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WEAK CONVERGENCE OF THE EMPIRICAL PROCESS
OF RESIDUALS IN LINEAR MODELS WITH

MANY PARAMETERS

By Gemai Chen and Richard A. Lockhart

University of Manitoba and Simon Fraser University

When fitting, by least squares, a linear model (with an intercept term)
with p parameters to n data points, the asymptotic behavior of the residual
empirical process is shown to be the same as in the single sample problem
provided p3 log2�p�/n → 0 for any error density having finite variance
and a bounded first derivative. No further conditions are imposed on the
sequence of design matrices. The result is extended to more general esti-
mates with the property that the average error and average squared error
in the fitted values are on the same order as for least squares.

1. Introduction. Let Y be a random vector satisfying the linear model

Y = Xβ+ σε	

where X = �xij� is a known n × q matrix of constants, β = �β1	 � � � 	 βq�′
are unknown regression parameters, σ is an unknown positive constant, ε =
�ε1	 � � � 	 εn�′ are iid random variables from a distribution F with mean 0 and
variance 1; superscript ′ denotes transpose. We use xi to denote the ith row
of X. Let p denote the rank of X and put µ = Xβ.
For estimates β̂ and σ̂ we define fitted residuals by ε̃ = Y−Xβ̂. The stan-

dardized fitted residuals are ε̂ = ε̃/σ̂ . The empirical process of fitted residuals
is, for t ∈ �0	1
,

Z̃�t� = 1√
n

∑�1�F�ε̃i/σ� ≤ t� − t
	

while that of the standardized fitted residuals is

Ẑ�t� = 1√
n

∑�1�F�ε̂i� ≤ t� − t
�

Throughout this paper the quantitiesX, p, q, β and σ among others depend
on n; wherever possible the dependence of quantities on n is suppressed. All
limits are taken as n → ∞. Probability calculations are made for true param-
eter values σo and βo; except to state assumptions we assume for notational
simplicity σo = 1, βo = 0 and µo = Xβo = 0.
We analyze Z̃ using the process

Z�t	 β� = n−1/2∑�1�F�Yi − xiβ� ≤ t� − t
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which we decompose as

Z�t	 β� = Z1�t� + n−1/2∑xiβJ�t� +R�t	 β�	
where

Z1�t� = n−1/2∑�1�F�εi� ≤ t� − t

and J�t� = f�F−1�t�� with f the density of F. For fixed p, under assumptions
on F similar to those used below and under some conditions onX, Koul (1969)
showed essentially that

sup��R�t	 β��� 0 ≤ t ≤ 1	 �β� ≤ C� → 0

in probability for each fixed C < ∞; see also Koul (1984). An important con-
dition imposed by Koul and most later workers is that X has full rank p = q
and that

max�Hii� 1 ≤ i ≤ n� → 0	(1.1)

where H = X�X′X�−1X′ is the usual hat matrix.
Mukantseva (1977) showed that for normal errors, least squares estimates,

designs with an intercept, and p fixed we have

sup��Z̃�t� −Z1�t� − n−1/2∑xiβ̂J�t��� 0 ≤ t ≤ 1� → 0

in probability and that

Z1�t� +
(
n−1/2∑xiβ̂

)
J�t�

converges weakly in D�0	1
 to a mean 0 Gaussian process with covariance
function

ρ�s	 t� = min�s	 t� − st−J�s�J�t��(1.2)

The same weak limit arises when theN�θ	1� model is fitted to an iid sample.
Loynes (1980) fits more general regression models with p fixed. Portnoy

(1986) has results for the case where p may grow with n in such a way that
lim supp2/n < ∞. Since this condition is weaker than our condition N we
discuss Portnoy’s results in more detail.
Portnoy shows that when p2/n → 0, the remainder process R�t	 β̂� con-

verges pointwise in t to 0 in probability for many M-estimates, β̂, under a
variety of conditions on the design matrix, moment conditions, and conditions
on the derivatives of f. His conditions, which include (1.1), are strong enough
to prove

max��xiβ̂�� 1 ≤ i ≤ n� → 0�(1.3)

