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BLOCKED REGULAR FRACTIONAL FACTORIAL DESIGNS WITH
MAXIMUM ESTIMATION CAPACITY

By Ching-Shui Cheng1 and Rahul Mukerjee2

University of California, Berkeley and Indian Institute of Management

In this paper, the problem of constructing optimal blocked regular
fractional factorial designs is considered. The concept of minimum aberra-
tion due to Fries and Hunter is a well-accepted criterion for selecting good
unblocked fractional factorial designs. Cheng, Steinberg and Sun showed
that a minimum aberration design of resolution three or higher maximizes
the number of two-factor interactions which are not aliases of main effects
and also tends to distribute these interactions over the alias sets very uni-
formly. We extend this to construct block designs in which (i) no main effect
is aliased with any other main effect not confounded with blocks, (ii) the
number of two-factor interactions that are neither aliased with main effects
nor confounded with blocks is as large as possible and (iii) these interac-
tions are distributed over the alias sets as uniformly as possible. Such
designs perform well under the criterion of maximum estimation capac-
ity, a criterion of model robustness which has a direct statistical meaning.
Some general results on the construction of blocked regular fractional fac-
torial designs with maximum estimation capacity are obtained by using a
finite projective geometric approach.

1. Introduction. Fractional factorial designs are commonly used in
industrial experiments especially when a large number of factors have to be
studied but the experimental runs are expensive. Blocking, on the other hand,
is an effective method of improving the efficiency of an experiment by reducing
the heterogeneity of the experimental units. How to choose a good fractional
factorial design and a good blocking scheme at the same time is an important
issue. When the experimenter knows the possible importance of the factorial
effects, an algorithm such as that described in Franklin (1985) can be used to
select a fraction and a blocking scheme to estimate certain required effects;
see also Bailey’s (1977) construction of blocked fractions from Abelian groups.
In situations where little information about the relative sizes of the effects
is available, it is desirable to have a design with good all-around (or model
robust) properties.

Although criteria for selecting good unblocked fractional factorial designs
such as resolution [Box and Hunter (1961)] and minimum aberration [Fries
and Hunter (1980)] are available and widely accepted, only recently have
attempts to formulate suitable criteria for “optimal” blocking been made. Let
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s ≥ 2 be a prime or prime power, n, k and r be positive integers satisfying
k+r < n, and consider a regular sn−k fractional factorial design d of resolution
three or higher, arranged in sr equal-sized blocks, in which the main effects
are not confounded with blocks. Such a design will be called an �sn−k� sr� reg-
ular main effect (RME) design. As usual, an n×1 nonnull vector b over GF�s�,
the finite field with s elements, determines a pencil, which is associated with
a k-factor interaction if b has k nonzero elements. For λ��= 0� ∈ GF�s�, b and
λb represent the same pencil carrying s− 1 degrees of freedom.

For i ≥ 3� let Ai�d� be the number of distinct i-factor interaction pen-
cils appearing in the defining relation of an RME design d, also, for i ≥ 2
let Bi�d� be the number of distinct i-factor interaction pencils which are
confounded with the blocks of d without appearing in the defining relation.
The two sequences 
A3�d��A4�d�� � � �� and 
B2�d��B3�d�� � � �� are called the
wordlength patterns of d with respect to the defining equation and blocks,
respectively. On the basis of these two wordlength patterns, Sun, Wu and
Chen (1997) and Mukerjee and Wu (1999) considered the notion of admissi-
bility, while Chen and Cheng (1997) combined them to extend the notion of
minimum aberration to the case of block designs; see also Sitter, Chen and
Feder (1997) in this connection.

Motivated by the ideas of Cheng, Steinberg and Sun (1999) and Cheng and
Mukerjee (1998) for the unblocked case, in this article, instead of considering
wordlength patterns, we propose and study a criterion based on the alias
pattern of the interactions. We consider designs which maximize the number
of two-factor interaction pencils that are neither aliased with main effects nor
confounded with blocks and also distribute these interactions over the alias
sets as uniformly as possible. As demonstrated in Cheng, Steinberg and Sun
(1999) for the unblocked case, this criterion can be tied to some criteria of
model robustness, including maximum estimation capacity.

Section 2 defines our optimality criteria and discusses how they relate to
those based on wordlength patterns. Section 3 presents a projective geometric
formulation of the problem. Section 4 contains some general results on optimal
blocked designs under our criteria. Further results on two-level designs are
given in Section 5. Section 6 contains tables of 16- and 27-run optimal blocked
designs. Most of the proofs are postponed to the Appendix.

2. Optimality criteria. For any nonnegative integer u, let Lu =
�su − 1�/�s − 1�. Then it is easy to see that in an �sn−k� sr� RME design d,
there are Ln−k − Lr − n (= f, say) alias sets which neither contain a main
effect pencil nor are confounded with blocks. Let mi�d� be the number of
two-factor interaction pencils in the ith one of these f alias sets and define
the f× 1 vector m�d� = �m1�d�� � � � �mf�d��T. Let d1 and d2 be two �sn−k� sr�
RME designs. The d1 is said to dominate d2 with respect to the alias pattern of
two-factor interactions (written d1 �a d2) if m�d1� is upper weakly majorized
by m�d2� and not obtainable from m�d2� by permuting its elements. [Recall
that a vector x = �x1� � � � � xt� is upper weakly majorized by another vector
y = �y1� � � � � yt� if and only if

∑k
i=1 x
i� ≥ ∑k

i=1 y
i� for all 1 ≤ k ≤ t, where
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x
1� ≤ x
2� ≤ · · · ≤ x
t� and y
1� ≤ y
2� ≤ · · · ≤ y
t� are the ordered components of
x and y, respectively.] An �sn−k� sr� RME design d is said to be admissible with
respect to the alias pattern of two-factor interactions if it is not dominated by
any other design. This criterion based on m�d� seeks to find designs under
which the number of two-factor interaction pencils neither aliased with main
effects nor confounded with blocks [i.e.,

∑f
i=1mi�d�] is as large as possible and

these interaction pencils are distributed over the alias sets as uniformly as
possible [i.e., the mi�d�’s are as equal as possible.] One purpose of this article
is to study the construction of such designs.

Example 2.1. Let s = 2, n = 6, k = 2, r = 2. Then f = 6. Denoting the
six two-level factors by A�B� � � � �F, consider RME designs d1 and d2 both of
which are given by the defining relation I = ABCD = CDEF = ABEF. Let
the alias sets containing ACE�ACF and EF be confounded with blocks in d1
and the alias sets containing AC�AE and CE be confounded with blocks in
d2. Then one can check that

m�d1� = �2�2�2�2�2�2�T and m�d2� = �3�2�2�2�0�0�T�
So m�d1� is upper weakly majorized by m�d2�, and d1 dominates d2 with
respect to the alias pattern of two-factor interactions. From Lemma 2.1 below
it will follow that d1 also dominates d2 with respect to the criterion of esti-
mation capacity that we now introduce.

