, {A}), ({A}, {A}), ({B}, {B}), ({A,B}, {A,B}) },{ (
∅, {B}), ({A}, {A}), ({B}, {B}), ({A,B}, {A,B}) },{
(∅,∅),

({A}, {A,B}), ({B}, {B}), ({A,B}, {A,B}) },{ (
∅, {B}), ({A}, {A,B}), ({B}, {B}), ({A,B}, {A,B}) },{
(∅,∅),

({A}, {A}), ({B}, {A,B}), ({A,B}, {A,B}) },{ (
∅, {A}), ({A}, {A}), ({B}, {A,B}), ({A,B}, {A,B}) },{
(∅,∅),

({A}, {A,B}), ({B}, {A,B}), ({A,B}, {A,B}) },{ (
∅, {A,B}), ({A}, {A,B}), ({B}, {A,B}), ({A,B}, {A,B}) }.

The number of different hierarchical and complete sets P increases faster than
exponentially with the number of elements of V.

A partial order for complete sets P is defined as follows. If P = {(Li,Mi )|
Li ⊆ V} and P ′ = {(Li ,M

′
i)|Li ⊆ V} are complete, then P � P ′ if Mi ⊆ M′

i

for all i. In this partial order,

Pmin = {
(L,L) | L ⊆ V

}
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is uniquely minimal, and

Pmax = {
(L,V) | L ⊆ V

}
is uniquely maximal. For example, if V = {A,B}, we find

Pmin = {
(∅,∅),

({A}, {A}), ({B}, {B}), (V,V)},
Pmax = {

(∅,V),
({A},V), ({B},V), (V,V)}.

It is easy to verify that, for any V, both Pmin and Pmax are hierarchical.
A class of incomparable (with respect to inclusion) subsets of V is called

decomposable if it has at most two elements or if there is an ordering M1, . . . ,Ms

of its elements such that, for k = 3, . . . , s, there exists a jk < k such that(
k−1⋃
i=1

Mi

)
∩ Mk = Mjk ∩ Mk

[Haberman (1974), page 181]. A class of arbitrary subsets of V is ordered
decomposable if it has at most two elements or if there is an ordering M1, . . . ,Ms

of its elements such that (2.6) holds, and, for k = 3, . . . , s, the maximal elements
of {M1, . . . ,Mk} form a decomposable set. The ordering M1, . . . ,Ms is then also
called ordered decomposable. A set P is ordered decomposable if the elements
of M have an ordering which is both hierarchical and ordered decomposable. Note
that ordered decomposability is a generalization of decomposability which also
applies when subsets are comparable. For incomparable subsets, the two concepts
are the same.

EXAMPLE 3. If P = Pmax, then M = {V}, so Pmax is ordered decomposable.
On the other hand, if P = Pmin, then M = P(V), so P is not ordered
decomposable unless |V| ≤ 2. For instance, if V = {A,B,C}, then

M = {
∅, {A}, {B}, {C}, {A,B}, {B,C}, {A,C}, {A,B,C}}.

In a hierarchical ordering, M8 = {A,B,C}. But then the set of maximal elements
of {M1, . . . ,M7} is {{A,B}, {B,C}, {A,C}}, which is not decomposable. Hence,
P is not ordered decomposable. Ordered decomposability can be obtained by, for
example, replacing ({A,B}, {A,B}) in P by ({A,B}, {A,B,C}).

The remaining part of this section demonstrates that for any incomplete hier-
archical P a complete and hierarchical P ⊃ P can be constructed which retains
the fundamental properties of P . For a given hierarchical P , let M1, . . . ,Ms be a
hierarchical ordering of the elements of M. Then P is defined as

P = {
(L,Mi) | L ∈ Ki, i ≤ s}∪ {

(L,V) | L �⊆ Mi ∀i ≤ s}.
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For example, if P is defined as in (2.5), then

P = {(
∅, {A,B}), ({A}, {A,B}), ({B}, {A,B}), ({A,B}, {A,B})}

∪ {({C}, {A,B,C}), ({A,C}, {A,B,C}), ({B,C}, {A,B,C}),
({A,B,C}, {A,B,C})}.

Note that the set P depends only on V and M, including its ordering. If M, Ki

and Li are defined similarly for P as M, Ki and Li are defined for P , it follows
that

M = M ∪ {V},(2.8)

Li = Ki(2.9)

for i ≤ |M|. Different hierarchical orderings of the elements of M may yield
different P ’s. Whenever we write P , we refer to a class yielded by some ordering
of the elements of M. We have:

LEMMA 1.