Portnoy gives a weak convergence result which uses (1.3) to prove tightness.
However his argument has a gap. The problem arises in Portnoy’s (3.18) where
he bounds

n−1/2∑[
1�εi − xiβ̂ ≤ x+ δ� − 1�εi − xiβ̂ ≤ x�]�
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It appears that the bound in Portnoy’s (3.18) is supposed to be small; in fact it
is OP�δn1/2�. The quantities in question are not increments of the empirical
process, as seems to be intended, because they are not centered by their expec-
tations. In Section 3 below we give a sequence of estimates β̂ and designs [with
p3 = O�n�] satisfying (1.3) but for which R�1/2	 β̂� does not go to 0. Though
we do not present the somewhat lengthy details, a small generalization of the
example can be constructed for which (1.3) holds, p3 = O�n�, R�t	 β̂� → 0 in
probability for each fixed t and yet the conclusion of Theorem 1 below fails. The
example is an ANOVA design. The work of Portnoy (1984) makes clear that
different rates of convergence may be expected in regression designs where
the xi behave like a random sample from a suitable distribution in Rp.
Mammen (1996) establishes expansions more general than ours which apply

uniformly for t in compact subsets of �0	1� (not enough to get convergence
in distribution for standard goodness-of-fit statistics such as Kolmogorov–
Smirnov) and under various restrictions on the estimates β̂. These restric-
tions permit Mammen to give expansions when p2/n = o�n1/5� which agree
with ours provided p2/n = o�1�. Our results extend those of Mammen by
lowering moment conditions, dealing with all of �0	1
, and eliminating (1.1)
at the cost of requiring a slower rate of growth for p. Mammen imposes a
reasonable restriction on the estimators considered which requires that the
estimate be nearly independent of those observations withinO�n−1/2� of a par-
ticular point x. Our counterexample in Section 3 shows that such a restriction
is necessary. We have not investigated the question of trying to combine our
approach with Mammen’s to improve our restriction on the rate of growth of p.
In Section 2 we establish under conditions on F and on the average error

and squared error in the fitted values that R�t	 β̂� converges to 0 uniformly
in t in probability. For least squares estimates the conditions on the average
error and squared error are automatic under the growth condition

�NLS�
p3 log2�p�

n
→ 0

with no further conditions on the design.
For more general estimators we achieve the same result, that R�t	 β̂� con-

verges to 0 uniformly in t in probability, under a growth condition (see N
below) which trades possibly slower growth of p (than in condition NLS) for
larger average squared error in the fitted values. In particular, it should be
noted that we do not require (1.3); we do not need the condition, (1.1), that the
largest leverage tends to 0 and we do not require the estimates β̂ to be con-
sistent except in the average sense of E1 and E2 below. The result is deduced
from Lemma 2.1 which asserts that the remainder process R�t	 β� converges
to 0 uniformly in t ∈ �0	1
 and β in a set to which any reasonable estimate β̂
is likely to belong. The convergence is almost sure.
Also in Section 2 we give conditions under which Z̃ has a Gaussian weak

limit. For least squares estimates and designs with an intercept term, no
further condition on the sequence of designs is necessary. For designs without
an intercept term but with normal errors no further condition on the sequence
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of designs is necessary. For designs without an intercept term and nonnormal
errors, a negligibility condition is required to get Gaussian weak limits.
In Section 3 we show that our growth condition is nearly the right rate in

the sense that there is a sequence of designs and estimators satisfying our
average error and squared error conditions and having p3/n → c < ∞ but for
which R�1/2	 β̂� has a positive limit.
Section 4 records briefly the standard deduction of the behavior of Ẑ from

that of Z̃ via a time transformation argument. We focus on the special case of
least squares estimates. We also record a result to the effect that in the case of
normal errors and least squares estimation, a weak convergence result for Z̃
must imply a corresponding result for Ẑ, provided lim supp/n < 1.
Section 5 contains proofs.

2. General distributions. We impose conditions on the error distribu-
tion, F, on the estimators β̂ and on the rate of growth of p. Concerning F we
assume the following:

(F1) The distribution F is strictly increasing on its support, an interval �a	 b

where a = −∞ and b = ∞ are permitted. It has density f with derivative
f′ such that both f and �f′� are bounded on �−∞	∞� by some constant
Mf.

Note that F1 implies that the function J�t� = f�F−1�t�� has a version
which is continuous on �0	1
.
To get Gaussian weak limits for least squares estimates we will also need

(F2) The distribution F has mean 0 and variance 1.

Notice that Z̃ depends on the estimate β̂ only through the vector µ̂ = Xβ̂
of fitted values. We will assume that the average error and average squared
error in these fitted values are not too large; letting 1 denote a column vector
with all entries equal to 1 we need

(E1) n−1/2∑xi�β̂− βo� = n−1/21′X
(
β̂− βo

) = n−1/21′
(
µ̂− µo

) = OP�1�
and

(E2) For a deterministic sequence dn ≥ 1,(
µ̂− µo

)′(
µ̂− µo

) = (
β̂− βo

)′
X′X

(
β̂− βo

) = OP�dn��
For least squares estimates with a full rank design matrix X, E1 is auto-

matic since the quantity in question has mean 0 and variance n−11′H1 ≤ 1
where H is the hat matrix H = X�X′X�−1X′. If X does not have full rank
then the least squares estimate β̂ is not uniquely defined. There is, however, a
unique µ̂ in the column space of X minimizing �Y−µ�′�Y−µ�. For any β̂ for
which µ̂ = Xβ̂ we see that E1 holds since Var�n−1/21′�µ̂−µo�� = n−11′H1 ≤ 1
where now H = X�X′X�−X′ and �X′X�− is a generalized inverse of X′X;
see Rao [(1973), page 26]. Condition E2 holds for least squares estimates with
dn = p since the expectation of the positive quantity involved is simply p.
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Finally our condition on the number of parameters is

