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SELECTION CRITERIA FOR SCATTERPLOT SMOOTHERS

By Bradley Efron

Stanford University

Scatterplot smoothers estimate a regression function y = f�x� by local
averaging of the observed data points �xi� yi�. In using a smoother, the
statistician must choose a “window width,” a crucial smoothing parame-
ter that says just how locally the averaging is done. This paper concerns
the data-based choice of a smoothing parameter for splinelike smoothers,
focusing on the comparison of two popular methods, Cp and generalized
maximum likelihood. The latter is the MLE within a normal-theory empir-
ical Bayes model. We show that Cp is also maximum likelihood within a
closely related nonnormal family, both methods being examples of a class
of selection criteria. Each member of the class is the MLE within its own
one-parameter curved exponential family. Exponential family theory facil-
itates a finite-sample nonasymptotic comparison of the criteria. In par-
ticular it explains the eccentric behavior of Cp, which even in favorable
circumstances can easily select small window widths and wiggly estimates
of f�x�. The theory leads to simple geometric pictures of both Cp and MLE
that are valid whether or not one believes in the probability models.

1. Introduction. Curve fitting is an important statistical task, though
not one that has always enjoyed a good scientific reputation. The traditional
approach fits a polynomial function of x to the observed data points �xi� yi�,
perhaps a linear, quadratic or cubic curve, immediately raising the question
of what is the appropriate degree polynomial to use on the problem at hand.

Scatterplot smoothers operate more locally than polynomial regression
methods. For example, a simple smoother might employ local averaging, tak-
ing its value at x to be the average of those yi values for which xi is within
some fixed “window width” λ of x. Choosing the window width is a similar
problem, with similar difficulties, to choosing a polynomial degree.

This paper concerns the data-based selection of a smoothing parameter λ.
Two selection criteria will be of particular interest: the Cp criterion [Mallows
(1973)], which minimizes an unbiased estimate of prediction risk, and general-
ized maximum likelihood (GML) [Wecker and Ansley (1983), Wahba (1985)], a
normal-theory empirical Bayes technique, defined somewhat differently here
than in Wahba’s work. Cp and GML look quite unlike each other but we will
show that they are both maximum likelihood methods, carried out within two
closely related curved exponential families, as defined in Efron (1975). These
families are points in a continuum, each family of which suggests its own
selection criterion.

Received October 1999; revised May 2000.
AMS 2000 subject classifications. 62F10, 62L08.
Key words and phrases. Empirical Bayes, Cp, GML, curved exponetial families, choice of

smoothing parameter.

470



SELECTION CRITERIA FOR SCATTERPLOT SMOOTHERS 471

Fig. 1. Top: Sampling experiment comparing GML (solid histogram) with Cp (dotted histogram,
truncated at 15); 600 trials, true df = 5; from family in which GML is maximum likelihood.
Bottom: Total squared error for estimating true regression; using GML (horizontal axis) versus Cp

(vertical); +’s mark trials with 30 largest Cp df estimates; o’s mark trials where GML d̂f = 2,

Cp d̂f > 2. The sampling experiment is fully described in Section 3.
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Figure 1 shows the results of a sampling experiment comparing GML with
Cp. In this experiment, which is fully described in Section 3, 600 data sets
��xi� yi�, i = 1�2� � � � �61�, with the xi’s fixed but the yi’s random, were drawn
from a probability model in which the true degrees of freedom for regression
was df = 5. (Roughly speaking, the analogy for polynomial curve fitting would
prefer quartics for the true regression functions.) Then the GML and Cp meth-
ods were used to estimate the appropriate degrees of freedom for smoothing
each data set. The resulting estimates varied from a minimum of two, indicat-
ing the prescription of a linear regression, to a maximum 25.1, corresponding
to something more than a twenty fourth degree polynomial fit.

The probability model used in the left panel was the curved exponential
family for which GML is actually the maximum likelihood estimate. We can
see that GML is superior to Cp in this context, the latter having a tendency
to produce occasional very large estimates. This tendency resulted in poor
squared error estimation of the true regression function, as shown in the right
panel. However the leftmost histogram spikes indicate a GML flaw, a greater
tendency to oversmooth the data, going all the way to d̂f = 2.

The Cp method, defined in Section 4, has a claim to be the most widely
used selection criterion and is intimately related to other popular methods:
Akaike’s information criterion (AIC), Stein’s unbiased risk estimate (SURE),
and generalized cross-validation (GCV), as discussed in Section 4; see also
Stein (1981) and Section 7 of Efron (1986). One of our main goals here is to
explain the eccentric performance of Cp, which can give disappointing results
even within its own maximum likelihood family. The explanation is given in
terms of the geometry of estimation within curved exponential families. The
geometry also helps explain the oversmoothing exhibited by both criteria (the
tendency to select degrees of freedom smaller than the true value), particularly
by GML.

There is a substantial literature on selection criteria for smoothers, most
of which is written in a very general nonparametric large-sample asymp-
totic framework. Some good references include Hall and Johnstone (1992),
Wahba (1985) and Chapter 4 of (1990), Eubank (1988) and Li (1986), who pro-
vides an impressively general demonstration of asymptotic optimality for Cp

selection. This paper takes the opposite point of view, concentrating on para-
metric inference within finite samples, using splinelike linear smoothers. Our
results, hopefully, compensate for their special context with a sharper delin-
eation of the virtues and defects of the various selection criteria. Stein (1990)
compares GML and Cp in a framework similar to Figure 1, with interesting
results, two of which are quoted in Sections 5 and 10.

After a brief review of splinelike smoothers in Section 2, Section 3 develops
the GML criterion as the MLE in a one-parameter curved exponential family,
leading to the simple geometric description illustrated in Figure 2. The Cp

estimate is similarly described in Section 4, with both Cp and GML belonging
to a class of closely related selection criteria. Sections 5 and 6 use the exponen-
tial family framework to calculate useful properties of the estimates: standard
errors, efficiencies, etc. It is shown that the Cp family’s very large curvature
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destabilizes it as a point estimate. Sections 7–9 concern important aspects
of the selection criterion problem, including its nonstandard behavior under
repeated sampling. Section 10 discusses the close connection between errors
in estimating the appropriate degrees of freedom, of the kind emphasized on
the top of Figure 1, and the total squared error in estimating the true regres-
sion function, as on the bottom. Some detailed remarks are concentrated into
Section 11, which ends with a brief summary of the paper’s main ideas.

2. Splinelike smoothers. We observe n points in the plane,

��xi� yi�� i = 1�2� � � � � n��(2.1)

and wish to estimate the regression of y on x, f�x� = E�y�x�, under the vague
but important assumption that f�x� is a smooth function of x. In this paper
we will consider estimating the regression function only at the “design points”
xi, say fi = f�xi�, using a linear smoother

f̂ = Aλy�(2.2)

Here y = �y1� y2� � � � � yn�′, f̂ = �f̂1� f̂2� � � � � f̂n�′ the vector of estimates of
f = �f1� f2� � � � � fn�′, and Aλ is an n × n smoothing matrix whose entries
depend on the choice of a nonnegative smoothing parameter λ, as well as
the xi’s. The n xi values are assumed to be distinct in order to avoid some
definitional difficulties.

To make our theory as neat as possible we will take the family of smoothing
matrices �Aλ� λ ≥ 0� to be of the form

Aλ = UaλU
′�(2.3)

where U is an n × n orthogonal matrix, not depending on λ, and aλ is the
diagonal matrix with ith entry

aλi = 1
1+ λki

� i = 1�2� � � � � n�(2.4)

the constants ki being a nonnegative, nondecreasing series. In some contexts it
will be convenient to consider aλ to be a vector rather than a diagonal matrix.
Situation (2.3), (2.4) will be called “splinelike.”

