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We consider the problem of parameter estimation for multidimensional
continuous-time linear stochastic regression models with an arbitrary fi-
nite number of unknown parameters and with martingale noise. The main
result of the paper claims that the unknown parameters can be estimated
with prescribed mean-square precision in this general model providing a
unified description of both discrete and continuous time process. Among the
conditions on the regressors there is one bounding the growth of the maxi-
mal eigenvalue of the design matrix with respect to its minimal eigenvalue.
This condition is slightly stronger as compared with the corresponding con-
ditions usually imposed on the regressors in asymptotic investigations but
still it enables one to consider models with different behavior of the eigen-
values. The construction makes use of a two-step procedure based on the
modified least-squares estimators and special stopping rules.

1. Introduction. In recent years many papers have been devoted to es-
timation of parameters in linear stochastic regression models, specified either
by stochastic difference or by stochastic differential equations. These models
include the Gauss-Markov processes and autoregression processes and arise
in different applications: time series analysis, adaptive stochastic control prob-
lems, on-line identification of dynamic systems, geophysics, financial mathe-
matics and so on. The most popular estimation schemes for stochastic regres-
sion models are based on the least-squares and the maximum likelihood meth-
ods and the properties of estimates are usually studied under the assumption
that the sample-size tends to infinity. It is well-known that asymptotic proper-
ties of least-squares estimates in autoregression and linear regression models
heavily depend on the values of unknown parameters and on the behavior of
the eigenvalues of a design matrix [we refer the reader to Anderson and Tay-
lor (1976), Lai, Robbins and Wei (1979) and Lai and Wei (1982) for details and
further references]. The results on asymptotic theory of estimates of parame-
ters in linear stochastic differential equations driven by the Wiener processes
are given in Arato, Kolmogorov and Sinai (1962), Le Breton (1977), Liptser
and Shiryaev (1977) and Jankunas and Khasminskii (1997), among others.
Estimation problems for stochastic differential equations driven by martin-
gale noise are considered in Novikov (1984), Christopeit (1986) and Darwich
and Le Breton (1991).
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Several recent papers have shown that many difficulties in the theory of
estimation for stochastic regression models can be overcome by a sequential
approach. It turns out to be helpful both in asymptotic and non-asymptotic
studies. One of the ways to improve the asymptotic properties of the least-
squares estimates in discrete-time processes is connected with a special choice
of stopping rules instead of a fixed sample size. Lai and Siegmund (1983)
have proved that the least-squares estimate of an autoregressive parameter
of a first-order autoregression process becomes asymptotically uniformly nor-
mal on the interval �−1�1� if one uses a special stopping rule. Shiryaev and
Spokoiny (1997) have established that this estimate has one universal limit
distribution for all admissible values of the unknown parameter in the case of
gaussian noises. For futher asymptotic results and references on estimation
in AR(1) we refer the reader to Sriram (1988), Aras (1990), Greenwood and
Shiryaev (1992), Konev and Pergamenshchikov (1997), among others.

A different but closely related application of sequential analysis consists
in constructing point estimators with prescribed mean-square precision which
provide non-asymptotic solutions to the estimation problems. Liptser and
Shiryaev (1977) [see also Novikov (1971)] have put forward the idea of us-
ing the maximum likelihood estimator with a special stopping time for the
problem of estimating the drift coefficient of a scalar diffusion process. This
estimator is unbiased and has a prescribed mean-square precision. Borisov
and Konev (1977) have proposed an unbiased guaranteed least-squares es-
timate for a parameter for an AR(1), which, besides the introduction of the
special stopping time, requires a certain modification of the estimate itself.
Such an approach can be extended to estimate linear parameters in multi-
variate discrete and continuous time processes provided that the number of
unknown parameters does not exceed the dimension of the process [see Borisov
and Konev (1977) and Konev and Vorobeichikov (1980)]. The unbiased guar-
anteed estimates in this case can be constructed on the basis of generalized
least-squares estimates with a proper choice of a weight matrix.

Melnikov and Novikov (1988) and Melnikov (1996) considered the prob-
lem of guaranteed estimation of parameters in multivariate regression models
with martingale noise. These models provide a unified description of both dis-
crete and continuous time processes, specified either by stochastic difference
or stochastic differential equations. However, the applicability of the proposed
procedure is also restricted to the case when the number of unknown param-
eters does not exceed the dimension of the observed process. This restriction
rules out a broad class of processes, for example, scalar autoregressive pro-
cesses of order greater than one.

The present paper considers the problem of sequential point estimation
of parameters in multivariate stochastic regression models with martingale
noise and any finite number of unknown parameters. The proposed procedure
enables us to estimate the parameters with any prescribed mean square ac-
curacy under some conditions on the regressors. The procedure is based on
the weighted least-squares method with a special choice of weight matrices
and it is one-step if the number of unknown parameters doesn’t exceed the
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dimension of the observation process and it is two-steps in a general case. In
the first case, the construction of the procedure is similar to that proposed
by Konev and Vorobeichikov (1980) and in the second case it is close to that
proposed in Konev and Pergamenshchikov (1981), Konev and Lai (1995) and
Galtchouk and Konev (1997). Among conditions on the regressors there is one
bounding the growth of the maximum eigenvalue of a design matrix with re-
spect to its minimal eigenvalue. This condition is slightly stronger than those
usually imposed in asymptotic investigations but it makes possible to consider
models with different behavior of the eigenvalues.

The paper is arranged as follows. In Section 2 the model is described and
different particular examples are given. Section 3 provides justification of the
weighted least-squares estimator (LSE) of the unknown parameter which is
based on discrete-time approximations. The weighted LSE is the basis of con-
structions of guaranteed estimators. In Section 4, the unbiased prescribed pre-
cision estimators for multidimensional processes are constructed (see Theorem
1). It is assumed that the number of unknown parameters does not exceed the
dimension of the process under observation and in this case the sequential
procedure is one-step. The sequential two-step estimation procedure for the
general case with an arbitrary number of unknown parameters is studied in
Section 5 (Theorem 2). The results are proved under minimal assumptions on
the regressors. Section 6 includes auxiliary propositions.