A. P ⊆ P ;
B. P is hierarchical and complete;
C. P is ordered decomposable if and only if P is ordered decomposable.

PROOF. Part A follows from (2.7). Part B follows from (2.8) and (2.9).
Part C is directly implied by (2.8). �

3. Marginal log-linear parameters. In Section 3.1, marginal frequencies are
considered, and in Section 3.2, the definition of marginal log-linear parameters is
given. In Section 3.3, smoothness properties of parameterizations of distributions
on contingency tables in terms of marginal log-linear parameters are derived. In
Section 3.4, necessary and sufficient conditions for marginal log-linear parameters
to be variation independent are provided.

3.1. Marginal frequencies. Let V = {V1, . . . , Vp} be a set of categorical
variables, with Vj taking on values in the nonempty finite set Ij , 1 ≤ j ≤ p. The
Cartesian product T = ×p

j=1Ij is a contingency table, with i = (i1, . . . , ip), for
ij ∈ Ij , being a cell of the table. A nonnegative real number µ(i) is called a cell
frequency belonging to cell i.

Let F be the class of strictly positive frequency distributionsµ on T . A function
θ : F → Rk , k ≥ 1, is called a parameter of F .

If M ⊆ V is a subset of the variables, then iM denotes a vector of those
indices from i, which belong to the variables in M; that is, (·)M is a projection
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operator. The collection of these marginal cells is the marginal table TM.
A marginal frequency µM(iM) is obtained by appropriate summation of the cell
frequencies µ(i). That is, a marginal frequency pertaining to marginal table TM is
defined as follows:

µM(iM)=
∑

j∈T : jM=iM

µ(j).

The marginals µ(1)M1
, . . . ,µ

(s)
Ms

, Mi ⊆ V, are said to be weakly compatible if

(µ
(i)
Mi
)Mi∩Mj

= (µ(j)Mj
)Mi∩Mj

for 1 ≤ i ≤ j ≤ s. The marginals µ(1)M1
, . . . ,µ

(s)
Ms

with a certain prescribed value
are said to be strongly compatible if there exists a joint distribution µ such that
µ
(i)
Mi

= (µ)Mi
for 1 ≤ i ≤ s. Theorem 1 gives the necessary and sufficient condition

for the former to imply the latter. It is a well-known result, and one direction of the
proof follows from a counterexample (similar to the example of the three marginal
tables with prescribed values in Section 1), while the other direction follows from
the construction of Darroch, Lauritzen and Speed (1980).

THEOREM 1. For a class of incomparable subsets {M1, . . . ,Ms} ⊆ P(V),
weak compatibility of the marginal frequencies µM1, . . . ,µMs implies strong
compatibility if and only if {M1, . . . ,Ms} is decomposable.

3.2. Marginal log-linear parameters. By analogy to ordinary log-linear para-
meters for i ∈ T , marginal log-linear parameters pertaining to a marginal M are
defined in the following recursive way:

λM
∅
(i∅)= 1

|TM|
∑

j∈TM

logµM(j),(3.1)

λM
L (iL)=

1

|TM\L|
∑

j∈TM : jL=iL

logµM(j)−
∑

L′⊂L

λM
L′(iL′).(3.2)

The (first) term on the right-hand side of these equations corresponds to an average
over those marginal cells in table TM whose L-index is the same as that of iM .
Note that the parameters λV

L are the ordinary log-linear parameters.
There are other ways than (3.1) and (3.2) to define the marginal log-linear

parameters. Our definition corresponds to so-called effect coding. Glonek and
McCullagh (1995) used so-called dummy coding, which yields different but
equivalent parameters; without going into the technical details here, the results
of this article hold for both types of parameters.

A set of marginal log-linear parameters is characterized by a set of ordered pairs.
For a set of ordered pairs P , let

λP = {
λM

L : (L,M) ∈ P
}
.
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The parameter λP with a certain prescribed value is said to be strongly compatible
if there exists a µ which yields λP .

The ordinary log-linear parameters are λPmax , and the multivariate logistic
transform parameters [McCullagh and Nelder (1989) and Glonek and McCullagh
(1995)] are λPmin . If V = {A,B,C}, one obtains

λPmax = {
λABC

∅
, λABCA ,λABCB ,λABCC ,λABCAB ,λABCBC ,λABCAC ,λABCABC

}
and

λPmin = {
λ∅

∅
, λAA,λ

B
B,λ

C
C,λ

AB
AB,λ

BC
BC,λ

AC
AC,λ

ABC
ABC

}
,(3.3)

respectively. (For notational simplicity, we omitted the commas and braces in the
sub- and superscripts.) Glonek (1996) considered a mixture of parameters taken
from λPmin and λPmax . However, the λP ’s defined here are more general than these
parameters.