The use of genuine smoothing splines amounts to making a particular choice
ofU and k = �k1� k2� k3� � � � � kn�, this choice depending on x = �x1� x2� � � � � xn�′
but not on y. References include Green and Silverman (1994), Wahba (1990),
Eubank (1988) and Hastie and Tibshirani (1990). For cubic smoothing splines,
k is a nondecreasing sequence beginning with two zeros,

0 = k1 = k2 < k3 < k4 · · · < kn�(2.5)

so that the first two eigenvalues aλ1 and aλ2 equal 1 for all λ. The first two
columns of the eigenvector matrix U represent linear functions of x, and the
jth column behaves much like x

j−1
i . Roughly speaking, the smoother Aλy
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preserves the part of y that is linear in x, but shrinks the quadratic, cubic,
quartic, etc. components toward zero, the shrinkage getting stronger for higher
powers of x and also for larger values of λ.

The advantage of representation (2.3) for our purposes is that a single
orthogonal transformation simultaneously diagonalizes all the matrices Aλ.
Suppose we begin with the normal sampling model

y ∼ N�f� σ2I��(2.6)

σ2 known. Then the transformations

z = U′y/σ� g = U′f/σ and ĝλ = U′ f̂λ/σ(2.7)

put the smoothing procedure (2.2) into diagonal form,

z ∼ N�g� I� and ĝλ = aλz�(2.8)

The zi’s are independent unbiased estimates for the gi’s, but the scatterplot
smoother uses biased estimates ĝλi = aλizi shrunk toward zero, more so
for larger values of i and λ, in order to take advantage of the smoothness
assumption.

The theory that follows does not depend on U and k being of the smooth-
ing spline form, though we will assume so in the examples and illustrations.
Remark D of Section 12 discusses departing from form (2.4) for the eigen-
values aλi. Hastie (1996) describes the construction of “pseudosplines,” other
families of smoothers of form (2.3).

The degrees of freedom of smoother (2.2) is defined to be the trace of Aλ.
We will denote degrees of freedom by “ν,”

ν = degrees of freedom = tr�Aλ�

=
n∑

i=1

aλi =
n∑

i=1

1
1+ λki

�(2.9)

ν is a smoothly monotone function of λ, decreasing from ν = n at λ = 0 to
ν = #�ki = 0� �= 2 for cubic smoothing splines) as λ → ∞.

3. The generalized maximum likelihood criterion. GML is a normal-
theory empirical Bayes technique, credited by Wahba to Anderssen and
Bloomfield (1974) and, specifically for smoothing splines, to Wecker and Ansley
(1983). Stein (1990) also credits Patterson and Thompson (1971). Working in
the �g� z� coordinate system (2.7), we assume the Bayesian model

g ∼ N�0�cλ� and z�g ∼ N�g� I��(3.1)

where cλ is diagonal with ith element, say cλi. Defining

aλi = cλi
cλi + 1

and bλi = 1− aλi�(3.2)

Bayes theorem allows us to reverse (3.1), obtaining

z ∼ N�0�1/bλ� and g�z ∼ N�aλz�aλ��(3.3)
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Here aλ and 1/bλ indicate diagonal matrices with diagonal elements aλi and
1/bλi, respectively. The second relationship in (3.3) can be used to justify the
linear shrinkage estimate ĝλ = aλz in (2.8): it is the Bayes a posteriori expec-
tation Eλ�g�z� starting from the prior covariance

cλ = aλ/�1− aλ� = diag�aλi/bλi�(3.4)

in (3.1).
The first relationship in (3.3) motivates the GML estimate of λ,

GML� λ̂ = argmax�dλ�z���(3.5)

dλ�z� indicating the density of z as a function of λ. In other words, λ̂ is the
maximum likelihood estimate of λ based on the marginal density, (integrating
out g) of z ∼ N�0�1/bλ�.

The minimal sufficient statistic for λ is

w = z2 = �z21� z22� � � � � z2n��(3.6)

The wi are independently distributed as scaled chi-square random variables
with one degree of freedom each,

wi

ind∼ χ2
1 / bλi�(3.7)

so that their joint density is

dλ�w� = e−
1
2
∑�bλiwi−log bλi�do�w��(3.8)

with do�w� = 1/! �√2πwi � and λ̂ = argmax�dλ�w��.
There is an important technical point to note here: in the smoothing spline

situation (2.4) and (2.5), cases i = 1�2 have aλi = 1, bλi = 0 for all λ, so these
coordinates contain no information about λ. In defining λ̂ = argmax�dλ�w��,
the sum in the exponent of (3.8) is actually #n

i=3. The same comment applies to
all of our other selection criteria, but their computational formulas will turn
out to automatically ignore cases i = 1�2. In what follows all of the calcula-
tions refer to the n− 2-dimensional situation where the first two coordinates
have been suppressed, unless specifically noted otherwise.

The family of densities dλ�w� is a one-parameter curved exponential family,
in the terminology of Efron (1975, 1978). This means that we can write the
density as

dλ�w� = eη
′
λw − ψ�ηλ�do�w��(3.9)

where ηλ, the natural parameter vector, is a nonlinear function of λ, in this
case,

ηλ = −bλ/2 = �· · · − bλi/2 · · ·�′�(3.10)

The cumulant generating function ψ can be written as

ψ�ηλ� = − 1
2

∑
log�−ηλi�(3.11)

after shifting a constant factor into do�w�.
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The maximum likelihood estimate (MLE) in a curved exponential family is
determined by the expectation vector

µλ = Eλ�w� = 1/bλ(3.12)

and the derivative of ηλ with respect to λ,

η̇λ =
(
· · · ∂ηλi

∂λ
· · ·
)′
�(3.13)

The score function l̇λ�w� = �∂/∂λ� log�dλ�w�� is

l̇λ�w� = η̇′
λ�w − µλ��(3.14)

so the MLE λ̂ must satisfy η̇′
λ̂
�w − µλ̂� = 0; see Efron (1975, 1978).

Figure 2 diagrams the GML selection process as it applies to splinelike
situations. In this case (2.4) and (3.2) show that the set of possible expectations
�µλ = Eλ�w�� 0 ≤ λ ≤ ∞� is actually a straight line segment through the
n−2-dimensional positive orthant, the sample space of w = �w3�w4� � � � �wn�,

�µλ� =
{
1+ 1

λ

1
k
� 0 ≤ λ ≤ ∞

}
�(3.15)

Intersecting the line of expectations at µλ̂, orthogonally to η̇λ̂, is the flat space

�λ̂ = �w� η̇′
λ̂
�w − µλ̂� = 0��(3.16)

the set of w vectors having l̇λ�w� = 0 for λ equal to λ̂. Solving for the GML
estimate λ̂ amounts to finding the �λ containing w. This is necessarily an
iterative calculation since the orthogonals η̇λ change direction with λ [which

Fig. 2. A diagram of the GML selection criterion as it applies to splinelike situations; heavy
diagonal segment is the line of expectations �µλ� 0 ≤ λ ≤ ∞�; �λ̂ is the flat surface of w vectors
having l̇λ̂�w� = 0; it passes through µλ̂ = 1/bλ̂ orthogonal to η̇λ̂. Other features in the diagram
are explained in the text. For smoothing splines, the GML estimate λ̂ is determined by the n − 2
coordinates w3�w4� � � � �wn; two coordinates wi�wj are indicated, with i < j.
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is what makes (3.9) a curved exponential family instead of a genuine one-
parameter exponential family]. The other features in Figure 2 will be discussed
later.