The two criteria of model robustness considered in Cheng, Steinberg and
Sun (1999) can be extended to the blocked case. One of them, estimation capac-
ity, will be studied here in detail. Let interactions involving three or more
factors be negligible and suppose the main effects are of primary interest.
Furthermore, suppose interest lies in having as much information about the
two-factor interactions as possible. Now, there are

(
n
2

)�s−1� distinct two-factor
interaction pencils and, for 1 ≤ u ≤ (

n
2

)�s−1�, let Eu�d� be the number of mod-
els containing all the main effects and u two-factor interaction pencils which
can be estimated by d. Then, following Cheng, Steinberg and Sun (1999),

Eu�d� =




∑
1≤i1<···<iu≤f

u∏
j=1

miJ
�d�� if u ≤ f,

0� otherwise.

(2.1)

Under the criterion of estimation capacity, it is desirable to choose d so as to
make the quantities Eu�d� as large as possible. Let d1 and d2 be two �sn−k� sr�
RME designs. Then d1 is said to dominate d2 with respect to estimation capac-
ity (written d1 �e d2) if Eu�d1� ≥ Eu�d2� for each u, with strict inequality for
some u. In particular, if there exists an �sn−k� sr� RME design that maximizes
Eu�·� for each u; then it is said to have maximum estimation capacity. When
such a design does not exist, we say that a design d is admissible with respect
to estimation capacity if it is not dominated by any other design. Following
Cheng, Steinberg and Sun’s (1999) Theorem 2, we have the following result.
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Lemma 2.1. Let d1 and d2 be �sn−k� sr� RME designs. If d1 �a d2, then
d1 �e d2.

In addition to having a direct statistical meaning, it is our experience that
these criteria often yield substantially fewer admissible designs than that
based on the two wordlength patterns as considered in Mukerjee and Wu
(1999). From the tables presented in Section 6, it can be seen that in most of
the 16-run cases and all the 27-run cases, there is a single design which has
maximum estimation capacity.

In the rest of the paper, unless otherwise specified, when we say d1 dom-
inates d2, we mean that d1 dominates d2 with respect to the alias pattern
of two-factor interactions, and therefore d1 also dominates d2 with respect to
estimation capacity.

We end this section with a discussion of how our criteria relate to that of
Chen and Cheng (1997). Each �sn−k� sr� RME design d involves g�= Ln−k�
alias sets altogether. Label the alias sets so that the first f�= Ln−k −Lr − n�
of them neither contain a main effect pencil nor are confounded with blocks.
For 1 ≤ i ≤ g, let mi�d� be the number of distinct two-factor interaction
pencils contained in the ith alias set of d. Then m1�d�� � � � �mf�d� have the
same meaning as before, and it is not hard to see that

f∑
i=1

mi�d� =
(
n

2

)
�s− 1� − 3A3�d� −B2�d��

Generalizing (2.2) of Cheng, Steinberg and Sun (1999), one can also show that

g∑
i=1


mi�d��2 =
(
n

2

)
�s− 1� + 6
A4�d� + �s− 2�A3�d���

Under Chen and Cheng’s (1997) definition, a minimum aberration �2n−k�2r�
RME design minimizes 3A3�d�+B2�d�, and then minimizes A4�d�. Therefore
it maximizes

∑f
i=1mi�d� and then minimizes

∑g
i=1
mi�d��2. Consequently,∑f

i=1mi�d� is large and m1�d�� � � � �mf�d� are expected to be close to one
another. By Lemma 2.1, for two-level designs, we expect Chen and Cheng’s
(1997) minimum aberration criterion to be a good surrogate for our criteria. It
must, however, be noted that this line of argument is heuristic and one should
not anticipate any neat result connecting the two approaches in general.

3. A projective geometric formulation. Let P be the set of the Ln−k
distinct points of the finite projective geometry PG�n−k−1� s�. A pair of sub-
sets �C0�C� of P is called an eligible �Lr�n�-pair if (1) C0 and C are disjoint,
(2) C0 is an �r− 1�-flat (i.e., it has cardinality Lr and is closed, up to propor-
tionality, under the formation of nonnull linear combinations), and (3) C has
cardinality n. Also, let V�C� be an �n− k� × n matrix with columns given by
the points in C. Then the existence of an �sn−k� sr� RME design d is equivalent
to that of an eligible �Lr�n�-pair of subsets �C0�C� of P, with V�C� having
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full row rank; see Mukerjee and Wu (1999) or Chen and Cheng (1997). Specif-
ically, the sn−k row vectors spanned by the n − k rows of V�C� give the sn−k
level combinations in the fraction, and the �r− 1�-flat C0 is used for blocking.
Let V0 be an �n−k�×rmatrix of full column rank such that the columns of V0
span C0. Then a typical block consists of all level combinations of the form
V�C�Tl, with the �n − k� × 1 vector l over GF�s� satisfying VT

0 l = �, where
� is a fixed r × 1 vector over GF�s�. Different blocks correspond to different
choices of �. Since V0 has column rank r, there are sr choices of �, leading to
a division of the sn−k level combinations into sr blocks.

Therefore, while studying �sn−k� sr� RME designs, it is enough to consider
eligible �Lr�n�-pairs of subsets �C0�C� of P, with V�C� having full row rank.
The �sn−k� sr� RME design corresponding to any such eligible pair will be
denoted d�C0�C�. Accordingly, we shall also modify our notation slightly to
write mi�C0�C� = mi�d�C0�C���1 ≤ i ≤ f and m�C0�C� = m�d�C0�C��.
Considering the cardinalities of C0 and C, it is clear that an �sn−k� sr� RME
design exists if and only if Lr + n ≤ Ln−k. In fact, if Lr + n = Ln−k, then all
such designs are isomorphic. Hence, to avoid trivialities, hereafter we assume
that Lr +n < Ln−k. Then f�= Ln−k −Lr −n� > 0 and the issue of estimation
capacity or alias pattern becomes meaningful [cf. (2.1)].

Under the equivalence of an �sn−k� sr� RME design to an eligible �Lr�n�-pair
described in the above, a pencil b appears in the defining relation if and only
if V�C�b = 0, and it does not appear in the defining relation but is confounded
with blocks if and only if V�C�b is proportional to some point in C0. As in the
unblocked case, two distinct pencils b1 and b2, neither of which appears in
the defining equation, are aliased with each other if and only if V�C�b1 and
V�C�b2 are proportional to the same point of P. This establishes a one–one
correspondence between the set P, of cardinality Ln−k, and the class of the
Ln−k alias sets. In particular, the Lr points in C0 correspond to the Lr alias
sets which are confounded with blocks while the n points in C correspond to
the n alias sets each of which contains a main effect pencil. Thus, defining
�C = P − �C0 ∪ C�, the f�= Ln−k − Lr − n� points in �C correspond to the f
alias sets which neither contain a main effect pencil nor are confounded with
blocks.