2. Model.

Examples. Let ���� �F = ��t�t≥0�P� be a filtered probability space satis-
fying the usual conditions: the filtration F = ��t�t≥0 is right continuous, that
is �t = ⋂

s>t�s� and the σ-algebra �0 contains all P-null sets. Consider the
observation process X = �X�t��t≥0 specified by the stochastic regression model

X�t� = X�0� +
∫ t

0
�′�s�θda�s� + m�t�� t ≥ 0�(2.1)

where
∫ t
0 = ∫

�0�t�; the prime denotes transposition; X�m ∈ �n� � is a pre-
dictable p × n matrix (the matrix of stochastic regressors); θ ∈ �p is the
vector of unknown parameters; m�t� = �m1�t�� � � � �mn�t��′� m�0� = 0� is a
noise which is a locally square integrable martingale with the trajectories
continuous on the right and having left-side limits:

a�t� = m�m��t� = tr
(�mi�mj��1≤i�j≤n

) �t� =
n∑

i=1

mi�mi��t��

Recall that �mi�mj��1≤i�j≤n is the matrix of predictable local quadratic varia-
tions of m [the predictable process of bounded variation mi�mj� is such that
the process mimj−mi�mj� is a local martingale; see Galtchouk (1975, 1976),
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Jacod (1979)]. Let

B�t� =
(
dmi�mj�

da
�t�
)
� Bc�t� =

(
dmc

i�m
c
j�

dmc�mc� �t�
)
�

Bd�t� =
(

dmd
i �m

d
j�

d < md�md >
�t�
)
� 1 ≤ i� j ≤ n�

mc�mc��t� =
n∑

i=1

mc
i�m

c
i��t��

md�md��t� =
n∑

i=1

md
i �m

d
i ��t��

(2.2)

here m = mc+md is the orthogonal decomposition of the vector-valued martin-
gale m into a continuous martingale and a purely discontinuous martingale.
Note that mc

i�m
d
j� = 0� for all 1 ≤ i� j ≤ n�

a�t� = mc�mc��t� + md�md��t��
B�t�dm�m��t� = Bc�t�dmc�mc��t�

+Bd�t�dmd�md��t��
(2.3)

The observation process X is well defined, if for all t ≥ 0,∫ t

0
���s��da�s� < ∞ a�s�

The goal of this paper is to construct an estimator of the unknown param-
eter θ in model �2�1� with prescribed mean-square precision, that is for any
given positive number h we have to define an estimator θ∗

h such that

E�θ∗
h − θ�2 ≤ const · h−1�

The process X is a semimartingale which includes both the discrete-time and
continuous-time (random and deterministic) regression models.

Consider some examples.

Example 2.1. The discrete-time linear stochastic regression

Xn = θ1Zn�1 + · · · + θpZn�p + εn

where �εn�n≥1 is a square integrable martingale-difference with respect to its
natural filtration ��n�n≥1��0 = ���∅� �

Eε2
n < ∞� E�εn � �n−1� = 0� an = E�ε2

n � �n−1� > 0� n ≥ 1�
�Zn�1� � � � �Zn�p� are consecutively determined �n−1-measurable random vec-
tors.
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This model is a particular case of �2�1�: it suffices to set

X�t� =
�t�∑
i=1

Xi� m�t� =
�t�∑
i=1

εi� a�t� =
�t�∑
i=1

ai�

��t� = ��1�t�� � � � � �p�t��′� �i�t� = Z�t��i/ai�

where �t� is the integer part of t�
This model includes an autoregression AR�p� model

Xk = θ1Xk−1 + · · · + θpXk−p + εk� k ≥ 0�(2.4)

where the initial values X−1� � � � �X−p are given.

Example 2.2. Let Z�t� be a stationary Gaussian process in continuous
time with the rational spectral density

f�λ� = σ2

2π

∣∣∣P�
√

−1λ�
∣∣∣−2

� −∞ < λ < ∞�

P�z� = zp + θ1z
p−1 + · · · + θp�

where the coefficients θ1� � � � � θp are unknown and all roots of the polynomial
P�z� have negative real parts. This process satisfies the equation [see Arato
(1982)]:

dZp−1�t� + [
θ1Z

p−1�t� + · · · + θpZ�t�]dt = σdw�t��
Setting

�′�t� = �−Z�p−1��t�� � � � �−Z�t��� X�t� = Z�p−1��t�
we obtain the model of type �2�1� �

dX�t� = �′�t�θdt + σdw�t��
where w�t� is the standard Wiener process.

Example 2.3. The Itô process

dX�t� = �′�t�θdt + σ�t�dw�t��
where ��σ are predictable p × n and n × r-matrices respectively, w is the
standard r-dimensional Wiener process, B = σσ ′� This model is widely used
in stochastic control, dynamic input-output systems, time-series analysis, geo-
physics and so on.

Example 2.4. The point process �pt� is the particular case of (2.1): pt =∑
i I�Ti≤t�,

dX�t� = λ�t�θda�t� + dm�t��
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where �Ti�i≥1 is an increasing sequence of stopping times, θ ∈ �� λ�t� is a
positive predictable process such that

m�t� = p�t� −
∫ t

0
λ�s�θda�s�

is a locally square integrable martingale.

Example 2.5. If da�t� = dt in the previous model, we obtain a doubly
stochastic Poisson process.

Remark 1. The integral in (2.1) is defined with respect to the process a�t�
which is assumed to be the trace of the matrix of predictable local quadratic
variation of a locally square integrable martingale m� One can take, of course,
any other process which is absolutely continuous with respect to the process
a�t� as the integrator.

3. Weighted LSE for semimartingale models in continuous time. In
this section, we propose to use special discrete-time approximation schemes to
construct and justify the weighted LSE in continuous-time regression models.
The least-squares method is well developed for discrete-time regression models
for which one has a reasonable functional to measure the quality of estimates–
the sum of squares of residuals taken over all observations. For continuous-
time regression models such a natural functional is not available because the
direct extension by making use of the discrete-time approximations breaks
down: the limit of the corresponding sum of squares of residuals does not
exist in any reasonable sense. The idea not to use the sum of squares as a
starting point in the least-squares method for continuous-time models does
not seem to be attractive either. However, usually authors prefer to avoid
the above-mentioned difficulties and write LSE by analogy with those for the
discrete-time models [see Novikov (1984), Christopeit (1986), Le Breton and
Musiela (1987), Melnikov and Novikov (1988), Melnikov (1996)]. We propose
to construct LSE for continuous-time models as follows:

(i) perform the time discretization of the model (2.1);
(ii) construct the sum of squares of residuals separating the sum of ad-

dends connected with the jumps of the process a�t� caused by the predictable
time jumps of the observed process X and the sum of addends connected with
the continuous part of the process a� in the second sum each addend is sup-
plied with a special normalization factor;

(iii) consider LSE for the discrete-time approximation and find the limit of
these estimators as the size of partitions tends to zero.