With the help of Figure 2 we can now describe the sampling experiment in
Figure 1. The vector x = �x1� x2� � � � � xn� was taken to be

x =
(
−1�−1+ 2

60
�−1+ 4

60
� � � � �1

)
�(3.17)

n = 61 points equally spaced from −1 to 1, which determined U and aλ in (2.3)
according to the smoothing spline algorithm. The value λ5 was found which
made degrees of freedom equal 5,

ν =
61∑
i=1

1
1+ λ5ki

= 5�(3.18)

This determined µλ5
= 1/bλ5

, a point on the line of expectations in Figure 2.

Each of the 600 w vectors employed in Figure 1 comprised wi

ind∼χ2
1/bλ5i

for i = 1�2� � � � �61, as in (3.7); w determined the GML estimate λ̂ according
to the geometry of Figure 2, the Cp estimate of λ as described in Section 4
and finally the corresponding degrees-of-freedom estimates ν̂ = ∑n

i=1 aλ̂i. The
w vectors were actually generated as w = z2, where z ∼ N�0�1/bλ5

� as in
(3.3). Each z was also used to give a single realization g�z ∼ N�aλ5

z�aλ5
�.

The squared errors plotted in the right panel of Figure 1 were �aλ̂z − g�2,
calculated separately for λ̂�GML� and λ̂�Cp�.

In what follows the superscripts “1” and “2” will denote GML and Cp

estimates, respectively, for example, ν̂�1� and ν̂�2� for the two estimates of
degrees of freedom. The root mean square deviations from ν = 5 in the
left panel of Figure 1 were 1.32 for ν̂�1� and 2.70 for ν̂�2�. The more robust
measures of spread, (90th percentile–10th percentile)/�2 · 1�28�, were 1.34
and 2.07, respectively. The superiority of the GML criterion is not surpris-
ing since it is the MLE in this sampling experiment. However Wahba (1985),
as quoted by Stein (1990), comes to somewhat opposite conclusions, as dis-
cussed in Section 11. The discussion in Section 7 indicates that the results of
Figure 1 do not much depend on the specific choice of x in (3.17).

Forty-four of the 600 vectorsw in the trial fell into the “end zone,” the region
beyond the lower left end of the line of expectations in Figure 2 and gave GML
estimates λ̂�1� = ∞� ν̂�1� = 2, indicating the choice of a linear regression model.
Nineteen of the 44 cases for which ν̂�1� = 2 were “saved from the end zone” by
the Cp criterion, as discussed further in Sections 4 and 10.

The geometry of Figure 2 applies to the GML selection criterion whether or
not one believes in the normal-theory sampling models (3.1) or (3.7). We will,
for instance, use the geometry to calculate the biases of the GML criterion
under the alternative sampling models of Section 4. The following discussion
of influence functions provides another example.
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Formula (2.4), aλi = �1 + λki�−1, yields simple expressions for derivatives
with respect to λ, for example for bλ = 1− aλ,

ḃλi = aλibλi/λ and b̈λi = −2aλib
2
λi/λ

2�(3.19)

Since the natural parameter vector ηλ equals −bλ/2, (3.10), we have

η̇λ = −ḃλ/2 = − 1
2λ

�� � � � aλibλi� � � ��′�(3.20)

The influence function of the MLE in a curved exponential family, that is, the
gradient vector ∇w�λ̂� = �· · · ∂λ̂/∂wi · · ·�′, is

∇w�λ̂� = �−l̈λ̂�w��−1 η̇λ̂�(3.21)

We see that the influence of wi on λ̂ is proportional to aλ̂ibλ̂i, which is max-
imized at i having aλ̂ibλ̂i = 0�5. For λ5 as above, i = 5 (the “quartic” term)
maximized the influence, while the coordinates i ≥ 20 had negligible influence.

Relationships (3.19) lead to simple expressions for the derivatives of lλ�w� =
log�dλ�w��, (3.8),

l̇λ�w� = − 1
2λ

∑
aλi�bλiwi − 1� and

l̈λ�w� = − 1
2λ2

∑
aλi�aλi − 2bλi�bλiwi − 1��

(3.22)

(remembering that the sums are for i from 3 to n). We see that GML is the
solution in λ of ∑

aλi�bλiwi − 1� = 0�(3.23)

which algebraically expresses the geometric solution seen in Figure 2.
All of these calculations assume that σ2 in model (2.6), y ∼ N�f� σ2I�, is a

known quantity, so that we can calculate z = U′y/σ in (2.7) and the sufficient
vectorw = z2. Section 8 discusses the estimation of σ2 when it is unknown and
the effect on the accuracy of λ̂. The example presented in Section 9 of Efron
(1999) is more realistic in that the variances of the observations yi change with
xi. Meanwhile, we will continue to assume σ2 fixed and known, an assumption
which permits sharper comparisons among the selection criteria.

Wahba’s definition of the GML criterion, as given in Section 4.8 of Wahba
(1990), proceeds somewhat differently than ours. Let v = U′y, so z = v/σ .
The log likelihood, as a function of both λ and σ2, is seen to be

log�dλ�σ2� = −1
2

∑[
bλiv

2
i

σ2
− log

(
bλi

σ2

)]
�(3.24)

Wahba jointly maximizes (3.24) over �λ� σ2�, and calls the resulting λ̂ the GML
estimate. In carrying out this maximization, the restricted MLE of σ2 given λ,

σ̂2
λ =∑

bλiv
2
i /�n− 2��(3.25)
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can have a substantial effect on the profile likelihood dλ� σ̂2
λ
and the resulting

estimate λ̂. The methods used in this paper employ an estimate σ̂2 that does
not depend on λ; see Section 8.

4. A class of selection criteria. The GML estimate of λ is maximum
likelihood in the curved exponential family (3.8). This section defines a class of
curved exponential families, each of which gives rise to its own maximum like-
lihood selection criterion. Included in this class are the GML and Cp criteria.

The GML family is based on the scaled χ2
1 distribution (3.7). Dropping sub-

scripts, any one component w ∼ χ2
1/b has a one-parameter exponential family

of densities

db�w� = e−
1
2 �bw−log�b��do�w��(4.1)

do�w� = 1/
√
2πw, defined for b and w positive.

We now replace the component densities (4.1) with a different one-parameter
exponential family,

d
�p�
b �w� = e−co�bpw−�p/�p−1��bp−1�d�p�

o �w��(4.2)

p > 1 a fixed constant, as is co > 0, both b and w positive. The limiting case
as p → 1 is the GML family (4.1); see remark C. In what follows we will use
(4.2) instead of (4.1) to form a curved exponential family analogous to (3.8),

d
�p�
λ �w� = !idbλi

�w��(4.3)

Applying maximum likelihood estimation to family (4.3) gives MLE “λ̂�p�” for
λ. We will show that λ̂�2� is the Cp selection criterion, and that the limiting
case as p → 1, λ̂�1�, is the GML. The important point here is that Cp is also
a maximum likelihood criterion, subject to the same kind of geometry seen in
Figure 2.