(N)
p2dn log

2�pdn�
n

→ 0 and
d2n
n

→ 0�

Theorem 1. Assume conditions F1, E1, E2 and N. Then

sup��Z̃�t� −Z1�t� − n−1/21′µ̂J�t��� 0 ≤ t ≤ 1� = oP�1��

Note that conditions E1 and E2 replace all moment conditions and that, in
particular, F2 is not needed. To prove the theorem we write

R�t	 β� = R�1��t	 β� +R�2��t	 β�	
where

R�1��t	 β� = n−1/2∑[
F�F−1�t� + xiβ� − t− xiβJ�t�]

and

R�2��t	 β� = n−1/2∑Ri�t	 β�
with

Ri�t	 β� = 1�F�εi� ≤ F�F−1�t� + xiβ�
 − 1�F�εi� ≤ t� −F�F−1�t� + xiβ� + t�

The theorem is an easy consequence of the following lemma.

Lemma 1. Assume condition F1. Then for any sequence ηn → 0,

sup��R�1��t	 β��� 0 ≤ t ≤ 1	 β′�X′X�β ≤ ηnn
1/2� → 0

almost surely. If, in addition, N holds then

sup��R�2��t	 β��� 0 ≤ t ≤ 1	 β ∈ DL� → 0(2.1)

and

sup��Z�t	 β� −Z1�t� − n−1/21′XβJ�t��� 0 ≤ t ≤ 1	 β ∈ DL� → 0(2.2)

almost surely for each L where

DL = �β� β′�X′X�β ≤ Ldn	 �n−1/21′Xβ� ≤ L��

To get a weak convergence result for a given sequence of estimators we
need to verify E1 and E2 and then check convergence of finite-dimensional
distributions for �Z1	 n−1/21′µ̂�. In the next subsection we do this for least
squares estimates identifying all possible limit laws and characterizing those
situations where the weak limit is Gaussian. For more general estimators we
note, as an example, that Portnoy (1985) gives conditions under which anM-
estimate β̂, defined as a root of

∑
xiψ�Yi−xiβ� for suitable ψ, satisfies both E1

(see Portnoy’s Theorem 3.1) and E2 with dn = p (see Portnoy’s Theorem 3.2
and his discussion of his condition X1). Put a = n−1/2H1 and ν = E�ψ′�ε��.
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Under Portnoy’s conditions,

n−1/21′µ̂ = ∑
aiψ�εi�/ν + oP�1�(2.3)

and

max��ai�� 1 ≤ i ≤ n� → 0�(2.4)

[An application of the Cauchy–Schwarz inequality shows that (1.1)
implies (2.4); the converse is false so (2.4) is weaker.] Portnoy’s assumptions
give E�ψ�ε�� = 0 and Var�ψ�ε�� = τ2 < ∞; the Lindeberg central limit theo-
rem then shows that Z̃ is approximately Gaussian. To state the result let ,
be a metric for which the set of distributions on D�0	1
 is a complete separa-
ble metric space. Let � �Z� denote the law of a process Z in D�0	1
. Define
c = cn = a′a. Put m�s� = E�ψ�ε�1�F�ε� ≤ s�
. For 0 ≤ γ ≤ 1 let W̃γ	 ν	 τ be a
mean 0 Gaussian process with covariance

ρ̃γ	 ν	 τ�s	 t� = min�s	 t� − st+ γ�m�s�J�t�/ν +m�t�J�s�/ν + τ2J�s�J�t�/ν2��

Corollary 1. Assume F1 and N. Assume that β̂ is an M-estimate with
E�ψ�ε�� = 0 and Var�ψ�ε�� = τ2 < ∞. Let ν = E�ψ′�ε�� and assume E2 and

that (2.3) and (2.4) hold. Then ,�� �Z̃�	� �W̃c	 ν	 τ�� → 0. If 1 is in the column

space of X then Z̃ ⇒ W̃1	 ν	 τ in D�0	1
.