Let �Xt�t≥0 be an observation process starting from X0 and specified by the
stochastic differential equation (2.1). Let W̃ = W̃�t�� t ≥ 0� be some predictable
symmetric positive definite weight matrix of size n × n� Let a = ac + ad be
the decomposition of the predictable increasing process a into continuous and
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purely discontinuous parts:

adt = ∑
s≤t

&as� act = at − adt � &as = as − as−�

Introduce a loss function

Iδ�θ� = ∑
tk<T

(
&Xd

tk
− �′�tk�θ&adtk

)′
W̃�tk�

(
&Xd

tk
− �′�tk�θ&adtk

)
+ ∑

tk<T

�&actk�⊕(&Xc
tk

− �′�tk�θ&actk
)′
W̃�tk�

(
&Xc

tk
− �′�tk�θ&actk

)
�

where δ = �t0� t1� � � ���0 = t0 < t1 < � � � < tn = T� is some partition of the
interval �0�T�; x⊕ = x−1� if x �= 0� x⊕ = 0, otherwise

&Xd
tk

= Xd
tk+1

− Xd
tk
� &actk = actk+1

− actk� &adtk = adtk+1
− adtk�

Xd
t =

∫ t

0
I�&as �=0�dXs� Xc

t = Xt − Xd
t �

IA is the indicator function of a set A.
It must be noted that the process Xd has jumps at the same times as the

process ad and the process Xc has no jumps at the predictable stopping times.
For the fixed partition δ and weight matrix W̃ one can find an estimator θ̂δ

which minimizes the loss function Iδ�θ�. We have

∇θIδ�θ� = −2
∑
tk<T

�W̃�tk�&Xd
tk
&adtk + 2

∑
tk<T

�W̃�′�tk��&adtk�2θ

−2
∑
tk<T

�W̃�tk�&Xc
tk
&actk�&actk�

⊕ + 2
∑
tk<T

�W̃�′�tk�θ&actk�

where ∇θ is the gradient with respect to θ� The equation ∇θIδ�θ� = 0 yields
the estimator

θ̂δ =
[ ∑
tk<T

�W̃�′�tk��&adtk�2 + ∑
tk<T

�W̃�′�tk�&actk
]−1

×
[ ∑
tk<T

�W̃�tk�&adtk&Xd
tk

+ ∑
tk<T

�W̃�tk�&Xc
tk

]
�

where we make use of the equality &Xc
tk
&actk�&actk�⊕ = &Xc

tk
� which is true,

because the process Xc does not change on constancy intervals of the process
ac [see Stricker (1981)].

Taking a sequence of partitions δn = �tn0 � tn1 � � � ���0 = tn0 < tn1 < � � � < tnn = T�
such that max

k
�tnk+1 − tnk� → 0 as n → ∞ we obtain the following result:
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Proposition 1. Let, for all t > 0,∫ t

0
r��W̃�′��s��&as + I�&as=0��das < ∞ a.s.,∫ t

0
tr��W̃BW̃�′��s���&as�2 + I�&as=0��das < ∞ a.s.

and the matrix ∫ T

0
�W̃�′�s��&as + I�&as=0��das

be invertible for sufficiently large T a.s.

Then θ̂δn → θ̂T in probability as n → ∞ and max
k

�tnk+1 − tnk� → 0, where

θ̂T =
[∫ T

0
�W̃�′�s�&asdas +

∫ T

0
�W̃�′�s�dacs

]−1

×
[∫ T

0
�W̃&asdX

d
s +

∫ T

0
�W̃�s�dXc

s

]
�

(3.1)

By making use of the equalities

&asdXs = &asdX
d
s � dXc

s = I�&as=0�dXs�

we can rewrite θ̂T as follows:

θ̂T =
[∫ T

0
��s�W�s��′�s�das

]−1 ∫ T

0
��s�W�s�dXs�(3.2)

where

W�s� = W̃�s��&as + I�&as=0���
The estimator θ̂T is called the weighted least-squares estimator.

Remark 2. If the matrix B in model (2.1) is non-degenerate, we can put
W̃�t� = B−1�t��&at + I�&at=0��−1� In this case we obtain the least-squares esti-
mator used by a number of authors.

Remark 3. For discrete-time deterministic regression models with &ak =
1� k = 0�1� � � � and W̃�k� = B−1�k�� the estimator θ̂T is known to have the
minimal variance [the Gauss-Markov theorem; see, e.g., Rao (1968)].

If &ak �= 1� then θ̂T is a LSE with special weights.

Remark 4. The second factors in the right-hand sides of (3.1)–(3.2) are
stochastic integrals with respect to the vector-valued semimartingales. By
�2�1� ∫ T

0
��s�W�s�dXs =

∫ T

0
��s�W�s��′�s�das +

∫ T

0
��s�W�s�dms�
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These integrals are well defined under the given conditions [see Galtchouk
(1975, 1976), Jacod (1979)].

Remark 5. It is noteworthy that the normalizing factor �&actk�⊕ is used
only for those addends in the loss function Iδ�θ� which are connected with
the component Xc of the observed process. The addends connected with the
component Xd do not need any normalization. Note that Christopeit (1986)
used a special normalization to obtain quasi-least-squares estimators.

4. Unbiased prescribed precision estimation for multidimensional
processes. Let us consider the model (2.1) under the condition that both
the process Xt and the vector θ are multidimensional but the dimension of
unknown parameter vector θ does not exceed the dimension of Xt:

dim θ = p ≤ n = dim Xt ∀t ≥ 0�

In this case one can construct unbiased sequential estimators for θ with pre-
scribed mean-square error by using the special weight matrix W and stopping
rules. Our estimation scheme is similar to that proposed by Konev and Vorobe-
jchikov (1980) for multidimensional discrete-time processes and later used by
Mel’nikov and Novikov (1988) for semimartingale models.

Assume that the matrices B and �B−1�′ are positive definite dP ×da-a.e.
We begin with the weighted LSE

θ̂T =
[∫ T

0
��s�W�s��′�s�das

]−1 ∫ T

0
��s�W�s�dXs�(4.1)

Let the weight matrix W�t� be such that

�W�′�t� = c�t�I�(4.2)

r��WBW�′��t� ≤ c�t��(4.3)

where c�t� is a positive predictable function. Equation �4�2� is satisfied for

W�t� = c�t�B−1�′��B−1�′�−2�B−1�t��(4.4)

Substituting this function in inequality �4�3� yields

c2�t�r���B−1�′�−1��t� ≤ c�t��
Let

c�t� = �r���B−1�′�−1��t��−1�(4.5)

Conditions (4.2), (4.3) enable us to invert the matrix in �4�1� and reduce the
problem of constructing a sequential estimator for the vector θ to the scalar
case.

For each h > 0 we introduce a predictable stopping time τh as

τh = inf
{
t ≥ 0 �

∫ t

0

das
r���B−1�′�−1��s� ≥ h

}
(4.6)
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and a random variable ηh, with values in �0�1�� uniquely determined from
the equation ∫

�0�τh�
das

r���B−1�′�−1��s� + ηh

&aτh
r���B−1�′�−1��τh�

= h�(4.7)

The random variable ηh is �τh−-mesurable.
On the basis of the estimator (4.1) with the weight matrix given by (4.4),

(4.5), we define the sequential estimator for the vector θ as

θ∗�h� = h−1
[∫

�0�τh�
�W�s�dXs + ηh�W�τh�&Xτh

]
= h−1

∫
�0�τh�

�W�s��I�0�τh��s� + ηhI�τh��s��dXs�
(4.8)

where

W�t� = �r���B−1�′�−1��t��−1B−1�′��B−1�′�−2�B−1�t��(4.9)

This estimator has the following properties.

Theorem 1. Let matrices B and �B−1�′ be not degenerate dP × da- a.e.,
the integral ∫ t

0

das
r���B−1�′�−1��s�(4.10)

be finite for 0 < t < ∞ a.s. and converging to +∞ as t → +∞ a.s.
Then, for each h > 0,

τh < ∞ a.s.�

Eθθ
∗�h� = θ�

Eθ��θ∗�h� − θ��2 ≤ h−1�

where Eθ denotes the average by the distribution Pθ of the process X with the
given parameter θ�

Proof. Since the integral (4.10) tends to +∞� as t → ∞� the stopping
time τh is finite a.s. for all h > 0.