Example 3.1. Consider again the design d1 introduced in Example 2.1.
For this design both C0 and C are subsets of PG�3�2� and are given by

C0 =
{�1�0�1�1�T� �0�1�1�1�T� �1�1�0�0�T}�

C = {�1�0�0�0�T� �0�1�0�0�T� �0�0�1�0�T�1�1�1�0�T�
�0�0�0�1�T� �1�1�0�1�T}�

respectively. The six points in the set C correspond to the six factors
A�B� � � � �F. It is then easy to see that the pencils that appear in the defining
relation and that are confounded with blocks are precisely as described in
Example 2.1.
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Continuing with the set-up of the paragraph preceding Example 3.1, let �C =

�1� � � � ��f��C0 = 
�f+1� � � � ��t�, where t = f+Lr, and �1� � � � ��t are distinct
points inPwith �f+1� � � � ��t forming an �r−1�-flat. For 1 ≤ i ≤ f, let hi�C0�C�
be the number of distinct two-factor interaction pencils b such that V�C�b
is nonnull and proportional to �i, and �i�C0�C� be the number of linearly
dependent triplets 
�i��j��u� such that �i��j and �u are distinct members
of C0 ∪ �C and j < u. Define h�C0�C� and ��C0�C� as f× 1 vectors with the
ith elements hi�C0�C� and �i�C0�C�, respectively. Then, analogous to the
findings of Cheng and Mukerjee (1998) in the unblocked case, the following
lemma holds.

Lemma 3.1. (a) The vectorm�C0�C� can be obtained from h�C0�C� by per-
muting the elements of the latter.

(b) For 1 ≤ i ≤ f, hi�C0�C� = 1
2�s− 1��Ln−k − 2t+ 1� +�i�C0�C�.

(c) Consider �sn−k� sr� RME designs di = d�C0i� Ci�� i = 1�2. If ��C01�C1�
is upper weakly majorized by ��C02�C2� and not obtainable from ��C02�C2�
by permuting its elements, then d1 dominates d2.

Consideration of the complementary subset �C, as done here, is reminiscent
of Chen and Hedayat (1996) [see also Tang and Wu (1996) and Suen, Chen and
Wu (1997)], who explored the issue of minimum aberration in the unblocked
case. Our problem is much different from theirs. Unlike them, we consider
block designs and have to take care of the aliasing pattern directly. Chen and
Cheng (1997) also used complementary sets to construct blocked designs under
their definition of minimum aberration.

Remark 3.1. Before concluding this section, we introduce a simple impli-
cation of Lemma 3.1. If f = 1, then recalling that C0 is a flat, ��C0�C� must
equal the scalar 0 for every �sn−k� sr� RME design d�C0�C�; that is, all such
designs are equivalent with respect to estimation capacity as well as the alias
pattern of two-factor interactions. Hence, hereafter we shall consider only the
situation f ≥ 2.

Remark 3.2. Unlike the unblocked case, however, the above equivalence
does not hold for f = 2 in block designs. As an illustration, let s = 3� n =
10� k = 7� r = 1 (so f = 2) and consider two �310−7�3� RME designs di =
d�C0�Ci�, i = 1�2, where C0 = 
�1�0�0��T, �C1 = 
�0�1�0�T, �1�1�0�T� and
�C2 = 
�0�1�0�T, �0�0�1�T�, with �Ci = P−�C0∪Ci�, i = 1�2. Then both V�C1�
and V�C2� have full row rank, and ��C0�C1� = �1�1�T���C0�C2� = �0�0�T,
so that by Lemma 3.1, d1 dominates d2.

4. Blocked sn−k designs with maximum estimation capacity. We
continue with the notational system introduced in the last section and first
present a lemma whose proof can be found in the Appendix.
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Lemma 4.1. Consider an �sn−k� sr� RME design d�C0�C�. Then for 1 ≤
i ≤ f,

�i�C0�C� ≤ 1
2 min
f�f− 1�� s�f− 1��s− 1��f+Lr − 1���(4.1)

(a) Let 2 ≤ f ≤ s. Then equality holds in (4.1) for all i�1 ≤ i ≤ f� if and
only if

�C ⊂ 
�0 + ��1� � ∈ GF�s���(4.2)

for some �0��1 such that �0 ∈ P−C0 and �1 ∈ C0.
(b) Let f > sr. Then equality holds in (4.1) for all i�1 ≤ i ≤ f� if and only

if f+Lr = Lu for some u�r+ 2 ≤ u < n− k� and C0 ∪ �C is a �u− 1�-flat.
(c) Finally, let s < f ≤ sr, a situation which can arise only when r ≥ 2.
(c1) For s ≥ 3, equality holds in (4.1) for all i�1 ≤ i ≤ f� if and only if

f = su for some u�2 ≤ u ≤ r� and

�C =
{
�0 +

u∑
i=1

�i�i� �i ∈ GF�s�
}
�(4.3)

for some �0 ∈ P−C0 and some u linearly independent points �1� � � � ��u of C0.
(c2) For s = 2, equality holds in (4.1) for all i�1 ≤ i ≤ f� if and only if

�C = 
�0��0 + ��1�� � � � ��0 + ��f−1���(4.4)

for some �0 ∈ P−C0 and some distinct �
�1�� � � � ���f−1� ∈ C0.

Remark 4.1. (a) In particular, if n − k = 2, then r = 1 and for every
�sn−k� sr� RME design d�C0�C�, �C is of the form (4.2). By Lemma 3.1 and
Lemma 4.1(a), all such designs are equivalent with respect to estimation
capacity and the alias pattern of two-factor interactions. Hence, hereafter,
we shall consider only the situation n− k ≥ 3.

(b) Also, if s = 2 and r = n − k − 1, then for every �2n−k�2r� RME design
d�C0�C�� �C is of the form (4.4). Hence by Lemma 3.1 and Lemma 4.1(c), all
such designs are also equivalent with regard to estimation capacity and the
alias pattern of two-factor interactions. Thus hereafter, for s = 2, we shall
consider only the situation r ≤ n− k− 2.