3.3. Smooth parameterizations. For an open set B ⊆ Rk , the parameter
θ : F → B is a t-dimensional (1 ≤ t ≤ k) smooth parameterization of F if it
has the following properties:

(R1) The parameter θ is a homeomorphism onto B.
(R2) The parameter θ is twice continuously differentiable.
(R3) The Jacobian of θ has full rank t .

The parameter θ is called smooth if (R2) and (R3) hold.
It will sometimes be convenient to work with sets of parameters rather than

vectors. We will say that a distribution is parameterized by a set of parameters
when it is parameterized by those parameters arranged in a vector. For a vector
or set of parameters to be a smooth parameterization, redundant elements, that is,
parameters which are a function of others in the vector or set, must be removed.
If θ is a vector or set of parameters, then θ̃ denotes θ with the redundant elements
removed.

A parameter λP , with P complete, is not smooth because it contains redundant
elements: summing λM

L (iL) over an index (i.e., a coordinate of iL) yields 0. To
avoid this redundancy, define, for i ≤ p, Ii ∈ Ii and Ĩi = Ii \ {Ii}, the subtable
T̃ = ×p

i=1Ĩi of T . Then the parameter

λ̃M
L (i): F → R|T̃ |

defined only for i ∈ T̃ does not contain redundant elements. We denote
{λ̃M

L : (L,M) ∈ P } by λ̃P .
For a hierarchical and complete P , let Li and Ki be defined as in (2.1), (2.2)

and (2.3); for fixed 1 < i ≤ s, let K
c
i be the complement of Ki with respect

to P(Mi). Then K
c
i is a descending class of subsets of P(Mi) in the sense that
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H ⊆ K
c
i implies that H ′ ⊆ K

c
i for every H ′ ⊆ H . On the other hand, Li is an

ascending class of subsets of P(Mi) in the sense thatH ⊆ Li implies thatH ′ ⊆ Li

for every H ′ ⊇ H . As P is complete and hierarchical, the classes K
c
i and Li are

complements to each other with respect to P(Mi).
For µ ∈ F and Pi = {(L,Mi) :L ∈ Li}, consider

µPi =
{

∅, i = 1,
{µK :K ∈ K

c
i }, i > 1,

and

λPi = {λMi

L :L ∈ Li}.
Then λ̃P1 is the standard log-linear parameterization of the marginal distribution
on M1 which, as is well known, is smooth. If i > 1, then µPi contains the marginal
distributions for a descending class of subsets of P(Mi) and λPi contains the
(ordinary) log-linear parameters for the complement ascending class. As the µPi
parameters are derived from a distribution µ and there can be no compatibility
problems with the log-linear parameters in λ̃Pi , it is implied by general exponential
family theory [see Barndorff-Nielsen (1978), page 112] that µ̃Pi ∪ λ̃Pi is a mixed
parameterization of the distribution on Mi . This parameterization is smooth and its
two components are variation independent. This is formulated in the next lemma.

LEMMA 2. Suppose P is hierarchical and complete. If 1 ≤ i ≤ s, then
µ̃Pi ∪ λ̃Pi is a smooth parameterization of the marginal distribution on TMi

. If
i > 1, then these two components are variation independent.

As is well known, if µ̃Pi ∪ λ̃Pi has a given prescribed value, then µMi
can be

found by means of the iterative proportional fitting algorithm.
Lemma 2 can now be used to prove Theorem 2, which is the main result of this

subsection.

THEOREM 2. If P is hierarchical and complete, then λ̃P is a smooth
parameterization of F .