From (2.1) and (4.8) we have

θ∗�h� = h−1
[∫

�0�τh�
�W�′�s��I�0�τh��s� + ηhI�τh��s��θdas + m̃τh

]
�

where

m̃τh
=
∫
�0�τh�

�W�s��I�0�τh��s� + ηhI�τh��s��dms�

By (4.4)–(4.7),

θ∗�h� = θ + h−1m̃τh
�(4.11)
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Since m is a locally square integrable martingale, then in view of (4.9),

tr
[�< m̃i� m̃j >�1≤i�j≤n

]�τh�
=
∫
�0�τh�

r��WBW�′��s��I�0�τh��s� + ηhI�τh��s��2das

=
∫
�0�τh�

�I�0�τh��s� + ηhI�τh��s��2das

r���B−1�′�−1��s�
≤
∫
�0�τh�

�I�0�τh��s� + ηhI�τh��s��das
r���B−1�′�−1��s� = h�

(4.12)

Hence Eθm̃τh
= 0 and from �4�11� we obtain Eθθ

∗�h� = θ�
Further from (4.9), (4.11), (4.12), it follows that

Eθ��θ∗�h� − θ��2 = h−2Eθtr
[�< m̃i� m̃j >�1≤i�j≤n

]�τh� ≤ h−1� ✷

Remark 6. If the matrix B is degenerate, the inverse matrix B−1 in the
sequential procedure can be replaced by some positive definite symmetric ma-
trix +−1 such that B ≤ + and �+−1�′ is not degenerate dP ×da-a.e. Then the
sequential design �τh� θ∗�h�� is defined by formulae

τh = inf
{
t ≥ 0 �

∫ t

0

das
r���+−1�′�−1��s� ≥ h

}
�

θ∗�h� = h−1
∫
�0�τh�

��+−1�′�−1�+−1�s�
r���+−1�′�−1��s� �I�0�τh��s� + ηhI�τh��s��dXs�

where ηh is a multiplier which is determined from the equation

∫
�0�τh�

�I�0�τh��s� + ηhI�τh��s��das
r���+−1�′�−1��s� = h�

If the integral

∫ t

0

das
r���+−1�′�−1��s�

is finite for 0 < t < ∞ and converges to +∞ as t → +∞ a.s, then the assertion
of Theorem 1 holds true for this sequential design.

Remark 7. The unbiased guaranteed estimator considered in this section
has been constructed under the assumption that the matrix �B−1�′ (or
�+−1�′) is invertible. This condition is very restrictive and is not satisfied
if dim θ > dim X. This is the case, for example, when �Xt� is a scalar autore-
gressive process AR�p� of order p > 1�
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5. Construction of the two-step sequential procedure in the case of
an arbitrary number of unknown parameters. In the case when the
number of unknown parameters in model (2.1) is arbitrary, the guaranteed
estimator for θ can also be constructed on the basis of the weighted LSE,
defined by (3.2). It is convenient to rewrite this estimate as

θ�t� = M−1�t�
∫ t

0
-�s�W1/2�s�dXs�(5.1)

where

M�t� =
∫ t

0
-�s�-′�s�das� -�t� = �W1/2�t��

the inverse matrix M−1�t� is assumed to exist. The matrix M is called the
information matrix or design matrix.

In the sequel the following conditions are imposed on the regressors and on
the weight matrix W:

(A1) The regressors matrix-valued function � is predictable and such that
for all t ≥ 0 ∫ t

0
���s��da�s� < ∞ a�s�

(A2) The weight matrix W is such that

W1/2BW1/2 ≤ I� dP × da−a�e�

where I is the identity matrix of size n × n�
(A3) Both integrals in �5�1� are well defined. This is true if for all t ≥ 0∫ t

0
tr �--′��s� max�1� &as + I�&as=0��das < ∞ a.s.

Let λmin�M� and λmax�M� denote the smallest and the largest eigenvalues of
the matrix M�

(A4) limt→∞ λmin�M�t�� = +∞, a.s.
(A5) There exists δ�0 < δ < 1� such that

lim inf
t→∞

λδmin�M�t��/ lnλmax�M�t�� > 0 a�s�

The procedure is constructed in two steps.
Step 1. Let �Cj�j≥1� �βj�j≥1 be two sequences of positive numbers such that

Cj ↑ ∞�
∑
j≥1

βj < ∞�
∑
j≥1

βjC
1−δ
δ

j = ∞�

Here δ�0 < δ < 1� is the same as in condition (A5��
By virtue of condition (A4�� for any given positive constant C0 we can define

the a.s. finite stopping time T as

T = inf�t ≥ 0 � λmin�M�t�� ≥ C0�� inf�∅� = +∞�(5.2)
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Next we introduce the sequence of stopping times τj� j ≥ 1� as

τj= inf
{
t≥T � C−1

0

∫ T

0
�--′��s�da�s�+r

∫ t

T
-′M−1-�s�da�s�≥Cj

}
�(5.3)

and the sequence of estimators

θj = θ�τj� = M−1�τj�
∫ τj

0
-W1/2�s�dXs�

On the basis of these estimators we define the desired sequential estimators
of the unknown vector θ by applying a special smoothing procedure.

Step 2. Let us define the estimator θ∗
h as a weighted average of estimators

θj:

θ∗
h =

[
σ�h�∑
j=1

bj

]−1
σ�h�∑
j=1

bjθj�(5.4)

where h is a positive parameter; σ�h� is the stopping time given by

σ�h� = inf

(
n ≥ 1 �

n∑
j=1

bj ≥ h

)
�

bj = βj/�Cjtr�M−1�τj����

Denote

N�h� = τσ�h��

The main result is the following.

Theorem 2. Let the regressor matrix-valued function � in model �2�1� and
the weight matrix W be predictable and satisfy conditions (A1)–(A5). Then the
sequential design �N�h�� θ∗

h� has the following properties: for any h > 0,

�i� N�h� < ∞ a.s.�

�ii� Eθ�θ∗
h − θ�2 ≤ h−1

∞∑
j=1

βj�1 + pC−1
j ��

Proof. By condition (A4) we have T < ∞ a.s. From the definition of τj
and Lemma 5 we have τj < ∞ a.s. and τj ↑ +∞� as j → ∞� Therefore, the
inequality N�h� < ∞ is true provided that∑

j≥1

bj = +∞ a.s.(5.5)



SEMIMARTINGALE REGRESSION 1521

Let us verify this equality. From the definitions of bj and τj it follows that

bj = βj/�Cjtr�M−1�τj��� ≥ βj/�Cjpλmax�M−1�τj���
= βj�pCj�−1λmin�M�τj�� = βjp

−1C
1/δ−1
j

(
λδmin�M�τj��/Cj

)1/δ
≥ βjp

−1C
1/δ−1
j

×
(
λδmin�M�τj��/�g�T� + r

∫
�T�τj�

-′�u�M−1�u�-�u�da�u��
)1/δ

�

where

g�T� = C−1
0

∫ T

0
�-�2�u�da�u��

By making use of Lemma 3 we obtain

bj ≥ βjp
−1C

1/δ−1
j

(
λδmin

(
M�τj�

)
/�g�T� + L lnλmax

(
M�τj�

)�)1/δ

�

where L is some positive constant. From this, the properties of βj�Cj and
condition (A5) we obtain (5.5).