Letting

η = −cob
p �b = �−η/co�1/p��(4.4)

we can write (4.2) in the standard exponential family form

dη�w� = eηw−ψ�η�do�w��(4.5)

where η is the natural parameter and

ψ�η� = −co
α

(−η

co

)α

= co
α
bp−1

[
α ≡ p− 1

p

]
(4.6)

is the normalizer, or cumulant generating function. Differentiating ψ�η� with
respect to η, twice, produces the expectation µ and variance V of w,

µ = 1
b

and V = 1
cop · bp+1

�(4.7)
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Density (4.2) has expectation 1/b for all values of p, an important point dis-
cussed below, though the variance function depends on p. In fact the peculiar-
looking density (4.2) is completely determined by three requirements: that
w, a nonnegative random variable, is the sufficient statistic, that the natural
parameter is proportional to bp, and that µ = 1/b. Under these requirements
the family (4.2) is uniquely determined except for the choice of the positive
constant co, which will be explored later. Interestingly enough, the “carrier
density” d

�p�
o �w� must be the positive stable law of order α = �p − 1�/p; see

Remark A, Section 11.
We now proceed as before, letting λ produce aλ according to (2.4), bλ = 1−aλ

and finally assuming that the components of w = z2, defined as in (2.7), are
independently distributed

wi

ind∼ d
�p�
bλi

�wi��(4.8)

This leads to the curved exponential family (4.3), henceforth called “� �p�”,

� �p� � d
�p�
λ �w� = e−co#�bpλiwi−b

p−1
λi /α�d�p�

o �w�

≡ eη
′
λw − ψ�p��ηλ�d�p�

o �w��
(4.9)

α = �p− 1�/p, where now the natural parameter vector is

ηλ = −cob
p
λ �(4.10)

Using (3.19), the crucial derivative vector η̇λ is

η̇λ = −cop

λ
aλb

p
λ = −cop

λ
�� � � � aλib

p
λi� � � ��′�(4.11)

We will use notation such as η
�p�
λ and η̇

�p�
λ when necessary to distinguish

different cases. The fact that η̇
�p�
λ → η̇

�1�
λ as p → 1 shows that � �p� → � �1�;

see remark C.
The MLE λ̂�p� within family � �p� is the minimizer of the exponent in (4.9),

λ̂�p� = argmin
λ

∑�bp
λiwi − b

p−1
λi /α��(4.12)

α = �p− 1�/p.

Theorem 1. λ̂�2� is the Cp estimator of λ.

Proof. The Cp statistic

Cλ�y� = �y − f̂λ�2 + 2σ2 tr�Aλ�(4.13)

is an unbiased estimator for the prediction error of the linear smoother (2.2),
and in this context it is equivalent to Akaikés information criterion and Stein’s
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unbiased risk estimate; see, for example, Section 7 of Efron (1986). The orthog-
onal transformations (2.7) and (2.8) give

Cλ�y� = σ2��z− ĝλ�2 + 2#aλi�
= σ2�#�1− aλi�2z2i + 2#aλi�
= σ2#�b2λiwi − 2bλi� + 2nσ2�

We see that minimizing (4.13), that is, finding the Cp estimate of λ, is the
same as minimizing #�b2λiwi − 2bλi�, which gives the MLE λ̂�2� according to
(4.12). ✷

The geometry of maximum likelihood estimation in � �p� is very much like
that seen in Figure 2. The sufficient statistic vector w is the same as before,
as is the line of expectations, with the same expectation vector µλ = 1/bλ

corresponding to any particular choice of λ. However, there is one important
difference: the vector η̇

�p�
λ is rotated counterclockwise relative to η̇

�1�
λ , increas-

ingly so as p increases. To see this, consider two coordinates i and j with
i < j as in Figure 2, so bλi < bλj in the splinelike situation (2.4), (2.5). Then
according to (4.11),

η̇
�p�
λj /η̇

�p�
λi

η̇
�1�
λj /η̇

�1�
λi

=
(
bλj

bλi

)p−1

�(4.14)

which is an increasing function of p.
Figure 3 illustrates the situation for two coordinates i < j. For vectors w

“above” the line of expectations it is easy to see that we obtain λ̂�p� < λ̂�1� and
ν̂�p� > ν̂�1� and conversely for w “below.” The quotes are a reminder that this
is really an n − 2-dimensional situation where above and below need to be
defined more carefully, as in the reversal region discussion of Section 6. The
occasional large values of the Cp estimator ν̂�2� seen in Figure 1 tended to
come from vectors w cast far above the line of expectations by the long upper
trail of the wi distributions. As partial recompense for this bad behavior, the
extra tilt of the �

�2�
λ surfaces “saved from the end zone” more than half of the

w vectors falling there, as illustrated by w2 in Figure 3.
For any value of p, including the GML choice p = 1, the vector η̇

�p�
λ rotates

counterclockwise as we move toward the λ = 0, ν = n end of the line of
expectations, and moreover, the counterclockwise rotation is faster for bigger
p values. Both of these results follow from (4.11) and (2.4), which for i < j give

− ∂

∂λ

(
η̇

�p�
λj

η̇
�p�
λi

)
=
(
η̇

�p�
λj

η̇
�p�
λi

)
p+ 1

λ
�bλj − bλi� > 0�(4.15)

The increased speed of rotation degrades the performance of the Cp method
�p = 2� as shown in the curvature discussion of Section 6.

The choice of the constant co in density d
�p�
o �w�, (4.2), affects var�p�

b �w� =
�copbp+1�−1, (4.7). Comparisons between the GML and Cp families � �1� and
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Fig. 3. Geometrical relationship between selection criteria λ̂�1� and λ̂�p�. Data vector w1 has
λ̂�1� = λ̂; w2 has λ̂�p� = λ̂. Using λ̂�p� instead of λ̂�1� saves w2 from the end zone, but produces a
very large estimate ν̂ fromw1, as indicated by the uppermost dotted line. This illustration assumes
i < j.

� �2� are more equitable if var�w� is the same in both cases, which, since
var�1�b �w� = 2/b2 according to (4.1), is achieved by taking

co = 1/4b�(4.16)

Some of our numerical results use co = 3/8 for � �2� which equalizes the
variances at b = 2/3, the value of b maximizing the � �2� influence function
ab2, (4.11) or co = 1/4 which equalizes variances at the limiting value b = 1.
Family � �1� also allows a free choice of co, but, following (3.7), (4.1), we will
always take co = 1/2 for p = 1.

Another interesting choice for co in � �2� is

co = #n
3a

2
λi/�4 · #a2

λibλi��(4.17)

which, as shown in Section 5, equalizes the Fisher information in � �1� and
� �2� for estimating ν. For x as in (3.17) and ν = 5 [i.e., λ = λ5 (3.18)], (4.17)
gives co = 1�334. Taken literally, (4.17) makes co depend on λ, which would
destroy the exponential family structure (4.9), but we can still use it for a
simulation comparison in which λ is fixed. The choice of c0 is discussed further
in remarks A and B.

The simulation in the bottom panel of Figure 4 draws vectors w from
d

�2�
λ5

�w�, co = 1�334 in (4.9), with x and λ5 as before, (3.17) and (3.18). In other
words it is the same as the Figure 1 simulation, except with the w = z2 draws
based on family � �2�. The most noticeable feature is the downward bias of the
GML estimator: Prob�ν̂�1� < 5� = 0�74. The Cp estimator ν̂�2� performs better
here than in Figure 1, as it should, but there are still hints of a long upper
tail to its distribution. The curvature discussion of Section 6 provides some



SELECTION CRITERIA FOR SCATTERPLOT SMOOTHERS 483

Fig. 4. Top panel: Density of �z� = w1/2 for GML family (solid curve) and Cp family (dashed

curve); from d
�p�
b �w� (4.2) with b = 1 and p = 1�2; c0 = 1�334 for p = 2. Bottom panel: Sampling

experiment as in Figure 1 except that vectors w drawn from d
�2�
λ5

�w�, the � �2� family with ν =
5; c0 = 1�334.
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explanation for Cp’s erratic performance within its own maximum likelihood
family � �2�.