Remark 4.2. Recall that for an �sn−k� sr� RME design d�C0�C�, the matrix
V�C� has full row rank. This requirement regarding rank is clearly satisfied
C0 ∪ �C is contained in an �n− k− 2�-flat of P. Thus, V�C� has full row rank
under (4.2), (4.3) or (4.4) provided r ≤ n − k − 2 or, if, as needed in Lemma
4.1(b), C0∪ �C is itself a �u−1�-flat �u < n−k�. Also, for r = n−k−1, it can be
shown that under (4.2) or (4.3) this rank condition is automatically satisfied.

In consideration of Lemma 3.1(c), Lemma 4.1 and Remark 4.2, we have the
following result.

Theorem 4.1. Suppose f ≥ 2 and n− k ≥ 3.
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(a) Let 2 ≤ f ≤ s. Then an �sn−k� sr� RME design d�C0�C� has maximum
estimation capacity if and only if �C is as given by (4.2).

(b) Let f+Lr = Lu for some u�r+ 2 ≤ u < n− k�. Then an �sn−k� sr� RME
design d�C0�C� has maximum estimation capacity if and only if C0 ∪ �C is a
�u− 1�-flat.

(c) Let s ≥ 3 and f = su where 2 ≤ u ≤ r and �u� r� �= �n−k−1� n−k−1�.
Then an �sn−k� sr� RME design d�C0�C� has maximum estimation capacity if
and only if �C is as given by (4.3).

(d) Let s = 2� r ≤ n− k− 2 and 2 < f ≤ 2r. Then a �2n−k�2r� RME design
d�C0�C� has maximum estimation capacity if and only if �C is as given by (4.4).

Remark 4.3. All the designs in Theorem 4.1 are also optimal with respect
to the alias pattern of two-factor interactions since they maximize

∑f
i=1mi�d�

and have the property that all the mi�d�’s are equal.

In view of Theorem 4.1(a), we note that between the two designs d1 and d2
consider in Remark 3.2, only d1 has maximum estimation capacity. Hence it
is natural that d1 dominates d2. Some more examples follow.

Example 4.1. Let s = 3� n = 27� k = 23� r = 1. Then f = 12 and f +
Lr = L3. Let C0 = 
�1�0�0�0�T� and �C be obtained by deleting the point
�1�0�0�0�T from the 2-flat spanned by 
�1�0�0�0�T� �0�1�0�0�T� �0�0�1�0�T�.
Then C0 ∪ �C is a 2-flat and, by Theorem 4.1(b), the resulting �327−23�3� RME
design d�C0�C� has maximum estimation capacity and is optimal with respect
to the alias pattern of two-factor interactions.

Example 4.2. Let s = 3� n = 18� k = 14� r = 3. Then f = 9. Let C0 be the
2-flat spanned by 
�0�1�0�0�T� �0�0�1�0�T� �0�0�0�1�T� and �C = 
�1� i� j�0�T�
i� j = 0�1�2�. Then �C is as given by (4.3) and by Theorem 4.1(c), the resulting
�318−14�33� RME design d�C0�C� has maximum estimation capacity and is
optimal with respect to the alias pattern of two-factor interactions.

Example 4.3. Let s = 2� n = 20� k = 15� r = 3. Then f = 4. Let C0 be
the 2-flat spanned by 
�0�1�0�0�0�T� �0�0�1�0�0�T� �0�0�0�1�0�T� and �C =

�1�0�0�0�0�T� �1�1�0�0�0�T� �1�0�1�0�0�T� �1�0�0�1�0�T�. Then �C is as
given by (4.4) and by Theorem 4.1(d), the resulting �220−15�23� RME design
d�C0�C� has maximum estimation capacity and is optimal with respect to the
alias pattern of two-factor interactions.

Remark 4.4. The requirement u ≥ r + 2 in Theorem 4.1(b) is not restric-
tive since evidently u > r, and if u = r + 1 then f = Lr+1 − Lr = sr, a
situation covered in parts (c) and (d) of the theorem. Similarly, the stipulation
�u� r� �= �n−k−1� n−k−1� in Theorem 4.1(c) is not restrictive, for otherwise
f + Lr = sn−k−1 + Ln−k−1 = Ln−k which is impossible. Parts (a) and (b) of
Theorem 4.1 extend some of the findings in Cheng and Mukerjee (1998) in the
unblocked case to block designs. Parts (c) and (d), however, do not have any
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counterparts in the unblocked case. Interestingly, parts (a) and (d) can be par-
ticularly helpful in studying estimation capacity for relatively small values of
f; this situation corresponds to the nearly saturated case which is of practical
importance.

5. Two-level designs. Throughout this section, we consider the case s =
2. Then any three distinct points of P
≡ PG�n− k− 1�2�� which are linearly
dependent form a line. Let G = 
�1� � � � ��p� be any nonempty p-subset of P
and, for 1 ≤ i ≤ p, let ai�G� be the number of lines passing through �i, and
two other distinct points of G. Since any two distinct lines can have at most
one point in common,

ai�G� ≤ 1
2�p− 1�� 1 ≤ i ≤ p�(5.1)

In the above set-up, we have the following lemma which will be proved in the
Appendix.

Lemma 5.1. (a) Let p = 2u − 3; 3 ≤ u < n− k. Then

ai�G� ≤ 2u−1 − 2� 1 ≤ i ≤ p�(5.2)

and equality holds in (5.2) for at most one choice of i.

(b) Let p = 2u − 4, 3 ≤ u < n− k. Then

ai�G� ≤ 2u−1 − 3� 1 ≤ i ≤ p�(5.3)

and equality holds in (5.3) for at most three distinct choices of i.

Theorem 5.1. Let s = 2 and n�k� r be such that f + Lr = 2u − w, where
w = 2�3 or 4 and r + 2 ≤ u < n − k. Let �1� � � � ��u be linearly independent

points of P, and C∗
0 and C̃ be �r−1�- and �u−1�-flats spanned by 
�1� � � � ��r�

and 
�1� � � � ��u�, respectively. Let �C∗ = C̃−C∗
0 −Tw, where

Tw = 
�r+1� if w = 2�(5.4)

Tw = 
�r+1��r+2� if w = 3�(5.5)

Tw = 
�1 + �r+1��1 + �r+2��1 + �r+1 + �r+2� if w = 4�(5.6)

Define C∗ = P − �C∗
0 ∪ �C∗�. Then V�C∗� has full row rank and the �2n−k�2r�

RME design d∗ = d�C∗
0�C

∗� has maximum estimation capacity and is optimal
with respect to the alias pattern of two-factor interactions.

Proof. As u < n−k, there is an �n−k−2�-flat containing �C∗
0∪ �C∗��⊂ C̃�.