PROOF. If s = 1, then P = P1 so the theorem follows directly from Lem-
ma 2. If s > 1, then the proof goes through a series of parameterizations of the
distribution on the entire table T , leading to the desired parameterization. By
Lemma 2, F is smoothly parameterized by µ̃Ps ∪ λ̃Ps and hence also by({µM1, . . . ,µMs−1}

)∼ ∪ λ̃Ps ,(3.4)

where (·)∼ stands for ˜(·).
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Suppose s ≥ 3. If, for 1< i < s, F is smoothly parameterized by({µM1, . . . ,µMi
})∼ ∪ λ̃Pi+1 ∪ · · · ∪ λ̃Ps ,

then, by Lemma 2, F is smoothly parameterized by({µM1, . . . ,µMi−1} ∪ µ̃Pi ∪ λ̃Pi

)∼ ∪ λ̃Pi+1 ∪ · · · ∪ λ̃Ps

= ({µM1, . . . ,µMi−1} ∪ µ̃Pi

)∼ ∪ λ̃Pi ∪ λ̃Pi+1 ∪ · · · ∪ λ̃Ps

= ({µM1, . . . ,µMi−1}
)∼ ∪ λ̃Pi ∪ · · · ∪ λ̃Ps .

Going through the above step for i = s − 1, . . . ,2 gives that F is smoothly
parameterized by({µM1}

)∼ ∪ λ̃P2 ∪ · · · ∪ λ̃Ps = {µM1} ∪ λ̃P2 ∪ · · · ∪ λ̃Ps .(3.5)

If s = 2, then (3.4) is identical to (3.5). Thus, F is smoothly parameterized
by (3.5) for all s > 1. By Lemma 2, the marginal distribution on M1 is smoothly
parameterized by λ̃P1 , so F is smoothly parameterized by

λ̃P = λ̃P1 ∪ λ̃P2 ∪ · · · ∪ λ̃Ps

and this completes the proof. �

A proof based on the same idea, namely, the sequence of mixed parameteriza-
tions, was used by Kauermann (1997) to show that λ̃Pmin is invertible. However,
his proof uses a specific recursive property of λPmin and appears to be difficult to
apply to the general case described here.

Theorem 2 together with Lemma 1 implies that every parameter λ̃P , based on a
hierarchical P , can be completed to yield a smooth parameterization.

COROLLARY 1. If P is hierarchical, then λ̃P is a smooth parameterization
of the distributions in F .

Theorem 3 demonstrates that, for certain nonhierarchical P ’s, the parameter λ̃P

is not smooth.

THEOREM 3. Suppose {(L,M), (L,N )} ⊆ P for certain L ⊆ M,N ⊆ V.
Then λ̃P is not smooth.

PROOF. For L ⊆ V and arbitrary i, j ∈ T , define

d∅(i∅, j∅)= 1,

dL(iL, jL)= I (iL = jL)|TL| − ∑
L′⊂L

dL′(iL′ , jL′),
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where I (·) is the indicator function, giving 1 if the argument is true, 0 otherwise.
Then it can be verified that, for arbitrary U for which L ⊆ U ⊆ V,

∂λU
L (iL)
∂µ(j)

= dL(iL, jL)
|TU|µU(jU)

.

It follows that

∂λM
L (iL)
∂µ(j)

∣∣∣∣∣
µ(j)=|T |−1

= ∂λN
L (iL)
∂µ(j)

∣∣∣∣∣
µ(j)=|T |−1

= dL(iL, jL).

Since j was taken arbitrarily, the Jacobians of λM
L (iL) and λN

L (iL) are identical
when evaluated at the uniform distribution µ(k)= |T |−1, k ∈ T . Their contribu-
tions to the Jacobian of λ̃P are therefore also identical. Hence, λ̃P is not of full
rank for all distributions in F , and is therefore not smooth because (R3) is violated.

�

3.4. Variation independence. Suppose θ = (θ1, . . . , θt ) is a t-dimensional
parameter. Then θ is variation independent if R(θ)= R(θ1)× · · ·× R(θt ), where
R(·) denotes the range of a function. It is well known that the ordinary log-linear
parameters are variation independent.

THEOREM 4. Let P be hierarchical and complete. Then λ̃P is variation
independent if and only if P is ordered decomposable.

PROOF. “⇐”: The proof goes through the steps in the proof of Theorem 2
in reverse order. Let M1, . . . ,Ms be a hierarchical and ordered decomposable
ordering of the elements of M. Let a ∈ R|λ̃P | be an arbitrary real vector. It will
be shown that a µ exists for which λ̃P = a.

First, note that, since λ̃P1 is a smooth parameterization of the distribution on
the M1 marginal, µM1 , and with it also µP1 , can be constructed. If µPi is available
for some i = 1, . . . , s, then, since λPi is prescribed, µMi

can be constructed by
Lemma 2. From µM1, . . . ,µMi

, i < s, µPi+1 can also be deduced implying that
µMs =µ can also be constructed.