A crucial aspect of definition (4.2) for the component densities d�p�
b �w� is that

the expected value µ = Eb�w� equals 1/b. Linear Bayes theory shows that this
is a natural requirement. As a weaker version of the Bayesian assumptions
(3.1), suppose that the components of g and z satisfy

gi ∼ �0� ci� and zi�gi ∼ �gi�1��(4.18)

with X ∼ �u� v� indicating E�X� = u, Var�X� = v. Using this same notation
in bivariate form, (

gi

zi

)
∼
((

0
0

)
�

(
ci � ci

ci � ci + 1

))
�(4.19)

so that the best linear predictor of gi is

ĝi = aizi� ai = ci
ci + 1

�(4.20)

Then bi = 1 − ai = 1/�ci + 1�, so that marginally zi ∼ �0�1/bi� and E�wi� =
E�z2i� = 1/bi, as required by our theory. In other words, a linear Bayes jus-
tification for the estimate ĝi = aλizi requires marginal expectation E�wi� =
1/bλi.

� �2� gives sampling distributions much different than those obtained from
the more familiar family � �1�. Figure 4 compares the density of �z� = w1/2 for
a single component from � �1� or � �2�, with b = 1 and c0 = 1�334. The � �1�

curve is half-normal, compared to which the � �2� density is deficient near
zero and strongly peaked near 1. This is not very realistic, as the example
in Section 9 of Efron (1999) shows, but here we are using � �2� more as a
computational device for the Cp criterion, and as a convenient alternative
to � �1� that illustrates possible weaknesses in the GML criterion, than as a
realistic sampling distribution in its own right.

Generalized cross validation (GCV) is a popular selection criterion that
looks different from Cp but is actually quite similar. See Remark J, Section 11.
Wahba [(1985), equation (1.2)] defines the GCV estimate of λ as the minimizer
of

GCVλ = ��I−Aλ�y�2
�tr�I−Aλ��2

= #b2λiv
2
i

�#bλi�2
�(4.21)

v = U′y as in (3.24). Differentiating with respect to λ shows that λ̂GCV solves

#�bλiv
2
i − σ̂2

λ�ḃλi = 0 where σ̂2
λ = #b2λjv

2
j

#bλj

(4.22)

[rather than the σ̂2
λ of (3.25)]. By comparison, differentiating the expression

following (4.13) shows that the Cp estimate satisfies

#�bλiv
2
i − σ2�ḃλi = 0�(4.23)
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We see that the GCV criterion amounts to minimizing the Cp statistic, with σ2

replaced by σ̂2
λ for every choice of λ. Once again we will proceed differently in

Section 8, replacing an unknown σ2 with an estimate σ̂2 that does not depend
on λ.

The curved exponential families � �1� and � �2� give the GML and Cp selec-
tion criterion as maximum likelihood estimates, and they also provide the
simple geometric comparisons seen in Figure 3. The geometric relationships
remain valid whether or not one believes in the probability models. In partic-
ular we will see in Section 6 that the fast rotation of the vectors η̇

�2�
λ causes

serious estimation problems for the Cp criterion.

5. Information and efficiency. The curved exponential families � �p�,
(4.9), have simple structures, both algebraically and geometrically, which we
can use to compute quantities of interest. As a first example we will employ
Fisher information calculations to approximate the accuracy of the degrees of
freedom estimate ν̂.

The same reasoning that leads from (3.14) and (3.19) to (3.22) gives easy
expressions for the derivatives of lλ�w� = log�d�p��w��, (4.9),

l̇λ�w� = −cop

λ

∑
aλib

p−1
λi �bλiwi − 1� and

l̈λ�w� = −cop

λ2

∑
aλib

p−1
λi �aλi + cλi�bλiw− 1���

(5.1)

where

cλi ≡ �p− 1�aλi − 2bλi�(5.2)

Remembering that co = 1/2 for p = 1, we get (3.22) as the p = 1 version
of (5.1).

Since �bλiwi − 1� has mean and variance

�bλiwi − 1� ∼ �0� 1/�copb
p−1
λi ���(5.3)

independently in i according to (4.7), (4.8), the Fisher information for λ is

iλ = Eλ�l̇λ�w��2 = cop

λ2

∑
a2
λib

p−1
λi �(5.4)

As before, for p = 1 it is important to remember that the sum does not include
i = 1�2. The Fisher information for degrees of freedom ν is iν = iλ/�dν/dλ�2,
with dν/dλ = #ȧλi = −#aλibλi/λ from (3.19), so

iν = cop
∑

a2
λib

p−1
λi

/(∑
aλibλi

)2
�(5.5)

In what follows we will use complete notation like i
�p�
ν only when necessary

to differentiate between cases.
The Fisher information approximation sd�ν̂�=̇1/

√
iν̂ gives reasonably accu-

rate results if we choose the true value of ν large enough to avoid the end-zone
spikes seen in Figure 1. Choosing ν = 8 and x as in (3.17) yielded sd�ν̂�1��=̇1�20
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for family � �1�, compared with a robustly estimated standard deviation, (nin-
tieth percentile minus tenth percentile)/ �2 · 1�28�, of 1.27 for ν̂�1�, based on
600 simulations from � �1�. The same choice of ν and x gave sd�ν̂�2��=̇1�20 in
� �2�, co = 1�334, compared with simulation value 1.26. Higher order approxi-
mations for sd�ν̂� are discussed in Remark I, Section 11.

These calculations assumed we were using ν̂�p� to estimate ν within family
� �p�. What happens if we use ν̂�p2� within family � �p1�? This question makes
sense because ν̂�p2� and ν̂�p1� [or equivalently λ̂�p2� and λ̂�p1�] are “estimating
the same thing.” More precisely, ν̂�p2� is Fisher consistent for ν within family
� �p1�: if we happen to observew = µλ = 1/bλ in Figure 3 then we will correctly
estimate λ̂�p2� = λ and ν̂�p2� = ν. See remark H. Standard considerations, as
in Section 6 of Efron (1982), give the first-order asymptotic efficiency of ν̂�p2�

compared to the MLE ν̂�p1�, say E�p1� p2�, to be

E�p1� p2� =
[∑

V
�p1�
λi η̇

�p1�
λi η̇

�p2�
λi

]2/{[∑
V

�p1�
λi η̇

�p1�2
λi

][∑
V

�p1�
λi η̇

�p2�2
λi

]}
�(5.6)

where V
�p�
λi is the variance function (4.7) evaluated at bλi.

Efficiency refers here to the ratio of asymptotic variances under the true
model � �p1�, yielding the approximation

sdp1
�ν̂�p2��

sdp1
�ν̂�p1�� =̇ 1√

E�p1� p2�
= ��∑a2

λib
p1−1
λi ��∑a2

λib
2p2−p1−1
λi ��1/2

�∑a2
λib

p2−1
λi �

�(5.7)

This last expression results from using (4.11), (4.7) and (3.19) in (5.6). Notice
that (5.7) does not involve the scaling constant co in (4.2).

Formula (5.7) works reasonably well when p1 = 1, ν = 8, predicting
sd�ν̂�2��/sd�ν̂�1�� = 1�64 compared to the simulation ratio 1.79. However it is
less successful when the true model is � �2�, ν = 8, predicting sd�ν̂�1��/sd�ν̂�2� =
3�63 compared to the observed ratio 1.48. Here, and in other simulations from
� �2�, the GML estimate ν̂�1� outperformed its efficiency predictions.