Hence V�C∗� has full row rank (cf. Remark 4.2). For any �2n−k�2r� RME design
d�C0�C�, as before, let �C = P−�C0∪C� and write C0∪�C = 
�1� � � � ��t�, where
t = f+Lr, and �1� � � � ��f ∈ �C. Then, recalling the definition of �i�C0�C�, we
have

�i�C0�C� = ai�C0 ∪ �C�� 1 ≤ i ≤ f�(5.7)
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(a) Let w = 2, that is, f +Lr = 2u − 2. Since �i�C0�C� is an integer, (5.1)
and (5.7) yield �i�C0�C� ≤ 2u−1 − 2�1 ≤ i ≤ f. By (5.4), it is easily seen
that the design d∗ attains the upper bound for each i. The result follows from
Lemma 3.1(c).

(b) and (c) For w = 3, let �∗ be an f × 1 vector with one element 2u−1 − 2
and the remaining f− 1 elements 2u−1 − 3, and for w = 4, let �∗ be an f× 1
vector with three elements 2u−1 − 3 and the remaining elements 2u−1 − 4.
The latter definition is possible since u ≥ r + 2 ⇒ f ≥ 3. Then by (5.7) and
Lemma 5.1(a), (b), ��C0�C� upper weakly majorizes �∗. By (5.5) and (5.6), the
vector ��C∗

0�C
∗�, associated with d∗, is obtainable from �∗ by permuting its

coordinates. The result follows from Lemma 3.1(c). ✷

Remark 5.1. We do not consider the situation w = 1 or u = r + 1 in
Theorem 5.1 since these are already covered by parts (b) and (d) of
Theorem 4.1. However, it will be of interest to extend Theorem 5.1 beyond
w = 4. Even for w = 2�3�4, one may wish to completely characterize the
designs with maximum estimation capacity. These problems appear to be quite
involved at this stage; see also Remark 5.2 below in this context.

Remark 5.2. From our proof of Theorem 5.1, it is clear that for w = 2�3�4,
the design d∗ (i) maximizes

∑f
i=1�i�C0�C� and (ii) at the same time makes

the individual �i�C0�C�’s as nearly equal as possible. This enables the use of
Lemma 3.1(c) in proving Theorem 5.1. One may wonder if the recent findings
in Chen and Hedayat (1996) can help in proving (i) and hence simplifying the
proof of Theorem 5.1 [see Cheng and Mukerjee (1998) for a similar approach
in the unblocked case]. To that effect, with s = 2, note that for any design
d�C0�C�,

f∑
i=1

�i�C0�C� = 3N1��C� + 2N2�C0� �C��(5.8)

where N2�C0� �C� is the number of lines passing through two distinct points
of �C and one point of C0 and, for any nonempty set G�⊂ P��N1�G� is the
number of lines contained in G. It is also not hard to see

N1�C0 ∪ �C� = constant +N1��C� +N2�C0� �C��(5.9)

where the constant does not depend on the design. By (5.8) and (5.9),

f∑
i=1

�i�C0�C� = constant +N1��C� + 2N1�C0 ∪ �C��

While the result in Chen and Hedayat (1996) can be used to maximize N1��C�
and N1�C0 ∪ �C� separately, it is not useful for the maximization of N1��C� +
2N1�C0 ∪ �C�.

As another application of Lemma 5.1, we have the following result which
will be proved in the Appendix.
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Theorem 5.2. Let r = 1 and f = 2u − 1�2 ≤ u < n − k�. Then V�C� has
full row rank and a �2n−k�2r� RME design d�C0�C� has maximum estimation
capacity (or is an optimal design with respect to the alias pattern of two-factor
interactions) if and only if �C is a �u− 1�-flat.

We now present some examples. In these examples, �i�1 ≤ i ≤ 4� represents
the 5× 1 vector on GF�2� having 1 in the ith position and zeros elsewhere.

Example 5.1. This example demonstrates that Theorem 5.2 cannot be
extended to the case r > 1. Let n = 25, k = 20, r = 2 (i.e., f = 3) and
consider two �225−20, 22� RME designs di = d�C0�Ci�, i = 1�2, where C0 =

�1��2��1 + �2�, �C1 = 
�3��1 + �3, �2 + �3� and �C2 = 
�3, �4��3 + �4�,
with �Ci = P − �C0 ∪ Ci�� i = 1�2. Then both V�C1� and V�C2� have full row
rank and ��C0�C1� = �2�2�2�T, ��C0�C2� = �1�1�1�T so that by Lemma 3.1,
d1 dominates d2 although �C2 is a 1-flat. Incidentally, by Theorem 4.1(d), the
design d1 has maximum estimation capacity in this set-up.

Example 5.2. Let n = 19� k = 14, r = 2. Then f = 9 and f + Lr =
24−4. Let C∗

0 and C̃ be 1- and 3-flats spanned by 
�1��2� and 
�1��2��3��4�,
respectively. Define

�C∗ = C̃−C∗
0 − 
�1 + �3��1 + �4��1 + �3 + �4��C∗ = P− �C∗

0 ∪ �C∗��
Then by Theorem 5.1, the �219−14�22� RME design d�C∗

0�C
∗� has maximum

estimation capacity and is optimal with respect to the alias pattern of two-
factor interactions.

Example 5.3. Let n = 23, k = 18, r = 1. Then f = 23 − 1. Let C0 =

�1� and �C be the 2-flat spanned by 
�2��3��4�. Then by Theorem 5.2, the
�223−18�2� RME design d�C0�C� has maximum estimation capacity and is
optimal with respect to the alias pattern of two-factor interactions.

6. Tables. We now consider in some details the 8- and 16-run two-level
designs and 27-run three-level designs. For an 8-run design with s = 2,
the only possibilities regarding �n�k� r� are (1) (4, 1, 1), (2) (4, 1, 2), (3)
(5, 2, 1) and (4) (6, 3, 1). Under (2) (3) or (4), f equals 0, 1, or 0, respec-
tively, and hence all designs are equivalent. Under (1), up to isomorphism,
the unique design with maximum estimation capacity is given by d�C0�C�
where C0 = 
�1�1�0�T��C = 
�1�0�0�T� �0�1�0�T� �0�0�1�T� �1�1�1�T� [cf.
Theorem 4.1(a)]. This design is also admissible with respect to wordlength pat-
terns and has minimum aberration under Chen and Cheng’s (1997) criterion.