“⇒”: Suppose P is complete but not ordered decomposable. Then, for a
hierarchical ordering M1, . . . ,Ms , there is an i ≤ s such that the set of maximal
elements of {M1, . . . ,Mj } is decomposable for all j < i but the set of maximal
elements of {M1, . . . ,Mi} is not decomposable. But then, by Theorem 1, there
is a (µM1, . . . ,µMi

) which is weakly compatible but not strongly compatible. By
completeness of P , there exists a marginal log-linear parameter λ̃P which yields
these marginals. Therefore, this λ̃P is not variation independent. �

Theorem 4 is a solution to a problem encountered by several authors. Liang,
Zeger and Qaqish (1992), Glonek and McCullagh (1995) and Kauermann (1997)
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noted that prescribing values to certain marginal log-linear parameters restricts the
range of others. The theorem shows that, provided P is ordered decomposable, λ̃P

may be freely prescribed. This eases the interpretation of λ̃P and may have some
computational advantages, but it does not mean a researcher should refrain from
using a λ̃P based on a P which is not ordered decomposable if this is required by
the substantive problem at hand.

Note that if P is neither complete nor ordered decomposable, conditions for
variation independence of λ̃P are yet unknown.

It follows from the proof of Theorem 4 that, given a strongly compatible
prescribed value of λP , repeated application of the iterative proportional fitting
procedure yields the corresponding distribution µ. McCullagh and Nelder (1989),
Exercise 6.8, and Kauermann (1997) demonstrated that this is so for λPmin .

The following example demonstrates that λ̃P cannot always be assigned
arbitrary values if P is hierarchical but not ordered decomposable.

EXAMPLE 4. Consider the parameters of the multivariate logistic transform
(3.3) and let

λ∅

∅ = log 8,(3.6)

λAA(1)= λBB(1)= λCC(1)= 0,(3.7)

λABAB(1,1)= λBCBC(1,1)= log
(

3

8

)
, λACAC(1,1)= log

(
1

8

)
.(3.8)

Equation (3.6) constrains the sample size to be equal to 8, (3.7) ensures the one-
dimensional marginal frequencies are equal in each category of every variable
and (3.8) sets the two-dimensional marginal odds ratios to 9, 9 and 1/9,
respectively. This yields the two-dimensional marginal tables AB , BC and AC

B

A
3 1

1 3

C

B
3 1

1 3

C

A
1 3

3 1
,

respectively. It is straightforward to verify that, although the parameters in (3.6)
to (3.8) are weakly compatible, there is no distribution in F with these marginal
parameters. For example, it can be checked that the product–moment correlation
matrix for the three variables is not positive definite.

Note that replacing, for example, λACAC in the multivariate logistic transform
by λABCAC , yields the parameter with variation-independent components(

λ∅

∅
, λAA,λ

B
B,λ

C
C,λ

AB
AB,λ

BC
BC,λ

ABC
AC ,λABCABC

)
,

which, for any weakly compatible assignment of real values, yields a distribution
in F .



152 W. P. BERGSMA AND T. RUDAS

4. Log-affine and log-linear marginal models. A subset G ⊆ F is called a
model in F . For given P , let H be a nonempty linear subspace of Rdim(λ̃P ) and
let q ∈ Rdim(λ̃P ). A log-affine marginal model MP (q,H) ⊆ F is defined by the
restriction

µ ∈MP (q,H)⇔ λ̃P ∈ q + H .

Note that q ∈ q + H . Log-affine marginal models generalize the ordinary log-
linear models, the log-affine models [Haberman (1974), Rudas and Leimer (1992)
and Lauritzen (1996)], the multivariate logistic models of McCullagh and Nelder
(1989) and Glonek and McCullagh (1995) and the “mixture” of these models
considered by Glonek (1996). The log-affine marginal model with q = 0, that
is, MP (0,H), is called a log-linear marginal model. Applications of log-linear
marginal models have been considered by McCullagh and Nelder (1989), Liang,
Zeger and Qaqish (1992), Agresti and Lang (1993), Becker (1994), Lang and
Agresti (1994) and Croon, Bergsma and Hagenaars (2000), among others. Exam-
ple 5 shows some of the variety of log-affine marginal models and demonstrates
that there are interesting models which are log-affine but not multivariate logis-
tic.

EXAMPLE 5. Let V = {A,B,C,D,V,W }. The log-linear marginal model
asserting that the marginal association between A and B equals the one between
C and D can be formulated as

λABAB(i, j)= λCDCD(i, j).
This model is also multivariate logistic. On the other hand, the model specifying
that the marginal association between A and B given V equals the one between C
and D given W can be formulated as

λABVABV (i, j, k)= λCDWCDW(i, j, k),

λABVAB (i, j)= λCDWCD (i, j).