Sections 2 and 4 of Stein (1990) compare the asymptotic standard errors
of ν̂�1� and ν̂�2� in the � �1� context of this paper. For cubic smoothing splines,
Stein’s development predicts sd�ν̂�2��/sd�ν̂�1�� → 1�83, which is quite conso-
nant with the results here.

Further discussion of efficiency appears in Section 5 of Efron (1999). That
section also discusses the downward bias of GLM evident in Figure 1 and
suggests a simple bias correction.

6. Curvature and the local reversal region. Curved exponential fam-
ilies such as � �1� and � �2� enjoy some of the good statistical properties of
genuine one-parameter exponential families, more so if the “statistical curva-
ture” γλ is small. This is the main point of Efron (1975) where it is shown, for
example, that the variance of the MLE is increased proportionally to γ2

λ.
This section shows that the curvature of � �p� increases sharply with p, and

in particular that � �2� is highly curved in some of the situations we have been
considering. At least part of Cp’s eccentric behavior stems from an unfavorable
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curvature effect: the local reversal region (LRR) of Figure 2 moves closer to
µλ̂ as the curvature increases, causing maximum likelihood estimates to go
astray.

Forgetting precise definitions for a moment, we can picture the curvature
in terms of Figure 2. Consider increasing λ̂ by a small amount dλ̂ so that
�λ̂+dλ̂ intersects the line of expectations at µλ̂+dλ̂, a little closer to 1. In a
genuine exponential family (curvature = 0),�λ̂+dλ̂ parallels�λ̂, but in a curved
family η̇λ̂+dλ̂ will be slightly rotated from η̇λ̂, causing �λ̂+dλ̂ to intersect �λ̂.
In Figure 2 the intersection will coincide with the point where �λ̂ intersects
the local reversal region. The vectors η̇λ rotate faster in � �2� than in � �1�,
moving the LRR closer to µλ̂ and causing estimation problems.

Now imagine movingw along�λ̂ in the direction away from µλ̂. Efron (1978)
shows that the observed Fisher information−l̈λ̂�w� = iλ̂−η̈′

λ̂
�w−µλ̂� decreases

linearly, reaching zero at a critical point w0 that lies Mahalanobis distance
1/γλ̂ away from µ̂λ̂. By definition this point marks the boundary of LRRλ̂, the
local reversal region for parameter value λ̂. The term “reversal” reflects an
important phenomenon: for points w in the LRRλ̂ portion of �λ̂, λ̂ is a local
minimum rather than a local maximum of the likelihood lλ�w�.

In particular, suppose that the point w lies in �λ ∩ LRRλ where λ is the
true parameter value. For such points, the estimate λ̂ must be far from the true
value λ, and likewise ν̂ from ν, since λ is a local minimum of the likelihood.

Figure 5 illustrates the reversal phenomenon. It concerns the 600 Cp esti-
mates ν̂�2� of Figure 1, in which the w vectors were drawn from the GML
family � �1�, true degrees of freedom ν = 5 as in (3.17) and (3.18). Each esti-
mate ν̂�2� is plotted versus T

�2�
5 , a measure of distance from µλ toward LRR5,

defined below at (6.7); points w with T
�2�
5 exceeding 1 lie in LRR5. The empty

area of Figure 5 beginning at the arrowed point demonstrates the LRR effect:
w vectors in LRRλ cannot give estimates near the true value ν = 5. The rever-
sal phenomenon does not affect GML in this case, or in most cases, because
very few w vectors fall into the more distant GML reversal region.

Proceeding more carefully now, the formal definition of statistical curvature
in Efron (1975) is given in terms of the covariance matrix Mλ of l̇λ�w� and
l̈λ�w�, the first two derivatives of the log likelihoods,

Mλ =
(

varλ�l̇λ� covλ�l̇λ� l̈λ�
covλ�l̇λ� l̈λ� varλ�l̈λ�

)
=
(

η̇′
λVλη̇λ η̇′

λVλη̈λ

η̇′
λVλη̈λ η̈′

λVλη̈λ

)
�(6.1)

Here we have used l̇λ�w� = η̇′
λ�w − µλ�� l̈λ�w� = η̈′

λ�w − µλ� − iλ� iλ =
η̇′
λVλη̇λ the Fisher information for λ, and covλ�w� = Vλ. The statistical cur-

vature of � at λ is defined to be

γλ = ��Mλ�/i3λ�1/2 = 1
iλ

�varλ�l̈λ� − covλ�l̇λ� l̈λ�2/varλ�l̇λ��1/2�(6.2)

Notice that γλ must be nonnegative since the bracketed term is the residual
variance of l̈λ�w� after linear regression on l̈λ�w�.



488 B. EFRON

Fig. 5. An illustration of the reversal region effect, from the simulation of Figure 1; the 600 Cp

estimates ν̂�2� are plotted versus T
�2�
5 , (6.7); values of T

�2�
5 exceeding 1 are in LRR�2�

5 , the local
reversal region of � �2� for true df ν = 5. Empty area beginning at arrowed point shows that ν̂�2�
cannot be near ν for T ≥ 1.

The curvature of family � �p�, (4.9), can be expressed compactly in terms of
the following notation: for any function of i, say c�i�, define

Ě�c� =∑
i

a2
λib

p−1
λi c�i�

/∑
i

a2
λib

p−1
λi �(6.3)

and similarly ˇVar�c� = Ě�c − Ě�c��2, the sums taken from 3 to n in the
smoothing spline case (2.5).

Theorem 2. The squared curvature of � �p� at λ is

γ2
λ =∑

a2
λib

p−1
λi c̆2λi

/
cop

[∑
a2
λib

p−1
λi

]2
�(6.4)

where

cλi = �p− 1�aλi − 2bλi and c̆λi = cλi − Ě�cλj��(6.5)

We can also write γ2
λ = V̆ar�cλi�/�cop

∑
a2
λib

p−1
λi �.

The theorem follows directly from (5.1), (5.2) and (4.7).
Figure 6 shows the squared curvature of family � �p� for λ corresponding to

degrees of freedom ν from 2 through 14, and x as in (3.17). The constant co used
in (4.9) was the Fisher information matching choice �#a2

λi�/�2p#a2
λib

p−1
λi �, as in

(4.17). We will see that squared curvatures much exceeding 0.25 degrade the
estimation of ν. TheCp family � �2� greatly exceeds this bound for ν less than 8,
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Fig. 6. Squared curvature of family � �p� at degrees of freedom ν; formula (6.4). Top curve shows
that � �2� has very large curvature when ν is small. Constant co in (4.9) chosen to match � �1�
Fisher information, as in (4.17).

while the GML family � �1� is much less curved. Our other suggested choices
of co widen the differences: co ≤ 3/8 gives � �2� a maximum γ2 exceeding 3.
The “cross curvature” calculations below eliminate the choice of co from the
comparison of � �1� and � �2�.

The next theorem specifies the location of LRRλ. Suppressing the super-
script “p,” let

oλ = η̈λ − βλη̇λ�(6.6)

where βλ = η̇′
λVλη̈λ/η̇λVλη̇λ as in (6.1), so oλ is the part of η̈λ orthogo-

nal to η̇λ, using the inner product �u� v λ = u′Vλv, with Vλ = covλ�w� =
diag�copb

p+1
λi �−1 as before.