Further we have

θj − θ = M−1�τj�Y�τj��
where

Y�t� =
∫ t

0
-W1/2�s�dm�s��

From this it follows that

‖θj − θ‖2 = ‖M−1/2�τj�M−1/2�τj�Y�τj�‖2

≤ ‖M−1/2�τj�‖2‖M−1/2�τj�Y�τj�‖2 = Q�τj�tr �M−1�τj���
where

Q�τj� = Y′�τj�M−1�τj�Y�τj��(5.6)

Taking into account the definition of bj and applying the Cauchy-Schwarz
inequality we obtain

‖θ∗�h� − θ‖2 ≤
σ�h�∑
i=1

bi

(
σ�h�∑
j=1

bj‖θj − θ‖2

)(
σ�h�∑
j=1

bj

)−2

≤ h−1 ∑
j≥1

bj‖θj − θ‖2 ≤ h−1 ∑
j≥1

bjQ�τj�tr �M−1�τj��

= h−1 ∑
j≥1

βjQ�τj�/Cj�
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Hence,

E‖θ∗�h� − θ‖2 ≤ h−1 ∑
j≥1

βjEQ�τj�/Cj�

From this and Lemma 6 we obtain the desired result. ✷

Example 5.1. Consider a non-explosive autoregression process (2.4), that
is all roots of its characteristic polynomial

� �z� = zp − θ1z
p−1 − · · · − θp

lie on or inside the unite circle on the complex plane. Assume that the martin-
gale-difference �εn� satisfy the conditions

E�ε2
n � �n−1� = 1 a.s.,

sup
n≥1

E�� εn �α� �n−1� < ∞ a.s.

for some α > 2� Since the process X is scalar, Var�εn� = 1� for all n ≥ 1� and
the process a is step-wise with the unit jumps, then we can put the weight
matrix W�t� = 1 for all t in the basic estimator (5.1). One can easily verify
that in this case conditions (A1)–(A3) are satisfied. To verify conditions (A4),
(A5) we can apply Theorem 3 by Lai and Wei (1983) which yields

lim inf
n→∞ n−1λmin�M�n�� > 0(5.7)

and

λmax�M�n�� = O�n� a.s. if 9 = 0

= O�n29 log log n� a.s. if 9 ≥ 1�
(5.8)

where

M�n� =
n∑

k=1

�k−1�
′
k−1� �k = �Xk�Xk−1� � � � �Xk−p+1�′�

9 = 0 if all roots of � �z� lie inside the unit circle and otherwise 9 is the
largest multiplicity of all the distinct roots on the unit circle. The property
(5.8) implies condition (A4). Further, by (5.7), (5.8),

lim inf
n→∞ λδmin�M�n��/ lnλmax�M�n�� ≥ C lim inf

n→∞ nδ/lnn = ∞

for 9 = 0 and all 0 < δ < 1� The same limiting relationship is true for the
case 9 ≥ 1� Hence condition (A5) is also satisfied and Theorem 2 is true for
this autoregression model.
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6. Auxiliary propositions.

6.1. The Itô formula. Let Z = �Z�t��t≥0 be a semimartingale, Z�t� ∈
�N�Z�t� = m�t� + A�t�� where m = �m1� � � � �mN�′ is a local martingale,
A = �A1� � � � �AN�′ is a process of finite variation on all compacts on the
line. All processes are continuous on the right having left-side limits. Let
F � �N → �1 be a function, F ∈ C2��N�� Then

F�Z�t�� = F�Z�0�� +
∫ t

0

(∇zF�Z�s−��� dm�s�)+
∫ t

0

(∇zF�Z�s−��� dA�s�)
+ 1

2

∫ t
0 r�∇z∇zF�Z�s−��Bc�s��d < mc�mc > �s�

+ ∑
0<s≤t

�F�Z�s�� − F�Z�s−�� − (∇zF�Z�s−��� &Z�s�)� a.s.,

where Z�t−� denotes the limit of Z on the left at the time t�∇z = � ∂
∂z1

� � � � � ∂
∂zN

�′�
�x�y� is a scalar product of vectors x�y� mc is the continuous component of
the martingale m� and

Bc =
(
dmc

i�m
c
j�

dmc�mc�

)
1≤i�j≤N

� mc�mc� =
N∑
i=1

mc
i�m

c
i��

The proof of this formula can be found, for example, in Meyer (1975).

Lemma 1. Let B be a p × p matrix and W be a p × 1 non-zero vector of
real numbers. If the matrix A = B + WW′ is non-singular, then

W′A−1W = �� A � − � B ��/ � A ��

where � A � is the determinant of A�

This result is given (without proof) in Lemma 2 in the work of Lai and Wei
(1982). For the sake of convenience, we reproduce the proof.

Proof. We need the following equality:

�I − xy′� = 1 − y′x�

where I is the p × p identity matrix, x and y are p × 1 vectors. To verify
this equality in the case when vectors x�y are non-zero, it suffices to notice
that λ = 1 is the eigenvalue of the matrix I − xy′ with multiplicity p − 1
and λ = 1 − y′x is its eigenvalue with multiplicity one corresponding to the
eigenvector x. The desired result easily follows from the equality

� B �=� A − WW′ �=� A �� I − A−1WW′ �=� A � �1 − W′A−1W�� ✷
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Lemma 2. Let B be a p × p matrix and � be a p × p symmetric non-
negative definite non-zero matrix of real numbers. If the matrix A = B + � is
non singular and rank� = r� then

tr�A−1�� =
r∑

i=1

�� A � − � A − λieie
′
i ��/ � A ��

where �λi� and �ei� are the eigenvalues and the eigenvectors of matrix � re-
spectively. If, besides, B is symmetric non-negative definite, then

tr�A−1�� ≤ r�� A � − � B ��/ � A �≤ r�

Proof. The matrix � can be written as

� =
r∑

i=1

λieie
′
i�

Therefore

tr�A−1�� =
r∑

i=1

λitrA
−1eie

′
i =

r∑
i=1

λie
′
i

(
B +

r∑
j=1

λjeje
′
j

)−1

ei�

By applying Lemma 1 we obtain

r�A−1�� =
r∑

i=1

�� A � − � A − λieie
′
i ��/ � A � �

It remains to notice that � A − λieie
′
i �≥� B �� i = 1�2� � � � r� if B is symmetric

non-negative definite. Hence Lemma 2. ✷

Lemma 3. Let the regressor matrix � in �2�1� and the weight matrix W
satisfy conditions (A1), (A3) and T be defined as in �5�2�.