This is, in fact, a log-linear marginal model, but not an ordinary log-linear model
or a multivariate logistic one, nor a mixture of the latter two.

The inclusion of covariates can be done as follows. Suppose V = ⋃s
t=1 Mt ,

|Mt | = 2. If µMt is the bivariate marginal distribution at time point t , a trend in
the association may be specified by the log-linear marginal model

λ
Mt

Mt
(i, j)= xtβij ,

where the βij are unknowns and xt is constant for every time point t .

As can be seen from the examples, log-affine marginal models can be
constructed in the log-linear tradition. One can select those marginal distributions
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which are of interest and then use the marginal log-linear parameters to build
models, either for modeling relations between various marginal distributions
or for modeling the relations between certain variables within a marginal
distribution.

Log-affine marginal models can also be used to describe the sampling procedure
that is used. That is, for certain P , q and H , the sampling procedure may be
designed such that the observed distribution is an element of MP (q,H). For
example, the sampling design may be such that various marginal distributions are
fixed. This provides a unified treatment of the substantive model and the sampling
procedure, which is not possible with ordinary log-linear models. Example 6
shows that the sampling procedures with the total sample size fixed (multinomial
sampling), one marginal fixed (stratified or product multinomial sampling) and two
marginals fixed can be described by log-affine marginal models.

EXAMPLE 6. Suppose A,B ∈ V have index sets IA and IB , respectively.
Let NA and NB be compatible marginal frequency distributions for variables A
and B , respectively; that is, there is a frequency N > 0 such that

∑
NA(i) =∑

NB(j)=N .
For the multinomial sampling model, the total number of counts N is fixed by

design and is specified by the restriction

λ∅

∅
= logN.

This can be seen by noting that λ∅

∅ = logµ∅. To fix the marginal distribution of
variable A to NA, the additional restriction

λA
∅

+ λAA(i)= logNA(i)

is needed, since λA
∅

+ λAA(i) = logµA(i) [see (3.1) and (3.2)]. This is called the
stratified sampling model with stratifying variable A. To fix, additionally, the
distribution of B to NB , the further restriction

λB
∅

+ λBB(i)= logNB(j)

is needed.

If F is an exponential family, a model G ⊆ F is curved exponential if it has
a smooth parameterization (R1)–(R3). Its dimension is the local dimension of the
parameter space, t in (R1)–(R3). [See also Lauritzen (1996), page 272.]

THEOREM 5. If P is hierarchical and complete, then a nonempty log-affine
marginal modelMP (q,H) is a curved exponential model of dimension dim(H).
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PROOF. By Theorem 2, λ̃P is a smooth parameterization of F . Then an affine
combination of its coordinates is a smooth parameterization of MP (q,H) with
dimension dim(H). �

The restriction to complete P in Theorem 5 is without any loss of generality.
In particular, if P is hierarchical but incomplete, then, by Lemma 1, P ⊃ P is
hierarchical and complete. Then λ̃P ∈ q + H is equivalent to

λ̃P =
(
λ̃P

λ̃P \P

)
∈
(

q
0

)
+
(

H
0⊥

)
,

where 0 is a vector of 0’s with the same dimension as λ̃P \P , and 0⊥ is its null
space.

Example 7 shows that Theorem 5 does not necessarily hold if the hierarchy
condition is violated.

EXAMPLE 7. Let V = {A,B,C} be a set of dichotomous variables and let

P = {({A,B}, {A,B}), ({A,B}, {A,B,C}), ({A,B,C}, {A,B,C})}.
Then P is not hierarchical (see also Example 1). We show that certain linear
restrictions on λP yield a model which is not curved exponential.

Marginal independence of A and B is specified as

λABAB(1,1)= 0.(4.1)

Conditional independence of A and B given C is specified as

λABCABC(1,1,1)= λABCAB (1,1)= 0.(4.2)

Let MP (0,H) be the log-linear marginal model defined by the linear restric-
tions (4.1) and (4.2). Dawid (1980) showed that MP (0,H) is equivalent to A
being independent of both B and C, or B being independent of both A and C (or
both). In terms of prescriptions for log-linear parameters, this is

λABCABC(1,1,1)= λABCAB (1,1)= λABCAC (1,1)= 0

or

λABCABC(1,1,1)= λABCAB (1,1)= λABCBC (1,1)= 0.