Define

T = T
�p�
λ = o′

λ

iλ
�w − µλ��(6.7)

Theorem 3. (a) For w in the flat space �λ = �l̇λ�w� = 0�, the observed
Fisher information is

− l̈λ�w� = iλ�1−T��(6.8)

(b) The flat space �T = 1� ∩ �λ, of dimension n − 4 in the cubic smoothing
spline case, is the subset of �λ for which −l̈λ�w� = 0. Within this subset the
closest point to µλ in terms of the distance �v�λ = �v′V−1

λ v�1/2 is the critical
point wo = µλ +Vλ�oλ/�iλγ2

λ��, having distance

�wo − µλ�λ = 1/γλ�(6.9)
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(c) If w ∼ d
�po�
λ �·�, (4.9), then T

�p�
λ has mean and variance

T
�p�
λ ∼ �0� γ2

λ�p0� p���(6.10)

where the squared cross-curvature γ2
λ�po�p� equals

γ2
λ�po�p� = o�p�′

λ V
�po�
λ o�p�

λ

i
�p�2
λ

�(6.11)

If po = p then γλ�p�p� = γ
�p�
λ , (6.4).

The theorem’s proof, most of which is generalized from Efron (1978), is
presented in Remark K, Section 11.

The local reversal region for parameter value λ, LRRλ or more carefully
LRR�p�

λ , is defined to be

LRR�p�
λ = �w� T�p�

λ ≥ 1�(6.12)

The intersection �λ ∩ LRRλ consists of those points w having l̇λ�w� = 0 and
−l̈λ�w� ≥ 0, leading to erratic estimates ν̂ as seen in Figure 6. The gist of
Theorem 3 is that a large curvature puts the LRR close to µλ = Eλ�w�,
increasing the probability of a bad estimate. Assuming approximate normality
for T, (6.10)–(6.12) give

Prob�po�
λ �w ∈ LRR�p�

λ � =̇ 1−5�1/γλ�po�p���(6.13)

In the case of Figure 5 the cross-curvature (6.11) is quite large, γ�1�2� =
1�19, indicating a substantial reversal effect, Prob�1��LRR�2�� =̇ 0�20 from
(6.13). The actual observed proportion in Figure 5 was 0.18. By compari-
son γ�1�1� = γ�1� is only 0.415, correctly indicating negligible reversal effects
for ν̂�1�. The same analysis shows that ν̂�1� is less subject to reversal effects
than is ν̂�2� even when sampling from � �2� as in the right panel of Figure 4,
γ�2�1� = 0�578 versus γ�2�2� = 0�739.

We can separate the poor performance of ν̂�2� in the Figure 1 simulation into
two parts. The efficiency formula (5.7), which depends on the angle between
�

�1�
λ and �

�2�
λ , predicts sd�ν̂�2��/sd�ν̂�1�� = 1�49, this calculation being rele-

vant to w vectors not too far away from µλ. However, ν̂�2� also suffers from
a nonlocal type of inefficiency not considered in (5.7): for the 18% of the w
vectors in LRR�2�, ν̂�2� is 2.5 times worse than ν̂�1�, measured in terms of mean
absolute deviation from ν = 5.

All of the curvature quantities have simple computational expressions
derived from our previous formulas, for example,

T
�p�
λ = −∑aλib

p
λic̆λi�wi − 1/bλi�

/∑
a2
λib

p−1
λi �(6.14)

using notation (6.5). Notice that (6.14) does not depend on the constant co
in (4.9); LRR�p�

λ = �T�p�
λ ≥ 1� is defined in purely geometric terms, a specific

region in w space as indicated in Figure 2. The cross-curvature (6.11), which
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concerns the probability that w ∼ d
�po�
λ falls into LRR�p�

λ , does involve c
�po�
o , in

notation (6.5),

γ2
λ�po�p� =

∑
a2
λib

2p−po−1
λi c̆2λi

c
�po�
o po�

∑
aib

p−1
i �2

�(6.15)

Definition (6.12) extends LRR�p�
λ outside of �λ in a manner made obvious in

remark K. The best argument for the extension, besides its simplicity, comes
from simulation results like those in Figure 5. Points w in the LRR mitigate
toward poor estimates of ν, though Figure 5 shows they are not alone in this
regard.

7. Repeated sampling. All of our numerical results have related to sit-
uation (3.17), where the design points x comprised n = 61 equally spaced
values. Suppose instead we doubled the design point density, taking n = 121
equally spaced points

x =
(
−1�−1+ 2

120
− 1+ 4

120
� � � � �1

)
�(7.1)

It seems plausible that this would greatly change our results, for example
making the estimates ν̂�1� and ν̂�2� in Figure 1 much more accurate.

In fact this is not true. All of our smoothing spline results—informations,
standard deviations, efficiencies, curvatures—change by less than 1% in going
from �3�17� to �7�1�. Except for simulation error, Figure 1 is hardly affected
by the doubled size of n. This seems like a surprising phenomenon but it is
easy to understand in terms of repeated sampling within the empirical Bayes
model of Section 3.

Going back to the original �f�y� coordinates of Section 2, the empirical
Bayes formulation (3.1) is equivalent to

f ∼ N�0� σ2Cλ� and y�f ∼ N�f� σ2I��(7.2)

with

Cλ = UcλU
′

as in (2.3). More careful notation would separate out cλ1 and cλ2, which are
infinite in the smoothing spline situation, but as before these coordinates do
not affect inferences concerning λ.

Instead of (7.2) consider the more general formulation,

f ∼ N�0� σ2Cλ� and y �f ∼ N�f� σ̃2I�(7.3)

with

σ̃2 = σ2/m(7.4)

for some positive number m. This model applies to a repeated sampling ver-
sion of (7.2): having obtained the (unobservable) vector f ∼ N�0� σ2Cλ�, we
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observe y�1��y�2�� � � � �y�m�i�i�d�∼ N�f� σ2I� so that the sufficient statistic y =∑m
1 y�j�/m is distributed as in (7.3), (7.4).
Defining

λ̃ = λ/m and C̃λ̃ = mCmλ̃�(7.5)

model (7.3), (7.4) can be rewritten as

f ∼ N�0� σ̃2C̃λ̃� and y�f ∼ N�f� σ̃2I��(7.6)

Notice that cλi = �λki�−1 from (2.4), (3.4), so that m cmλ̃� i = cλ̃i and C̃λ̃ = Cλ̃.
This makes (7.6) identical to our original model (7.2), with a name change
for the free variable λ, except that σ2 has been replaced by σ̃2. However, σ2

disappears in the transformations (2.7) that bring us to the GML empirical
Bayes model (3.1).

In other words, (7.2) and the repeated sampling version (7.3), (7.4) lead to
the same model (3.1) for estimating λ or ν. Figure 2 remains exactly the same
in both situations, as does any property of the GML estimate, for instance,
sdν�ν̂�1��. Remark G in Section 11 describes a different repeated sampling
model that gives more intuitive and familiar results.

The effect of changing x from (3.17) to (7.1) is nearly the same as going from
model (7.2) to (7.3), (7.4) with m = 2, which explains why the informations,
curvatures, etc. changed very little. In our examples the values of aλi for i ≤ 25
were almost identical in the two situations. Our formulas are insensitive to
the higher i terms, so that all the ν̂�p�, not just ν̂�1�, were nearly invariant
between (3.17) and (7.1). (This would not have been the case if our examples
concerned bigger values of ν, greater than say 25.)

As another test of sensitivity, the design points (3.17) were mapped non-
linearly to give a new x vector, xi → sin��π/2�xi� for i = 1�2� � � �61. The
resulting changes in our figures and tables were all less than 3%, again mak-
ing the point that the numerical comparisons we have been making apply with
at least moderate generality.