Then for any t ≥ T

tr

(∫ t

T
-′�u�M̃−1�u�-�u�dac�u�

)
=
∫ t

T

d � M̃�u� �
� M̃�u� �

a.s.,(6.1)

where

M̃�t� = M�T� + ∫ t
T --′�u�dac�u��

-�t� = �W1/2�t��
(6.2)

Proof. First we verify that the integral in the left-hand side of equality
(6.1) is well-defined, that is, for all t ≥ T,∫ t

T
�-′�u�M̃−1�u�-�u��dac�u� < ∞ a.s.(6.3)

By the inequality

�-′�u�M̃−1�u�-�u�� ≤ �-′-�u��tr�M̃−1�u��
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we have∫ t

T
�-′�u�M̃−1�u�-�u��dac�u� ≤

∫ t

T
tr�M̃−1�u���-�u��2dac�u�

≤ p
∫ t

T
λmax�M̃−1�u��tr�--′�u��dac�u�

≤ pλ−1
min�M�T��

∫ t

T
tr�-′-�u��da�u��

In view of condition (A3), we obtain (6.3).
Equality (6.1) is equivalent to the one for the differentials:

d � M̃�u� �
� M̃�u� �

= tr�-′�u�M̃−1�u�-�u��dac�u��

Let us find d � M̃�u� � � By the definition of a determinant we have

� M̃�t� �= ∑
�i1�����ip�

�−1��i1�����ip�M̃�i1�1�t� · · · M̃�ip�p�t��

where M̃�ik�t� is the �i� k�th element of the matrix M̃�t� and the summation
is taken over all permutations �i1� � � � � ip� of numbers 1� � � � � p� and �i1� � � � � ip�
denotes the number of inversions in a permutation �i1� � � � � ip��

Since the matrix-valued process M̃�t� is continuous with bounded variation
then by the Itô formula we obtain

d
p∏
l=1

M̃�il�l�t� =
p∑

k=1

 p∏
l=1
l�=k

M̃�il�l�t�

dM̃�ik�k�t�

and, hence,

d � M̃�t� �=
p∑

k=1

∑
�i1�����ip�

�−1��i1�����ip�

 p∏
l=1
l�=k

M̃�il�l�t�

dM̃�ik�k�t��

By (6.2)

dM̃�ik�t� =< --′ >ik �t�dac�t�

and therefore

d � M̃�t� �=
p∑

k=1

� M̃�k��t� � dac�t��
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where � M̃�k��t� � is the determinant which is obtained from M̃ by replacing
the kth column by the column-vector �--′�1k� � � � � --′�pk�′. Decomposing

the determinant � M̃�k��t� � by the elements of kth column yields

� M̃�k��t� �=
p∑
i=1

M̃ik�t�--′�ik�t��

where M̃ik�t� is the algebraic adjoint for the element M̃�ik�t� of the matrix
M̃�t�� Thus

d � M̃�t� �=
p∑

k=1

p∑
i=1

M̃ik�t�--′�ik�t�dac�t��

From here it follows that
d � M̃�t� �
� M̃�t� �

= tr�-′�t�M̃−1�t�-�t��dac�t�� ✷

Remark 8. A result similar to Lemma 3 is given in the paper of
Christopeit [(1986), Lemma 3] under weaker assumption that the matrix-
valued process M̃�t� is continuous on the left. However, by applying the Itô
formula to the determinant � M̃�t� � one can easily make sure that the for-
mula (6.1) is not true if the process M̃�t� admits jumps. Note that for this
reason (and also because of a mistake in the proof) the corollary to the above-
mentioned Lemma 3 does not hold without stronger assumptions. It worth
noting that the above-given Itô formula is obtained for processes continuous
on the right. For processes continuous on the left the Itô formula is also true
[see Galtchouk (1980)].

Lemma 4. Under assumptions (A1) and (A3) the following inequalities are
satisfied�

ln
� M�t� �
� M�T� � ≤

∫ t

T

d � M�u� �
� M�u−� �

= ln
� M�t� �
� M�T� � + ∑

T<s≤t

[
& � M�s� �
� M�s−� � − ln

(
1 + & � M�s� �

� M�s−� �
)]

a.s.

If M�t� is a continuous matrix-valued process, then

ln
� M�t� �
� M�T� � =

∫ t

T

d � M�u� �
� M�u� � �

Proof. By applying the Itô formula to the process ln � M�t� �� t ≥ T� we
obtain

ln � M�t� � = ln � M�T� � +
∫ t

T

d � M�u� �
� M�u−� �

+ ∑
T<s≤t

[
ln

� M�s� �
� M�s−� � − & � M�s� �

� M�s−� �
]

a�s�
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From here using the inequality ln�1 + x� ≤ x� x ≥ 0, we come to the desired
result. ✷

Lemma 5. Under assumptions (A1), (A3) and (A4),

tr
∫ t

T
-′�u�M−1�u�-�u�da�u� = O�lnλmax�M�t���� t → ∞ a.s.,(6.4)

lim
t→∞

r
∫ t

T
-′�u�M−1�u�-�u�da�u� = +∞ a.s.,(6.5)

where f�t� = O�g�t��� t → ∞� means that there exist t0 > T and 0 < C < ∞
such that � f�t� �≤ C � g�t� � for all t ≥ t0�

Proof. We have

tr
∫ t

T
-′�u�M−1�u�-�u�da�u� = tr

∫ t

T
-′�u�M−1�u−�-�u�dac�u�

+tr
∑

T<u≤t
-′�u�M−1�u�-�u�&a�u��(6.6)

Let us introduce the process

M̃�t� = M�T� +
∫ t

T
-�u�-′�u�dac�u��

This process is continuous and satisfies the inequality M̃�t� ≤ M�t� which
implies M−1�t� ≤ M̃−1�t�� From this and Lemmas 3 and 4 it follows that for
all t ≥ T,

tr
∫ t

T
-′�u�M−1�u−�-�u�dac�u� ≤ tr

∫ t

T
-′�u�M̃−1�u�-�u�dac�u�

=
∫ t

T

d � M̃�u� �
� M̃�u� �

= ln
� M̃�t� �
� M̃�T� �

≤ ln
� M�t� �
� M�T� � �

(6.7)

Now we find the upper bound for the second addend in the right-hand side of
�6�6�� Denoting