When ψ is the score function f′/f we havem�s� = J�s� and, under standard
regularity conditions, ν = −τ2. In this case ρ̃ simplifies to min�s	 t� − st −
γJ�s�J�t�/τ2.
The conditions in Portnoy (1985) are rather stronger than those labelled F

and impose a number of conditions on the sequence of design matrices. In
our context we need far less than the conclusions of Portnoy’s Theorems 3.2
and 3.3; it seems likely to us that Portnoy’s work can be followed to estab-
lish E1, E2, and representation (2.3) under weaker conditions. However, for
least squares estimates we can proceed directly and obtain the conclusions of
Corollary 1.

2.1. Least squares. For least squares estimates the conclusion is that of
the previous result with m�s� = ∫

1�F�y� ≤ s�yf�y�dy, τ = σ = 1 and ν = 1.
Let W̃γ	LS be a mean 0 Gaussian process with covariance

ρ̃γ	LS�s	 t� = min�s	 t� − st+ γ�m�s�J�t� +m�t�J�s� +J�s�J�t���

Corollary 2. Assume that µ̂ is the least squares estimate. Assume F1,
F2, and NLS. Then the family � �Z̃� is tight. If F is standard normal or (2.4)

holds then ,�� �Z̃�	� �W̃c	LS�� → 0. If 1 is in the column space of X then

Z̃ ⇒ W̃1	LS.
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When (2.4) fails we can describe the set of possible weak limit points of
� �Z̃�. Let W̃∗

γ	 ζ be a mean 0 Gaussian process with covariance ρ̃∗�s	 t� =
min�s	 t� − st+ �γ − ζ�J�s�J�t� + γ�m�s�J�t� +m�t�J�s�� with γ ∈ �0	1
. Let
V independent of W∗

γ be distributed as
∑
αiεi for a set of constants αi with∑

α2i = ζ ≤ γ. Then any weak limit of Z̃ has the distribution of W̃∗
γ	 ζ�t�+VJ�t�

for some �γ	 ζ�. Note that the assertion of the corollary for normal errors is a
special case of this assertion since V would then be N�0	 ζ�.
On the other hand, suppose F is not normal and (2.4) is not satisfied. Let

�a�1�� ≥ �a�2�� > · · · denote the entries in ai sorted in order of decreasing
absolute value. By a diagonalization argument we can pick a subsequence
along which a�1� → α1, a�2� → α2 and so on with α1 �= 0. Along this subse-
quence � �Z̃� converges weakly to W∗

γ�t� + VJ�t�. If F is not normal then
V is not Gaussian. To get a precise example, take p = 1 and put x1 = n1/2

and x2 = · · · = xn = 1. Then it is easily checked that a�1� = a1 → α1 = 1/2
and max��ai�� 2 ≤ i ≤ n� = n1/2/�2n − 1� → 0. We find cn → 1/2 and
Z̃ ⇒ W∗

1/2 + εJ/2 which is not Gaussian unless ε is normal.

When F is normal we find m = −J; the covariance of W̃γ	LS simplifies
to min�s	 t� − st − γJ�s�J�t� matching (1.2) when the design matrix has an
intercept.

3. Counterexamples. The condition N cannot be much weakened in
either Theorem 1 or Lemma 1 without strengthening the other conditions.
Here we present an example satisfying F1 and F2 with p3/n → c ∈ �0	∞�
for which there is an estimator β̃ satisfying E1 and E2 with dn = p such that
R�1/2	 β̃� does not converge to 0 in probability. On the event �β̃− βo�′X′X×
�β̃− βo� ≤ L (which has high probability for large L) we have

sup��R�2��t	 β��� 0 ≤ t ≤ 1	 β ∈ DL� ≥ �R�1/2	 β̃��

so that the last two conclusions [(2.1) and (2.2)] of Lemma 1 also fail for this
example. It will be seen that the estimator β̃ is equivariant. We emphasize the
point since it is conceptually possible that (2.1) could fail while at the same
time,

sup��R�2��t	 β̂��� 0 ≤ t ≤ 1� → 0

in probability for every sequence of equivariant estimators β̂.
Our example has p samples of size m = p2. The ith sample is �Yij	 j =

1	 � � � 	m�, with Yij = µi+ εij for iid N�0	1� errors εij. With β′ = �µ1	 � � � 	 µp�
and standard notation for sample means, the remainder process, R�2�, then
has the form (remember that n1/2 = p1/2m1/2 = pm1/4)

R�2��t	 β� = 1
p

p∑
i=1

Ri�t	 µi�	
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where the Ri are the iid processes