Table 1 shown 16-run �2n−k�2r� RME designs which are the best in terms
of estimation capacity and the alias pattern of two-factor interactions. To con-
struct this table, we use the catalogue of all nonisomorphic 16-run blocked
designs compiled by Sun (1993). The triplets �n�k� r� = �7�3�3�, (8, 4, 3),
(11, 7, 2), (12, 8, 2), (13, 9, 1) and (14, 10, 1) are not shown in Table 1 since
these yield f = 0 or 1 and hence lead to equivalence of all designs. Also, for
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Table 1

16-run admissible �2n−k�2r� RME designs with respect to the alias pattern of two-factor
interactions. These designs are also the best in terms of estimation capacity

Linearly

i� �i ∈ C� independent

(in addition to members of
n k r 1, 2, 4, 8) 
i� �i ∈ C0� m1�d�� � � � �mf �d� E1�d�� � � � �Ef �d�
5 1 1 15 3 1 1 1 1 1 1 1 1 1 9 36 84 126 126 84 36 9 1

7 11 2 2 2 1 1 1 1 0 0 10 42 96 129 102 44 8 0 0
5 1 2 15 3 5 1 1 1 1 1 1 1 7 21 35 35 21 7 1

7 3 13 2 2 1 1 1 1 0 8 26 44 41 20 4 0
6 2 1 7 11 13 3 2 2 2 2 2 2 0 15 96 340 720 912 640 192 0

3 13 6 2 2 2 1 1 1 1 1 11 52 138 225 231 146 52 8
6 2 2 7 11 3 13 2 2 2 2 2 2
7 3 1 7 11 13 14 3 3 3 3 3 3 3
7 3 2 7 11 13 3 5 3 3 3 3 0 12 54 108 81 0

3 5 14 6 9 2 2 2 2 2 10 40 80 80 32
8 4 1 7 11 13 14 3 4 4 4 4 4 4
8 4 2 7 11 13 14 3 5 4 4 4 4
9 5 1 3 5 9 14 15 6 4 4 4 4 4
9 5 2 3 5 9 14 15 6 10 4 4 4
10 6 1 3 5 6 9 14 15 10 5 4 4 4
10 6 2 3 5 6 9 14 15 7 11 4 4
11 7 1 3 5 6 9 10 13 14 15 5 5 5
12 8 1 3 5 6 9 10 13 14 15 7 6 6

�n�k� r� = �5�1�3� or (6, 2, 3), up to isomorphism, there is a unique RME
design and hence these triplets are not shown in Table 1. For �n�k� r� =
�5�1�1�� �5�1�2�� �6�2�1� or (7, 3, 2), there are two admissible designs with
respect to estimation capacity (as well as the alias pattern of two-factor inter-
actions.) For these �n�k� r�, we exhibit the two admissible designs and also
the corresponding estimation capacity sequences Eu�d��1 ≤ u ≤ f. For every
other �n�k� r�, a design with maximum estimation capacity (and optimal with
respect to the alias pattern of two-factor interactions) is available and exhib-
ited in Table 1. In the context of Table 1, the points of PG�3�2� are denoted
by �1� � � � ��15, and for 1 ≤ i ≤ 15��i is given by the ith column of


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


 �

Table 2 shows 27-run �3n−k�3r� RME designs with maximum estimation
capacity. In preparing this table, Theorem 4.1 is often useful. For any triplet
�n�k� r� not covered by this theorem, we start with the catalogue of Chen, Sun
and Wu (1993) showing all nonisomorphic unblocked designs, then consider all
possible blocking schemes for each such design and finally use Lemma 3.1(c)
or, if necessary, (2.1). As before we do not show the triplets �n�k� r� = �8�5�2��
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Table 2

27-run �3n−k�3r� RME designs d�C0�C� with maximum estimation capacity

Members of 
i� �i ∈ C�
n k r (in addition to 1, 2, 5) Members of 
i� �i ∈ C0�
4 1 1 8 4
4 1 2 8 4 6 7 12
5 2 1 3 9 13
5 2 2 3 9 4 6 7 12
6 3 1 3 9 13 7
6 3 2 3 9 13 4 6 7 12
7 4 1 3 10 11 13 8
7 4 2 3 10 11 13 4 6 7 12
8 5 1 3 8 9 10 11 13
9 6 1 3 8 9 10 11 13 7
10 7 1 3 6 7 8 10 11 12 4

(9, 6, 2), (11, 8, 1) and (12, 9, 1) which yield f = 0 or 1. For each other �n�k� r�,
a design with maximum estimation capacity is available. In the context of
Table 2, the points of PG�2�3� are denoted by �1� � � � ��13, and for 1 ≤ i ≤
13��i is given by the ith column of

1 0 1 1 0 1 0 1 1 1 0 1 1
0 1 1 2 0 0 1 1 2 0 1 1 2
0 0 0 0 1 1 1 1 1 2 2 2 2


 �

Remark 6.1. All the designs shown in Tables 1 and 2, except the sec-
ond design for �n�k� r� = �6�2�1� in Table 1, are admissible in the sense
of Mukerjee and Wu (1999).

APPENDIX

Proofs.

Proof of Lemma 4.1. For any distinct ����� ∈ P, let ������ denote the
set of the s−1 distinct points spanned by � and � (excluding themselves) and
note that

� ∈ ������ if and only if � ∈ �������(A.1)

Write �C = 
�1� � � � ��f� and for 1 ≤ i� j ≤ f� i �= j� let 	ij and 
ij be the
cardinalities of �C ∩ ���i��j� and C0 ∩ ���i��j�� respectively. Clearly,

	ij + 
ij ≤ s− 1� 	ij ≤ f− 2� 
ij ≤ 1�(A.2)

the last inequality being a consequence of the fact that C0 is a flat.
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Since C0 is a flat, any linearly dependent triplet containing �i�1 ≤ i ≤ f�
and two other distinct members of C0 ∪ �C must contain at least one member
of �C other than �i. Hence by (A.1) and the definition of �i�C0�C�,

�i�C0�C� =
f∑

j=1� j �=i
� 12	ij + 
ij�� 1 ≤ i ≤ f�(A.3)

We now prove inequality (4.1) and study the situation of equality there, con-
sidering separately the three exclusive and exhaustive cases 2 ≤ f ≤ s� f > sr

and s < f ≤ sr.
(a) Let 2 ≤ f ≤ s. Then (4.1) reduces to �� �C0�C� ≤ 1

2f�f− 1�� the validity
of which follows from (A.3) and the last two inequalities in (A.2). Thus equality
holds in (4.1) for all i if and only if

	ij = f− 2� 
ij = 1 for all 1 ≤ i� j ≤ f� i �= j�(A.4)

If (A.4) holds, then in particular,

���1��2� ⊃ 
�C− 
�1��2�� ∪ 
���
for some � ∈ C0, so that using (A.1) and recalling that two nontrivial �n−k�×1
vectors with proportional coordinates represent the same point in P, it follows
that �C must be given by (4.2) with �0 = �1 and �1 = �. Conversely, it is easy
to see that (4.2) implies (A.4). Thus equality is attained in (4.1) for all i if and
only if (4.2) holds.