Since MP (0,H) is the union of two distinct, intersecting models, it cannot be the
smooth image of an open set. Hence,MP (0,H) is not curved exponential.

The problem of the determination of the dimension of a marginal model
for categorical data was posed by Lang and Agresti (1994). They solved the
problem for the case when restrictions are placed on certain ordinary log-linear
parameters and on certain marginals. Theorem 5 gives a general solution to
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the dimension problem for log-affine marginal models based on hierarchical P ,
provided nonemptiness can be established.

For a, b ∈ Rk , a continuous function f : [0,1] → Rk such that f (0) = a and
f (1)= b is a path between a and b. A subset of Rk is connected if there is a path
between any two points in the subset. We have:

THEOREM 6. If P is ordered decomposable, the log-affine marginal model
MP (q,H) is nonempty and connected.

PROOF. Assume that P is hierarchical and complete. (See the comment after
Theorem 5.) Then, by Theorem 2, λ̃P is a smooth parameterization of F . Hence,
MP (q,H) is homeomorphic with q+H , which is nonempty and connected. Thus,
MP (q,H) is also nonempty and connected. The argument after Theorem 5 shows
that the proof extends to P ’s which are not complete. �

In general, it may be difficult to check whether or not a log-affine model
MP (q,H) is empty. However, all examples of marginal models which have been
described in the literature referred to in this article are, in fact, of the form
MP (q,H), with P ordered decomposable. Example 4 demonstrates that there
may be no distribution in MP (q,H) if P is not ordered decomposable. An open
question is exactly which of the latter types of models exist. Another open problem
which remains is whether or not there are log-linear or log-affine marginal models
MP (q,H), with P not ordered decomposable, which are not connected.

Theorem 7 shows that nonemptiness of marginal models which are log-linear is
generally guaranteed.

THEOREM 7. If there is at most one M ⊆ P(V) such that (∅,M) ∈ P , then
the log-linear marginal modelMP (0,H) is nonempty.

PROOF. Suppose there is no N ⊆P(V) such that (∅,N ) ∈ P . Then, for i ∈ T ,
any uniform distribution µ(i)= c (c > 0) yields λM

L (iL)= 0 [(L,M) ∈ P ], so the
uniform distribution is in the log-linear marginal modelMP (0,H).

If (∅,N ) ∈ P , then, for i ∈ T , the uniform distribution µ(i)= 1/|TV\N | yields
µ(iN )= 1. Hence, λN

∅
(i∅)= 0, and, by the preceding argument, all other marginal

log-linear parameters are 0 also, and so the model is nonempty. �

Collapsibility conditions for contingency tables can be specified using log-
linear marginal models, in particular, as a model MP (0,H), with P nonhierar-
chical. Whittemore (1978) defined a table T to be collapsible onto the marginal
table TM with respect to L ⊆ M if

λV
L(iL)= λM

L (iL)(4.3)
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for all i ∈ T . This means that the complete table T and the marginal table
TM contain the same amount of information about the interactions between the
variables in L. If, additionally,

λV
K(iK )= 0(4.4)

for all L ⊂ K �⊆ M, then T is said to be strictly collapsible onto TM with respect
to L. This means that the association between the variables in L is the same in
marginal table TM as in table T conditionally on any (subset of) variable(s) not in
M. Theorem 7 shows that these collapsibility conditions can always be imposed
upon an ordinary log-linear model or, more generally, a log-linear marginal model.
By Theorem 3, the parameters restricted in (4.3) are not smooth. As a result,
collapsibility conditions generally do not define a curved exponential family.
Example 7 provides an example of strict collapsibility of TABC onto TAB with
respect to variables A and B , combined with marginal independence between A
and B (and therefore also conditional independence on C).

More generally than the log-linear or log-affine marginal models discussed
in this section, nonlinear models for marginal log-linear parameters can be
considered. In fact, the theorems of this section do not depend on the linearity
of H ; if H is homeomorphic with a linear subspace and contains the origin, all
the theorems still hold. Interesting nonlinear models for categorical data include
the row and column effects model [Goodman (1979)]. This particular model has
been used in the marginal modeling framework by Colombi (1998).

5. Asymptotic maximum likelihood theory. Let x be a random count
variable defined on T , that is, x ∈ N|T |, where N = {0,1, . . .}. It is assumed that
x(i), i ∈ T , has a Poisson distribution with mean µ(i), where µ is the expectation
of x. The MLE of µ under a log-affine marginal model MP (q,H) is the value
which maximizes the likelihood of x overMP (q,H), and is denoted as µ̂x .