Ri�t	 µ� =
1

m1/4

m∑
j=1

Rij�t	 µ�

and

Rij�t	 µ� = 1�Yij − µ ≤ 5−1�t�� − 1�Yij ≤ 5−1�t�� −5�5−1�t� + µ� + t�

We define µ̃i = �Yi + δ̃i/m
1/2 where δ̃i is chosen to maximize

Wi�δ� ≡
1

m1/4

m∑
j=1

{
1�Yij−�Yi≤δ/m1/2�−1�Yij−�Yi≤0�−5�δ/m1/2�+1/2}�

over �δ� ≤ 1. We see the µ̃i are iid and that each δ̃i has a symmetric distri-
bution. Since Yij − �Yi = εij − ε̄i is location invariant, δ̃i is location invariant
and µ̃i is location equivariant. Then

1′X�β̃− βo� = m
∑�µ̃i − µi	 o�

= m
∑��Yi − µi	 o� +m1/2∑ δ̃i

= OP�n1/2�
so that β̃ satisfies E1. Moreover, β̃ satisfies E2 since

�β̃− βo�′X′X�β̃− βo� = m
p∑
1

�µ̃i − µi	 o�2

≤ 2{m∑��Yi − µi	 o�2 +
∑

δ̃2i
}

= OP�p��
Since the estimator µ̃i is equivariant we may take µi	 o = 0 for all i to make

probability calculations. Then

Ri�1/2	 µ̃i� = Ri�1/2	 ε̄i� +Wi�δ̃i� −Wi�0�
+m3/4{5�δ̃i/m1/2� +5�ε̄i� −5�ε̄i + δ̃i/m

1/2� −5�0�}�
Routine moment calculations may be used to check that

1
p

∑
Ri�1/2	 ε̄i� → 0

in probability. A two-term Taylor expansion shows that

m3/4

p

∑
i

{
5�δ̃i/m1/2� +5�ε̄i� −5�ε̄i + δ̃i/m

1/2� −5�0�}
is at least

−2p1/2�5′′�∞
{∑

ε̄2i +
∑

δ̃2i /m
}
	

which evidently converges to 0 in probability.
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Consider the process �W1�δ�� �δ� ≤ 1�. Define, for real t,

Vm�t� ≡
1

m1/4

m∑
j=1

{
1�ε1j ≤ t/m1/2� − 1�ε1j ≤ 0� −5�t/m1/2� + 1/2

}
�

Then �Vm	m
1/2ε̄1� converges weakly as m → ∞. The weak limit has inde-

pendent components. The weak limit of Vm is a Gaussian process B on the
real line where �B�t�� t ≥ 0� and �B�−t�� t ≥ 0� are independent Brownian
motions. If Ṽm�·� = Vm�·+m1/2ε̄1�−Vm�m1/2ε̄1� then the asymptotic indepen-
dence of Vm and m1/2ε̄1 shows that Ṽm also converges weakly to B. Finally
sup��Ṽm�t� −W1�t��� �t� ≤ T� converges to 0 in probability for each fixed T
so that W1 also converges weakly to B. It follows that W1�δ̃1� converges in
distribution to B�δ̃� where δ̃ maximizes B over �−1	1
. Note that B�δ̃� > 0
almost surely and that �W1�δ̃1�	 � � � 	Wp�δ̃p�� are iid. It follows that

lim inf
1
p

∑
i

Wi�δ̃i� ≥ E�B�δ̃�� > 0

in probability and, since Wi�0� = 0,
limP

[
R�1/2	 β̃� > E�B�δ̃��/2] = 1�

4. Unknown �. Write Ẑ�t� = Z̃�T�t�� + n1/2�T�t� − t� where T�t� =
F�σ̂F−1�t��. Expanding the second term we have n1/2�T�t� − t� =
n1/2�σ̂2−1�F−1�t�f�η�t��/�1+σ̂� where η�t� lies betweenF−1�t� and σ̂F−1�t�.
For consistent σ̂ , and assuming F1 and F2, it is elementary to check that the
process F−1�t�f�η�t�� converges uniformly to J2�t� ≡ F−1�t�J�t� and that
J2 is in C�0	1
. A weak convergence result for Ẑ then follows (via standard
time transform arguments) from our results for Z̃ provided we verify that the
finite-dimensional distributions of �Z1	 n−1/21′Xβ̂	n1/2�σ̂2 − 1�� converge.
We do not have general results along these lines; Portnoy’s work deals with

known σ only. For least squares we have two results. First, for general distri-
butions we add only the following condition.

F3 F has a finite fourth moment, µ4 = E�ε4�.
If we then estimate σ2 by the usual least squares estimate,

σ̂2LS = �Y− µ̂LS�2/�n− p�	
we have an obvious extension of our results for Z̃. Define m2�s� =

∫
1�F�y� ≤

s��y2 − 1�f�y�dy. Let µ3 = E�ε3�. Let Ŵc be a continuous Gaussian process
with mean 0 and covariance function

ρ̂c�s	 t� = min�s	 t� − st

+ c
[
J�s�J�t� +m�s�J�t� +m�t�J�s� + µ3�J�s�J2�t� +J�t�J2�s��

]
+�µ4 − 1�J2�s�J2�t�/4+ �m2�s�J2�t� +m2�t�J2�s��/2 �
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Theorem 2. Assume F1, F2, F3 andNLS. Assume also (2.4). Then for least

squares estimates ,�� �Ẑn�	� �Ŵc�� → 0. If the column space ofX contains 1
then (2.4) is automatic and Ẑ ⇒ Ŵ1.