M̂�t� = M�T� + ∑
T<u≤t

-�u�-′�u�&a�u�

and applying Lemma 2, we obtain
tr

∑
T<u≤t

-′�u�M−1�u�-�u�&a�u���

≤ tr
∑

T<s≤t
-′�u�M̂−1�u�-�u�&a�u�

≤ p
∑

T<s≤t
�� M̂�s� � − � M̂�s−� ��/ � M̂�s� �

≤ p
∑

T<s≤t

∫ �M̂�s��

�M̂�s−��
dx

x

≤ p
∫ �M̂�t��

�M̂�T��
dx

x
= p ln

� M̂�t� �
� M̂�T� �

≤ p ln
� M�t� �
� M�T� � �
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Substituting this estimate and (6.7) in (6.6) yields

tr
∫ t

T
-′�u�M−1�u�-�u�da�u� ≤ �p + 1� ln

� M�t� �
� M�T� � ≤ p�p + 1� ln

λmax�M�t��
� M�T� � �

From this in view of condition (A4) we obtain (6.4).
Now we verify (6.5). The integrand in (6.5) can be estimated from below by

tr�-′�u�M−1�u�-�u�� ≥ λmax�-′�u�M−1�u�-�u��

≥ λmin�M−1�u�� sup
z�=0

‖-�u�z‖2

‖z‖2

≥ Cλ−1
max�M�u��‖-�u�‖2

≥ C‖-�u�‖2/trM�u� = C‖-�u�‖2/V�u��
where

V�u� =
∫ u

0
‖-�s�‖2da�s��

and C is some positive constant. Hence,

lim
t→∞

tr
∫ t

T
-′�u�M−1�u�-�u�da�u�≥C lim

t→∞

∫ t

T

‖-�u�‖2da�u�
V�u� =C lim

t→∞

∫ t

T

dV�u�
V�u� �

Assume that (6.5) is not true. Then with positive probability∫ ∞

T

dV�u�
V�u� < ∞�

From here it follows that

lim
t→∞

V�t−�
V�t� = 1�

and there exists such T1 > T that for all t ≥ T1

V�t−�/V�t� ≥ 1/2�

By making use of this inequality and Lemma 4 we obtain

+∞ > lim
t→∞

∫ t

T

dV�u�
V�u� ≥ lim

t→∞

∫ t

T1

dV�u�
V�u−�

V�u−�
V�u�

≥ 2−1 lim
t→∞

∫ t

T1

dV�u�
V�u−� ≥ 2−1 lim

t→∞
ln

V�t�
V�T1�

�

Thus, with positive probability,

lim
t→∞

lnλmin�M�t�� ≤ lim
t→∞

ln r�M�t�� = lim
t→∞

lnV�t� < +∞�

This contradicts to the condition (A4). ✷
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Lemma 6. Under the assumptions (A1)–(A5) the function Q�τj� in �5�6� sat-
isfies the inequality

EQ�τj� ≤ Cj + p� j ≥ 1�

where the sequence �Cj�j≥1 is the same as in �5�3�.

Proof. Let us introduce the processes

Y�t� = (
y1�t�� � � � � yp�t�)′ =

∫ t

0
-W1/2�s�dm�s��

Z�t� = (
Y′�t��U′

1�t�� � � � �U′
p�t�)′�

F�Z�t�� = Y′�t�M−1�t�Y�t��
(6.8)

where Ui�t� is the ith column of the matrix M−1�t�� Note that Z�t� is a �p+
1�p × 1-dimensional vector semimartingale. In this notation we have

Q�τj� = F�Z�τj���(6.9)

Let us calculate the stochastic differential of the process F�Z� by applying
the Itô formula. The process F�Z�t�� can be written as

F�Z�t�� = Y′�t��U1 � � �Up�Y�t�
= (

Y′�t�U1�t�� � � � �Y′�t�Up�t�)Y�t�

=
p∑
i=1

Y′�t�Ui�t�yi�t��
(6.10)

For the function F � �d → �1� d = p�p+1� and the semimartingale Z defined
by (6.8), the Itô formula has the form

F�Z�t�� = F�Z�T�� +
∫ t

T

(∇yF�Z�s−��� dY�s�)
+
∫ t

T

p∑
i=1

(∇ui
F�Z�s−��� dUi�s�

)
+2−1

∫ t

T
tr�∇y∇yF�Z�s−��-W1/2BcW1/2-′�s��
×d < mc�mc > �s�

+ ∑
T<s≤t

�F�Z�s�� − F�Z�s−�� − (∇zF�Z�s−��� &Z�s�)��
(6.11)

where ∇y = � ∂
∂y1

� � � � � ∂
∂yp

�′� �x�y� = y′x is a scalar product of vectors x�y. By
(6.10) we obtain

∂F

∂yk

=
p∑
i=1

∂

∂yk

�Y′�t�Ui�t��yi�t� +
p∑
i=1

Y′�t�Ui�t�δik

=
p∑
i=1

uik�t�yi�t� + Y′�t�Uk�t��
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where Ui�t� = �ui1�t�� � � � � uip�t��′� Therefore

∇yF�Z�t��
=

p∑
i=1

�ui1�t�� � � � � uip�t��′yi�t� + (
Y′�t�U1�t�� � � � �Y′�t�Up�t�)′

=
p∑
i=1

Ui�t�yi�t� + M−1Y�t� = 2M−1Y�t��
(6.12)

Further we have

∇uk
F�Z�t�� =

p∑
i=1

�∇uk
Y′�t�Ui�t��yi�t� =

p∑
i=1

Y�t�δikyi�t� = Y�t�yk�t��

∇y∇yF =
(

∂2F

∂yk∂yj

)
1≤k�j≤p

�

∂2F�Z�t��
∂yk∂yj

= ∂

∂yj

∂F�Z�t��
∂yk

= ∂

∂yj

[
p∑
i=1

uik�t�yi�t� + Y′�t�Uk�t�
]

=
p∑
i=1

uik�t�δij + ukj�t� = 2ukj�t��

(6.13)

Thus

∇y∇yF = 2M−1�t��
From this and (6.11)–(6.13), it follows that

F�Z�t�� = F�Z�T�� + 2µt + I1�t� + I2�t� + I3�t��(6.14)

where

µt =
∫ t

T

(
M−1Y�s−�� dY�s�)

=
∫ t

T

(
M−1Y�s−��-�s�W1/2�s�dm�s�)�

I1�t� =
p∑
i=1

∫ t

T
�yi�s−�(Y�s−�� dUi�s�

)
�

I2�t� =
∫ t

T
tr�M−1�s−�-W1/2BcW1/2-′�s��d < mc�mc > �s��

I3�t� = ∑
T<s≤t

�F�Z�s�� − F�Z�s−�� − 2Y′�s−�M−1�s−�&Y�s�

−Y′�s−�&M−1�s�Y�s−���

(6.15)

In order to study I1 in (6.15) we need to find the differential for M−1�t�� We
have

M−1�t� =
[∫ t

0
--′�s�da�s�

]−1

� dM�t� = --′�t�da�t�
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and

MM−1�t� = I�

where I is the identity matrix. From here by the Itô formula

d�MM−1�t�� = �dM�t��M−1�t� + M�t−�dM−1�t� = 0

and, hence,

dM−1�t�=−M−1�t−��dM�t��M−1�t�=−M−1�t−�--′�t�M−1�t�da�t��(6.16)

By (6.15) and (6.16),

I1 =
p∑
i=1

p∑
k=1

∫ t

T
yi�s−�yk�s−�d < M−1 >ik �s�

=
∫ t

T
Y′�s−�d�M−1�s��Y�s−�

= −
∫ t

T
Y′�s−�M−1�s−�-�s�-′�s�M−1�s�Y�s−�dac�s�

+ ∑
T<s≤t

Y′�s−�&M−1�s�Y�s��

(6.17)