Let x1, . . . , xn be independent and distributed identically as x and let x̄n =∑n
i=1 xi/n be their average. That is, for each cell i in table T , x̄n contains the

average count of the corresponding counts of the xi . Theorem 8 describes the
behavior of µ̂x̄n as n→ ∞ and follows directly from Theorem 5 and the theory of
exponential family distributions [Barndorff-Nielsen (1978) and Lauritzen (1996)].

THEOREM 8. For a hierarchical P , suppose MP (q,H) is a nonempty log-
affine marginal model containing µ. Then the probability that µ̂x̄n exists uniquely
and is stationary in MP (q,H) tends to 1 as n increases to ∞, and µ̂x̄n has an
asymptotic multivariate normal distribution with mean µ.

Lauritzen [(1996), Section D.2.1] showed how to calculate the asymptotic
covariance matrix of µ̂x̄n . It is omitted here for ease of exposition, but can be
found in Lang (1996); see also Bergsma (1997), Appendix A.1. It follows from
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the asymptotic normality of µ̂x̄n that standard goodness-of-fit statistics, such
as the likelihood ratio or Pearson’s chi-square, have an asymptotic chi-squared
distribution. If P is complete, the latter has |T | − dim(H) degrees of freedom;
otherwise, this number must be reduced by the dimension of λ̃P \P (see the
comment after Theorem 5).

Theorem 8 can be generalized to certain cases where the sampling design is
more restrictive than in the simple Poisson sampling design considered above.
In particular, the sampling design may be such that x ∈ MP ′(q′,H ′) for some
nonempty log-affine marginal model MP ′(q′,H ′). For example, for multinomial
sampling with fixed N > 0, MP ′(q′,H ′) = {w ∈ N|T | :

∑
i∈T w(i) = N}. Note

that one multinomial sample of size N is considered as a single observation
of x. Generally, MP ′(q′,H ′) may be used to describe sampling designs with
certain marginals fixed. (See Example 6. However, note that other designs are
also possible.) For Theorem 8 to generalize, the restriction must be made that
MP ′(q′,H ′) ∩ MP (q,H) contains µ and is a curved exponential family. By
Theorem 5, it is sufficient that the intersection of the statistical and sampling
models is nonempty and that P ∪ P ′ is hierarchical.

It should be noted that without the hierarchy condition Theorem 8 is not true.
For example, the model discussed in Example 7 is based on a nonhierarchical P .
If the special case of the model in which A, B and C are mutually independent is
true, then, with certain probability pn, µ̂x̄n is in model A⊥⊥C|B and, with certain
probability qn, µ̂x̄n is in model B⊥⊥C|A. It can be shown that limn→∞ pn = p∗
and limn→∞ qn = 1 − p∗ for some fixed 0 < p∗ < 1. Hence, the asymptotic
distribution of µ̂x̄n is not multivariate normal. Of particular importance is that
the conditional likelihood ratio statistic for testing mutual independence of A, B
and C against the alternative that A and B are both marginally independent and
conditionally independent given C is asymptotically distributed as the minimum
of two chi-squared statistics, with possibly different degrees of freedom.

As stated previously, Theorem 8 follows from Theorem 5 and exponential fam-
ily theory. For classes of distributions more general than the exponential family,
Aitchison and Silvey (1958) gave conditions that the properties of Theorem 8
hold for maximum likelihood estimates of parameters subject to constraints. With
C and A matrices satisfying certain regularity conditions, and µ the vector of ex-
pected cell frequencies, Lang (1996) considered the class of models which can
be described by the equation C log Aµ = 0, which includes the class of log-
affine marginal models. He verified Aitchison and Silvey’s conditions for these
models under Poisson and multinomial sampling and under the assumption that
the Jacobian of C log Aµ has full rank. By Theorem 2, the latter assumption
is true for models MP (q,H), with P hierarchical; that is, Aitchison and Sil-
vey’s conditions, instead of exponential family theory, can also be used to prove
Theorem 8.

As a final note, stationarity of the maximum likelihood estimate µ̂x̄n in a log-
affine marginal model is important because it allows a gradient algorithm to be
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applied to find it. Various authors have described different gradient algorithms,
for example, Haber (1985), Lang and Agresti (1994), Molenberghs and Lesaffre
(1994), Glonek and McCullagh (1995), Bergsma (1997) and Colombi and Forcina
(2001).
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