(b) Let f > sr. Then for 1 ≤ i ≤ f, the inequality in (4.1) reduces to

�i�C0�C� ≤ 1
2�s− 1��f+Lr − 1��(A.5)

Now given any �i ∈ �C and ���= �i� ∈ C0 ∪ �C, the set ���i��� contains s − 1
distinct points. Hence by (A.1), the validity of (A.5) is evident. Next suppose
equality holds in (4.1) or, equivalently, in (A.5) for every i. Then for each
�i ∈ �C and ���= �i� ∈ C0 ∪ �C, we have ���i��� ⊂ C0 ∪ �C. Since C0 itself is an
�r−1�-flat, it follows that C0 ∪ �C is a �u−1�-flat (so that f+Lr = Lu�, where
r+ 2 ≤ u < n−k; note that u < n−k as C0 ∪ �C is a proper subset of P, while
u > r+1 as f > sr. Conversely, if C0∪ �C is a flat, then trivially equality holds
in (A.5) and hence in (4.1) for each i.

(c) Now suppose r ≥ 2 and s < f ≤ sr. Then (4.1) reduces to �i�C0�C� ≤
1
2s�f − 1�, the validity of which follows from (A.3) and the first and third
inequalities in (A.2), noting that

�i�C0�C� = 1
2

f∑
j=1� j �=i


�	ij + 
ij� + 
ij��

Thus equality holds in (4.1) for each i if only if 	ij + 
ij = s − 1 and 
ij = 1,
that is, if and only if

	ij = s− 2� 
ij = 1 for all 1 ≤ i� j ≤ f� i �= j�(A.6)
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Suppose (A.6) holds. Then for any distinct �i� �j ∈ �C,
� ∈ ���i��j�� � �∈ C0 ⇒ � ∈ �C�(A.7)

and ���i��j� contains some point of C0. The latter fact implies that rank

V�C0∪ �C�� = r+1, for otherwise, there will exist linearly independent points
�1� � � � ��r� �i� �j such that �1� � � � ��r span C0 and �i� �j ∈ �C; then ���i��j�
will not contain any point of C0. Hence �C must be of the form

�C = 
�0��0 + �1�
�1�� � � � ��0 + �f−1�

�f−1���(A.8)

where �1� � � � ��f−1 are nonzero elements of GF�s�� �0 ∈ P−C0 and ��1�� � � � �
��f−1� ∈ C0. We now consider the cases s ≥ 3 and s = 2 separately.

(c1) Let s ≥ 3. Suppose rank���1�� � � � ���f−1� = u, where 2 ≤ u ≤ r (note
that u ≥ 2 as f > s). Without loss of generality, let the points ��1�� � � � ���u�

be linearly independent, forming a basis of 
��1�� � � � ���f−1��. Then writing
�i = ��i��1 ≤ i ≤ u, by (A.8),

�C ⊃ 
�0��0 + �1�1� � � � ��0 + �u�u��(A.9)

�C ⊂
{
�0 +

u∑
i=1

�i�i� �i ∈ GF�s�
}

(A.10)

We note that for each i and each �i ∈ GF�s�,
�0 + �i�i ∈ �C�(A.11)

If �i ∈ 
0��i�, then (A.11) follows from (A.9). Even otherwise, (A.11) fol-
lows from (A.7) and (A.9), nothing that �0 + �i�i ∈ ���0��0 + �i�i� and
�0+ �i�i �∈ C0.

Since s ≥ 3, there exist �1��2��= 0� ∈ GF�s� such that �1 + �2 = 1. Hence
for each i� j�1 ≤ i� j ≤ u; i �= j� and each �i��j ∈ GF�s�,

�0 + �i�i + �j�j = �1��0 + �i�
−1
1 �i� + �2��0 + �j�

−1
2 �j��

so that by (A.7) and (A.11),

�0 + �i�i + �j�j ∈ �C�(A.12)

Similarly, for each distinct i� j�w�1 ≤ i� j�w ≤ u� and each �i��j��w ∈ GF�s�,
�0 + �i�i + �j�j + �w�w = �1��0 + �i�

−1
1 �i + �j�

−1
1 �j�

+ �2��0 + �w�
−1
2 �w��

and by (A.7), (A.11) and (A.12), �0 + �i�i + �j�j + �w�w ∈ �C. Proceeding in
this manner, it is seen that the reverse set inequality also holds in (A.10); that
is, �C is given by (4.3) in which case f = su. Conversely, (4.3) implies (A.6) and
hence leads to the attainment of equality in (4.1) for each i.

(c2) Let s = 2. Then in (A.8), �1 = · · · = �f−1 = 1 and hence ��1�� � � � ���f−1�

are distinct so that �C is as given by (4.4). Conversely, if (4.4) holds, then (A.6)
also holds and hence equality is attained in (4.1) for every i. ✷
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Proof of Lemma 5.1. (a) Inequality (5.2) follows trivially from (5.1). If
possible, suppose equality is attained in (5.2) for two distinct choices of i,
say i = 1 and 2, without loss of generality. Then there are 2u−1−2 lines which
pass through �1 (or �2) and jointly cover all the remaining points of G. Hence

�1 + �i ∈ G for each �i��= �1� ∈ G�(A.13)

�2 + �i ∈ G for each �i��= �2� ∈ G�(A.14)

By (A.13) and (A.14); �1 + �2 ∈ G and

�1 + �2 + �i ∈ G for each �i��= �1 + �2� ∈ G�(A.15)

Let G∗ = G−
�1��2��1+�2�. Any two points of G∗, say �i and �i′ , which are
not necessarily distinct, will be said to be associated with each other (written
�i∧�i′ ) if �i+�i′ ∈ 
0��1��2��1+�2�. By (A.13), (A.14) and (A.15), each point
of G∗ is associated with four distinct points of G∗ including itself. Also, it is
easy to recognize that ∧ is an equivalence relation. Thus it partitions G∗ into
equivalence classes of size 4. This is, however, impossible as the cardinality of
G∗, namely 2u − 6�= p− 3� is not an integral multiple of 4. Hence part (a) is
proved.

(b) Since ai�G� is an integer for each i, the validity of (5.3) is obvious
from (5.1). Let G0 = 
�w� 1 ≤ w ≤ p� aw�G� = 2u−1 − 3�. If G0 is empty
or singleton, then there is nothing more to prove. Consider, therefore, the
situation where the cardinality ofG0 is at least two. Without loss of generality,
let �1��2 ∈ G0. If possible, suppose �1 + �2 �∈ G. Define G1 = G ∪ 
�1 + �2�.
Then

a1�G1� = a2�G1� = 2u−1 − 2�(A.16)

since, in addition to the 2u−1−3 lines of G�⊂ G1� that pass through �1�or �2�,
we now have the extra line 
�1��2��1 +�2� of G1. However, (A.16) is impos-
sible by part (a) of this lemma since G1 has cardinality 2u − 3. Hence

�1 + �2 ∈ G�(A.17)

For ease in presentation, we split the rest of the proof into three steps.