In the special case of normal errors we have m = −J, m2 = −J2, µ3 = 0
and µ4 = 3 so that the covariance simplifies to

min�s	 t� − st− cJ�s�J�t� −J2�s�J2�t�/2�
Our other result for least squares estimates applies only in the important

special case of normal errors. Consider any estimate β̂ with the property that
the standardized residual vector ε̂ has a distribution free of β and σ . Then
σ̂LS is independent of ε̂. We use this to show that virtually any weak conver-
gence result for σ known can be extended to one for unknown σ under the
weak condition lim supp/n < 1. We begin by motivating the consideration of
a slightly more general empirical process.
When using least squares estimates, the fitted residuals ε̃i = εi −xiβ̂ have

variance covariance matrix I−H. Thus the exact probability integral transform
of ε̃i is 5�wiε̃i� with w−2

i = 1−Hii. Portnoy (1986) and Mammen (1996) both
show that when lim supp2/n > 0, the process Z̃ has, for generalM-estimates,
a nonnegligible asymptotic mean. Though this correction term vanishes for
least squares and normal errors, there are examples for p/n1/2 → c ∈ �0	∞�
with least squares estimates and normal errors for which the process Z̃ does
indeed have a nonnegligible asymptotic mean.
This problem can sometimes be corrected by consideration of the process

n−1/2∑�1�5�wiε̃i� ≤ t� − t
	
using the exact probability integral transform; Meester and Lockhart (1988)
for example, give weak convergence results for this process for highly struc-
tured designs with p/n → c ∈ �0	1�.
This prompts us to consider a slightly more general empirical process,

Qn�t� = n−1/2∑�1�F�riε̃i� ≤ t� − t

for an arbitrary set of constants ri and the corresponding σ unknown process

Yn�t� = n−1/2∑�1�F�riε̃i/σ̂LS� ≤ t� − t
�
[Meester (1984) has studied the use of the exact distribution of wiε̃i/σ̂LS for
the probability integral transform.] Note that Yn is independent of σ̂LS.

Theorem 3. Consider any sequence of models and constants ri for which
Qn converges in D�0	1
 to some continuous Gaussian process Q with mean
function µ and covariance function ρ�s	 t�. If the errors are normal and
lim supp/n < 1 then ,�� �Yn�	� �Y∗

n�� → 0 where Y∗
n is a continuous

Gaussian process with mean function µ and covariance function ρ∗
n�s	 t� =

ρ�s	 t� − �n− p�J2�s�J2�t�/�2n�.
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5. Proofs.

Proof of Lemma 1. The assertion for R�1� is an elementary Taylor expan-
sion. We will prove by a chaining argument that R− = sup�R�2��t	 β�� 0 ≤
t ≤ 1	 β ∈ DL� → 0 almost surely. (The parallel argument for the infimum is
omitted.)
For a given δ > 0 let M�δ� be the smallest integer m for which there exist

β∗
1	 � � � 	 β

∗
m such that β

′�X′X�β ≤ Ldn implies that there is a k for which

�β− β∗
k�′�X′X��β− β∗

k� ≤ δ�(5.1)

(M is called a covering number.) Let Ck denote the set of β in DL satis-
fying (5.1). If β∗

k is not in Ck let βk be any point in Ck minimizing �β −
β∗
k�′�X′X��β− β∗

k�; otherwise let βk = β∗
k. Let N be a large integer. Put

Rj	k = sup
{
R�t	 β�� j

N
≤ t ≤ j+ 1

N
	 β ∈ Ck

}
�

Note that

P�R− > η� < ∑
j	 k

P�Rj	k > η�	

where the sum extends over j = 0	 � � � 	N − 1, and all indices k for which Ck

is not empty. The number of terms in this sum is no more than NM�δ�.
Put Ri�t	 β� = 1�F�εi� ≤ F�F−1�t� + xiβ�
 − 1�F�εi� ≤ t� − F�F−1�t� +

xiβ� + t. Fix j	 k. Put tj = j/N and cj = F−1�tj�. For any β ∈ Ck, and
tj ≤ t ≤ tj+1 we have Ri�t	 β� is less than or equal to