Due to the continuity of the process ac the matrix M−1�s� can be changed to
M−1�s−� in the last integral. The matrix M−1�s� is non-increasing because
the matrix M�s� is non-decreasing. Therefore the matrix &M−1�s� ≤ 0� and
the right-hand side of (6.17) is non-positive. Thus

I1�t� ≤ 0 a.s. for all t ≥ T�

Consider the term I3�t� in (6.14). We have

I3�t� = ∑
T<s≤t

�Y′�s�M−1�s�Y�s� − Y′�s−�M−1�s−�Y�s−�

−2Y′�s−�M−1�s−�&Y�s� − Y′�s−�&M−1�s�Y�s−��
= ∑

T<s≤t
�2Y′�s−�&M−1�s�&Y�s�

+&Y′�s�M−1�s−�&Y�s� + &Y′�s�&M−1�s�&Y�s��
= ∑

T<s≤t
�&Y′�s�M−1�s�&Y�s� + 2νt��

where

νt = ∑
T<s≤t

�Y′�s−�&M−1�s�&Y�s���(6.18)

From (6.14), (6.15), (6.17) and (6.18), it follows that

F�Z�t�� ≤ F�Z�T��

+
∫ t

T
tr�M−1�s−�-W1/2BcW1/2-′�s��d < mc�mc > �s�

+A�t� + 2µ�t� + 2ν�t� + δ�t��
(6.19)
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where

δ�t� = ∑
T<s≤t

&Y′�s�M−1�s�&Y�s� − A�t��

δ�t� is a local martingale, and A�t� is the increasing predictable process in the
Doob-Meyer decomposition of the submartingale

∑
T<s≤t &Y′�s�M−1�s�&Y�s�:

A�t� =
∫ t

T
tr�W1/2-′M−1-W1/2Bd�s��d < md�md > �s��

=
∫ t

T
tr�M−1-W1/2BdW1/2-′�s��d < md�md > �s��

The process A�t� is well-defined, because by conditions (A2) and (A3) we have

A�t� ≤
∫ t

T
tr�M−1--′�s��d < md�md > �s�

≤
∫ t

T
tr�M−1�s�-�s�-′�s��da�s� ≤ �trM�T��−1

∫ t

T
‖-�s�-′�s�‖da�s� < ∞

for all t ≥ T�
Let us verify that the processes µ� ν in (6.19) are locally square integrable

martingales. Their predictable quadratic variations are given by the formulae

µ�µ��t� =
∫ t

T
Y′�s−�M−1�s−�-�s�

×W1/2�s�B�s�W1/2�s�-′�s�M−1�s−�Y�s−�da�s��

ν� ν��t� =
∫ t

T
�Y′�s−�&M−1�s�-�s�W1/2�s�Bd�s�

×W1/2�s�-′�s�&M−1�s�Y�s−�dmd�md��s���
By condition (A2) and the Cauchy-Schwarz inequality,

ν� ν��t� ≤
∫ t

T
Y′�s−�&M−1�s�-�s�-′�s�&M−1�s�Y�s−�da�s�

=
∫ t

T

(
Y′�s−�&M−1�s�-�s�)2da�s�

≤
∫ t

T
‖&M−1/2�s�Y�s−�‖2‖&M−1/2�s�-�s�‖2da�s�

≤ �trM−1�T��2
∫ t

T
‖Y�s−�‖2‖-�s�-′�s�‖da�s� < ∞ a.s.

for all t ≥ T due to condition (A3) and the continuity of process �Y�t−��t≥T on
the left. In a similar way one can verify that µ�µ��t� < ∞ a.s. for all t ≥ T�

For each k > 0 we introduce the stopping time σk as

σk = inf�t > T � A�t� + µ�µ��t� + ν� ν��t� ≥ k��
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The stopping times σk are predictable and σk ↑ ∞ a.s. as k → ∞. There exist
stopping times σ ′

k such that

A�σ ′
k� + µ�µ��σ ′

k� + ν� ν��σ ′
k� ≤ k� σ ′

k ↑ ∞
a.s. as k → ∞ [see Dellacherie (1972)]. Then from (6.19) and condition (A2)
we obtain, for k > 0,

EF�Z�t ∧ σ ′
k��

≤ E
[
F�Z�T�� +

∫ t∧σ ′
k

T
tr�M−1�s−�-W1/2BcW1/2-′�s��dmc�mc��s�

+
∫ t∧σ ′

k

T
tr�M−1�s�-�s�W1/2�s�Bd�s�W1/2�s�-′�s��dmd�md��s�

]
≤ E

[
F�Z�T�� +

∫ t∧σ ′
k

T
tr�M−1�s−�-�s�-′�s��dmc�mc��s�

+
∫ t∧σ ′

k

T
tr�M−1�s�-�s�-′�s��dmd�md��s�

]
�

Letting t = τj� taking the limit as k to +∞ and applying the monotone con-
vergence theorem, we obtain

EQ�τj� = E�Y′�τj�M−1�τj�Y�τj��

≤ E
[
Y′�T�M−1�T�Y�T�

+
∫ τj

T
tr�M−1�s−�-�s�-′�s��dmc�mc��s�

+
∫ τj

T
tr�M−1�s�-�s�-′�s��dmd�md��s�

]
�

Hence

EQ�τj� ≤ E
(
Y′M−1Y�T� +

∫ τj

T
tr�M−1�s�-�s�-′�s��da�s�)�

Now we can estimate EQ�τj�� We have

EQ�τj� ≤ E
[
Y′M−1Y�T� +

∫
�T�τj�

tr�-′�s�M−1�s�-�s��da�s�

+tr�-′�τj�M−1�τj�-�τj��&a�τj�
]
�

(6.20)

By the definition of stopping time T in (5.2) and condition (A2),

EY′�T�M−1�T�Y�T� ≤ Eλmax�M−1�T��Y′�T�Y�T�
= Eλ−1

min�M�T���Y�T��2

≤ C−1
0 E

∫ T

0
�-�s��2da�s��
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Combining this inequality and �6�20� yields

EQ�τj� ≤ E

(
C−1

0

∫ T

0
�-�s��2da�s�

+
∫
�T�τj�

tr�-′�s�M−1�s�-�s��da�s�

+tr�-′�τj�M−1�τj�-�τj��&a�τj�
)

≤ Cj + E
(
tr�M−1�τj�-�τj�-′�τj��&a�τj�

)
�

(6.21)

By Lemma 2,

tr�M−1�τj�-�τj�-′�τj�&a�τj��
≤ r�� M�τj� � − � M�τj� − -�τj�-′�τj�&a�τj� ��/�� M�τj� ��
≤ r ≤ p�

where r is the rank of the matrix -�τj�-′�τj�� By substituting this estimate
in �6�21�� we come to the assertion of Lemma 6. ✷
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