Step 1. Since �1�or �2� ∈ G0, there are 2u−1−3 lines which pass through
�1�or �2� and jointly cover all but one of the remaining points of G. Hence
there exist �j1��j2 ∈ G such that

�1 �= �j1��2 �= �j2� �1 + �j1 �∈ G� �2 + �j2 �∈ G�(A.18)

�1 + �i ∈ G for each �i��= �1��j1� ∈ G�(A.19)

�2 + �i ∈ G for each �i��= �2��j2� ∈ G�(A.20)

If possible, suppose �j1 �= �j2. Since �j1 �= �2 [by (A.17) and (A.18)], by
(A.20), �2 + �j1 ∈ G. From (A.18), �2 + �j1 �= �1��j1. Hence, by (A.19),
�1 + �2 + �j1� = �� say� ∈ G. Now by (A.18), � �= �2 and �2 + � �∈ G.
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Therefore by (A.20), � = �j2, that is, �1 + �j1 = �2 + �j2 = �∗ (say), where
�∗ �∈ G. Redefine the set G1, with cardinality 2u−3, as G1 = G∪
�∗�. Then as
before, (A.16) holds, which is impossible. Hence �j1 = �j2 = �j (say), where
�j ∈ G. In fact, �j ∈ G − G0 since by (A.18), �j �= �w and �w + �j �∈ G for
w = 1�2.

Using the same argument for any pair of distinct members of G0, it follows
that there exists unique �j ∈ G−G0 such that for each �w ∈ G0,

�w + �j �∈ G(A.21)

and

�w + �i �∈ G whenever �i ∈ G and �i �= �w��j�(A.22)

Step 2. We now show that the set G0 is closed under the addition of
distinct elements. Without loss of generality, it will be enough to show that
�1 + �2 ∈ G0� that is,

�1 + �2 + �i ∈ G for every �i��= �1 + �2��j� ∈ G�(A.23)

in view of (A.21) and (A.22). If �i equals �1 or �2, then (A.23) holds trivially.
Suppose �i is different from each of �1��2��1 + �2 and �j. Then by (A.22),
�1 +�i ∈ G. Also, �1 +�i �= �2 and by (A.21), �1 +�i �= �j. Hence by (A.22),
�2 + �1 + �i ∈ G; that is, (A.23) holds again.

Step 3. If possible, let the cardinality of G0 exceed three. Then, by Step 2,
this cardinality equals 2z − 1 where z�≥ 3� is an integer and u ≥ z + 1 as
G0 ⊂ G. Let G∗ = G− 
G0 ∪ 
�j��. By (A.21), (A.22) and the closure property
of G0 as noted in Step 2,

�w + �i ∈ G∗ whenever �i ∈ G∗ and �w ∈ G0�(A.24)

For any two points of G∗, say �i and �′
i, which are not necessarily distinct,

we write �i ∧ �i′ if �i + �i′ ∈ G0 ∪ 
0�. Then, as in the proof of part (a), by
(A.24), the relation ∧ partitions G∗ into equivalence classes of size 2z. This
is, however, impossible since for u ≥ z + 1 and z ≥ 3, the cardinality of G∗,
namely 2u − 2z − 4, is not an integral multiple of 2z. This completes the proof
of part (b).

Proof of Theorem 5.2. Here f + Lr = 2u and for any design d�C0�C�,
noting that �i�C0�C� is an integer, by (5.1) and (5.7),

�i�C0�C� ≤ 2u−1 − 1� 1 ≤ i ≤ f�(A.25)

If. Suppose �C is a �u− 1�-flat. Then it is not hard to see that V�C� has full
row rank and that equality holds in (A.25) for each i. Hence by Lemma 3.1(c),
the design d�C0�C�, has maximum estimation capacity.
Only if. this is trivially true for u = 2. Consider, therefore, the case 3 ≤

u < n−k and suppose the design d�C0�C� has maximum estimation capacity.
Then by Lemma 3.1(c) and the “if” part of this theorem, equality holds in
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(A.25) for all i. Hence writing �C = 
�1� � � � ��f��C0 = 
�f+1� and G = C0 ∪ �C,
we have

ai�G� = �i�C0�C� = 2u−1 − 1� 1 ≤ i ≤ f�(A.26)

Also, it is easy to see that

ai�G� = ai��C� + 
i� 1 ≤ i ≤ f�(A.27)

af+1�G� = 1
2

f∑
i=1


i�(A.28)

where, for 1 ≤ i ≤ f, the indicator 
i equals 1 if there is a line passing through
�f+1��i and another point of �C, and 0 otherwise.

If possible, suppose 
i = 1 for some i. Then there is a line passing through
�f+1 and two distinct points, say �1 and �2, of �C. Consequently,

�1 + �2 = �f+1�(A.29)

By (A.28), 
i = 0 for some i, otherwise af+1�G� = 1
2f, which is not an integer.

Since 
1 = 
2 = 1 [see (A.29)], without loss of generality, let 
3 = 0. Then by
(A.26) and (A.27), a3��C� = 2u−1− 1 and, as �C has cardinality 2u− 1, it follows
that �3+�i ∈ �C�1 ≤ i��= 3� ≤ f. In particular, the points �3+�1 and �3+�2,
which are evidently distinct and each different from �1��2 or �3 [see (A.29)],
belong to �C. Without loss of generality, let

�3 + �1 = �4� �3 + �2 = �5�(A.30)

By (A.29), (A.30), �2 + �4 = �1 + �5 = �3 + �f+1 and, as 
3 = 0, we have

�2 + �4 �∈ G��1 + �5 �∈ G�(A.31)

Also, by (A.29) and (A.30),

�4 + �5 = �1 + �2 = �f+1�(A.32)

Now, letG1 = G−
�1��4��f+1�. Then by (A.31) and (A.32), among the 2u−1−1
lines that pass through �2 and are contained in G [see (A.26)], only one,
namely 
�1��2��f+1� ceases to remain in G1. Thus there are 2u−1 − 2 lines
passing through �2 and two other distinct points of G1. A similar argument
is applicable to the point �5�∈ G1�. Hence the set G1, of cardinality 2u − 3,
contains two distinct points �2 and �5 through either of which pass 2u−1 − 2
lines that are contained in G1. However, this is impossible by Lemma 5.1(a).

Consequently, 
i = 0�1 ≤ i ≤ f. Therefore, by (A.26) and (A.27), ai��C� =
2u−1 − 1�1 ≤ i ≤ f. As �C has cardinality 2u − 1, it follows that �C must be a
�u− 1�-flat. ✷
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