1�F�εi� ≤ F�cj+1 + ai	k�� − 1�F�εi� ≤ tj� −F�cj + bi	 k� + tj+1	(5.2)

where ai	k is the supremum of xiβ over Ck and bi	 k the corresponding infi-
mum. This eliminates t and β from the bound. As in Loynes (1980) write
(5.2) as

ωi	j	 k�Xi	j	 k − pi	j	 k� +Bi	j	 k	

where Xi	j	 k = �1�F�εi� ≤ F�cj+1 + ai	k�� − 1�F�εi� ≤ tj�� is a Bernoulli
variable, pi	j	 k = E�Xi	j	 k�	 ωi	 j	 k is the sign of F�F−1�tj+1� + ai	k� − j/N
and

Bi	j	 k = F�cj+1 + ai	k� −F�cj + bi	 k� + 1/N�

Consider now∑
i

Bi	 j	 k = ∑
i

�F�cj+1 + ai	k� −F�cj+1 + xiβk��

+∑
i

�F�cj+1 + xiβk� −F�cj + xiβk��(5.3)

+∑
i

�F�cj + xiβk� −F�cj + bi	 k�� + n/N�
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Since f is bounded the first term on the right-hand side is bounded by

Mf

∑
i

�ai	k − xiβk��

Write ai	k as xiβi	 k for some βi	k ∈ Ck; use the Cauchy–Schwarz inequality
to get

�ai	k − xiβk�2 ≤ �βi	k − βk�′�X′X��βi	k − βk�xi�X′X�−x′
i ≤ δxi�X′X�−x′

i�

Use the inequality �∑ �ui��2 ≤ n
∑
u2i for any real u1	 � � � 	 un and recall that∑

xi�X′X�−x′
i = p to see that the first and third terms in (5.3) are each

bounded byMf

√
npδ. For the second term in (5.3), two-term Taylor expansions

give ∑
i

[
F�F−1�tj+1� + xiβk� −F�F−1�tj� + xiβk�

]
= ∑

i

[
F
{
F−1�tj+1�

}+ xiβkJ�tj+1� + 1
2�xiβk�2f′�αi�

]
−∑

i

[
F
{
F−1�tj�

}+ xiβkJ�tj� + 1
2�xiβk�2f′�α∗

i�
]

for suitable αi and α
∗
i . The terms other than the remainders sum to

n/N+ 1′Xβk�J�tj+1� −J�tj���
Let ωJ�r� = sup��J�x�−J�y��� �x−y� ≤ r� be the modulus of continuity of J.
Then the second term in (5.3) is no more than

n/N+√
nLωJ�1/N� +MfLdn	

where we have used the fact that
∑�xiβk�2 = β′

k�X′X�βk. Now choose N =√
n/γn where γn = 1/�pdn� converges to 0. For any sequence of parameters p
with p/

√
n → 0 we then have

n−1/2∑
i

Ri�t	 β� ≤ n−1/2∑ωi	j	 k�Xi	j	 k − pi	j	 k�

+2γn +LωJ�1/N� +Mf

Ldn√
n

+ 2Mf

√
pδ�

We will choose δ = γn/p = 1/�p2dn�. For each fixed ρ > 0 there is then an n0
(not depending on j or k) such that

P�Rj	k > ρ� ≤ P�n−1/2∑
i

ωi	 j	 k�Xi	j	 k − pi	j	 k� > ρ/2�(5.4)

for all n ≥ n0. Put τj	k = ∑
i pi	 j	 k�1 − pi	j	 k�. According to Bernstein’s

inequality [see Pollard (1984), page 193], the right-hand side of (5.4) is no
more than

2 exp�−nρ2/�8�τj	k + n1/2ρ/6��
�
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The arguments surrounding (5.3) can be followed to show

τj	k ≤ ∑
i

pi	 j	 k = ∑
i

�F�cj+1 + ai	k� − j/N�

≤ Mf

(√
npδ+

√
nLdn

)+√
nγn

≤ 2Mf

√
nLdn

for all sufficiently large n. For such n,

P�R− > ρ� < 2NM�γn/p� exp�−nρ2/�8�2
√
nLdn +√

nρ/6��
�
We use a bound on the covering numberM�δ�, which we learned from David
Pollard.

Lemma 2. The covering number is bounded by M�δ� ≤ �1+ 2√Ldn/δ�p.

For L∗ slightly larger than 2L1/2 we have M�γn/p� ≤ �L∗dp�p for all
large n. Combining these we obtain

log�P�R− > ρ�� ≤ log�2n1/2� − log�γn� + p log�L∗� − p log�pdn�

−ρ2

16

√
n√

Ldn + ρ/12
�

Factor out �n/dn�1/2 to see the bound goes to −∞ under condition N. The
argument shows

∑
n P�R− > ρ� < ∞ so Borel–Cantelli gives almost sure

convergence.

Proof of Lemma 2. Consider first X of full rank. Define M∗�δ� to be the
largest integer m for which there exist β∗

1	 � � � 	 β
∗
m with each β∗ ∈ DL and

such that �β∗
i −β∗

j�′�X′X��β∗
i −β∗

j� > δ for all i �= j. EvidentlyM�δ� ≤ M∗�δ�.
Define

Bk�r� = �β� �β− β∗
k�′�X′X��β− β∗

k� < r2��
The triangle inequality [for the metric d defined by d2�x	y� = �x−y�′�X′X�×
�x − y�] shows that the sets B1�

√
δ/2�	 � � � 	BM∗ �

√
δ/2� are disjoint. Let V�r�

denote the volume of �β�β′�X′X�β ≤ r2�. All the Bk�
√
δ/2� lie within the

ellipsoid �β�β′�X′X�β ≤ �√Lp+√
δ/2�2� and so

M∗�δ�V�
√
δ/2� ≤ V�

√
Lp+

√
δ/2��

Since V�r� = rpV�1� the lemma follows. For X of less than full rank we
take V�r� to be the p-dimensional volume in the orthogonal complement of
the kernel of X of �β ∈ ker�X�⊥�β′�X′X�β ≤ r2�; otherwise the argument
remains the same. ✷

Proof of Corollaries 1 and 2. Condition (2.4) is used in both corollaries
to apply the Lindeberg theorem to n−1/21′µ̂. It remains only to show conver-
gence of finite-dimensional distributions in Corollary 2 without using (2.4) for
normal F.
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Let δn > 0 be some sequence tending to 0 but with
√
nδ2n → ∞. Define

I = �i� �ai� > δn�. As in Theorem 2.1 the observation max��ai�� i /∈ I� ≤ δn → 0
shows that the process

n−1/2∑
i/∈I

�1�5�εi� ≤ t� − t+ n1/2aiεiJ�t�


has asymptotically Gaussian finite-dimensional distributions.
Now card�I� ≤ ∑

i∈I a
2
i /δ

2
n ≤ ∑

i a
2
i /δ

2
n ≤ 1′H1/�nδ2n� ≤ 1/δ2n. Hence the

process n−1/2∑
i∈I�1�5�εi� ≤ t� − t
 converges uniformly in t to 0. Finally

the process
∑

i∈I aiεiJ�t� has exactly normal finite-dimensional distributions.
Thus Z1+n−1/21′µ̂J�t� is the sum of two independent Gaussian processes and
a negligible remainder. The corollary follows. ✷

Proof of Theorem 2. Apply a compactness argument, our previous
results and the fact that n1/2�σ̂2 − 1� = n−1/2∑�ε2i − 1� + oP�1�. ✷

Proof of Theorem 3. To prove the theorem pick any subsequence along
which p/n → λ for some λ < 1. We need only prove that Yn then con-
verges to a Gaussian process with mean µ and covariance ρ∗�s	 t� = ρ�s	 t�−
�1− λ�J2�s�J2�t�/2.
The condition n−p → ∞ guarantees [because �n−p�σ̂2 has a chi-squared

distribution on n− p degrees of freedom] that

√
n− p�σ̂2 − 1� �⇒ N�0	2��(5.5)

Write Yn�t� = Qn�Tn�t�� + n1/2�5�σ̂5−1�t�� − t
 = Q∗
n�t� +Vn�t�, say, where

Tn�t� = 5�σ̂5−1�t��. Since Vn�t� = n1/2�σ̂ − 1�5−1�t�φ�θ�t�5−1�t�� =
n1/2�σ̂2 − 1�5−1�t�φ�θ�t�5−1�t��/�1+ σ̂� with θ�t� between 1 and σ̂ it is easy
to check that, uniformly in t in probability,

Vn�t� − n1/2�σ̂2 − 1�5−1�t�φ�5−1�t��/2→ 0�

In view of (5.5) the process Vn converges weakly to a mean 0 Gaussian
process V with variance covariance function �1 − λ�J2�s�J2�t�/2. Moreover,
Tn converges uniformly to the identity map on �0	1
 in probability so that Q∗

n

converges weakly toQ; see Billingsley [(1968), pages 144 and 145]. This shows
that the sequence Yn is tight (notice that this conclusion requires that Q and
J2 be in C�0	1
). Thus the pair Yn	Vn is tight. Since Yn is independent of Vn

any weak limit �Y	V� for the pair has Y independent of V. Thus Q �=Y+V
and the finite-dimensional distributions of Y are determined by the fact that
Y and V are independent and their sum has a Gaussian law. Thus the mean
function of Y is that of Q minus that of V, or µ, and the covariance function
of Y is that of Q minus that of V. ✷
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