8. Unknown �2. Our development of the GML estimate in Section 3
assumed that σ2 was known in the sampling model y ∼ N�f� σ2I� so that
we could calculate z = U′y/σ and the sufficient vector w = z2, (3.6). Section 4
tacitly makes a similar assumption. In practice σ2 must itself be estimated,
causing some loss of accuracy for ν̂ or λ̂. This section gives a formula for
approximating the accuracy loss.

To begin with, suppose that we have available an estimate σ̃2 for σ2 that
is independent of the vector w in (4.9), and such that the random variable
R = σ2/σ̃2 has mean and variance

R ∼ �1� varR��(8.1)

Of particular interest is the chi-squared case where

σ̃2 ∼ σ2χ2
N

N − 2
with varR = 2

N − 4
�(8.2)
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The obvious substitute for w in this situation is based on z̃ = U′y/σ̃ ,

w̃ = z̃2 = Rw�(8.3)

Lemma. If w has mean and covariance w ∼ �µ�V� then
w̃ ∼ �µ�V+ varR · �V+ µµ′���(8.4)

The proof is immediate by direct calculation of the first and second moments.
We can imagine substituting w̃ for w in Figures 2 or 3, while still using

the GML or Cp estimates as pictured. The conditional mean and covariance
given w are

w̃�w ∼ �w� varR ·ww′��(8.5)

so if varR is small then w̃ will lie near w and the estimate of ν or λ will not be
much affected. We can use (8.4) to approximate the overall variance increase
when w is replaced by w̃.

Let

Iλ = η̇λ/iλ�(8.6)

(3.20), (5.4), this being the influence function (3.21) of λ̂, evaluated at w = µλ.
A first-order Taylor series expansion gives

λ̂− λ =̇ I′λ�w − µλ��(8.7)

and likewise

λ̃− λ =̇ I′λ�w̃ − µλ�(8.8)

since the estimate λ̃ based on w̃ is the same function of its vector argument.
To first order the ratio of variances is

var�λ̃�
var�λ̂� =̇ I′λṼλIλ

I′λVλIλ
�(8.9)

with Vλ and Ṽλ being the covariance matrices of w and w̃.
The same ratio applies to var�ν̃�/var�ν̂� since Iν = Iλ · �iλ/iν�, and iλ/iν

cancels out of (8.9). The lemma then gives a convenient approximation for the
ratio of standard errors.

Theorem 4.

sterrν�ν̃�
sterrν�ν̂�

=̇ 1+ varR
2

{
1+ �η̇′

λµλ�2
η̇′
λVλη̇λ

}
�

= 1+ varR
2

{
1+ cop

�∑aλib
p−1
λi �2

�∑a2
λib

p−1
λi �

}
�

(8.10)

this last expression, based on �4�7� and �4�11�, applying when ν̂�p� is used to
estimate ν in family � �p�, �4�9�.
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Table 1
Ratio sterr�ν̃�/sterr�ν̂� from Theorem 4, for N = 40 in (8.2), x as in (3.17)

p=1, p=2, p=2�
df � co =0�5 co =3/8 co from (4.17)

3: 1.06 1.04 1.08
5: 1.09 1.05 1.22
7: 1.13 1.07 1.37
9: 1.16 1.08 1.52

In practical applications of smoothers there are usually ample degrees of
freedom for estimating σ2. The higher numbered coordinates of v = U′y are
nearly N�0� σ2� distributed because of the smoothness assumption so

σ̃2 =
n∑

n−1−N

v2i /�N − 2�(8.11)

approximately satisfies (8.1), (8.2). Table 1 shows some results from (8.10),
using N = 40 and x as in (3.17), n = 61. As a check on the formula,
Monte Carlo simulation gave sterr8�ν̃�/sterr8�ν̂� = 1�14 in the case p = 1,
ν = 8, x as in (3.17), compared to 1.145 from (8.10). This is a favorable situa-
tion for Theorem 4. The local approximation (8.8) would not fare as well in the
face of substantial end zone or reversal region effects. Estimate (8.11) depends
only on the higher coordinates of v = U′y. Conversely ν̂ and ν̃ only depend on
the lower coordinates when ν is small. In our example we could take them to
be the MLEs based on just the first 21 coordinates of v with virtually no loss
of Fisher information, (5.5), and thus achieve perfect independence from σ̃2.

9. End zone calculations. The GML estimate ν̂�1� has a tendency toward
underestimating ν, that is, oversmoothing, even within its own MLE family
� �1�. The spike of 44 cases having ν̂�1� = 2 in the left panel of Figure 1 is a
worrisome reminder of this tendency. All 44 cases had w vectors falling into
the “end zone” shown in Figures 2 and 3, a phenomenon examined briefly in
this section.

As λ → ∞ the vector η̇λ becomes parallel to the line of expectations �µλ =
1+ 1/�λk��, (3.15), since (2.4) and (4.11) give

lim
λ→∞

{
− λ2

cop
η̇λi

}
= 1

ki

�(9.1)

For any value of p this makes �∞, the limit of the flat spaces �λ = �w� η̇′
λ�w−

µλ� = 0�, pass through 1 orthogonally to the line of expectations, as indicated
in Figures 2 and 3. Since �λ is the set of w vectors for which λ is a solution
to the MLE equation l̇λ�w� = 0, it is reasonable to suppose that the region
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beyond�∞, called the end zone, will correspond to cases where the MLE occurs
at the extreme end of the family, at ν̂ = 2 in the smoothing spline case.

In fact, 57 of the 600w vectors in the first simulation experiment of Figure 1
fell into the end zone; 13 of them had ν̂�1� > 2, because of the “reach-back”
phenomenon illustrated by w2 in Figure 3, leaving 44 with ν̂�1� = 2; a further
19 of these 44 had ν̂�2� > 2, showing the greater reach back of � �2�

λ vis-a-vis
�

�1�
λ indicated in Figure 3.
Define Si = �1/bλi − 1��wi − 1� and

S =∑
Si =∑(

1
bλi

− 1
)
�wi − 1��(9.2)

Since �1/bλi−1� = aλi/bλi = 1/�λki�, (2.4), S is proportional to
∑�1/ki��wi−1�,

and Figure 2 makes it easy to see thatw is in the end zone if and only if S < 0.
For the GML family � �1�, (3.7), we have

Si

ind∼
(

1
bλi

− 1
)(

χ2
1

bλi

− 1
)

�(9.3)

a convenient formula for end-zone calculations.
S3, the first component of S in the smoothing spline case, by itself nearly

determined the sign of S (and inclusion in the end zone) in the experiment
of Figure 1. Table 2 shows why. In this case the value of bλi is only 0.030,
causing S3 in (9.3) to vary over a much greater range than the other Si’s. All
57 end-zone w vectors had S3 < 0.

As a remedy for this overdependence on S3, the following ad hoc modifica-
tion to µ̂�1� was investigated: if ν̂�1� = 2 then the GML estimate was recom-
puted ignoring w3, that is, by taking the sum in (3.23) from 4 to n instead of
from 3 to n. This had a good effect in Figure 1, reducing the left-hand spike
from 44 to 21 and moving ν̂ closer to ν = 5, but of course it worsens estimation
if the true ν equals 2. In effect this scheme distorts the level surfaces of estima-
tion from the flat spaces �λ̂ seen in Figure 2 to something more complicated,
and hopefully more robust, but no general recommendations are possible at
this point.

Remark L in Section 11 discusses an extension of the exponential families
� �p� that helps quantify end-zone behavior.

Table 2

Quantiles S
�α�
i for the components of S, (9.2); for � �1�, ν = 5, as in Figure 1. S3 by itself nearly

determines the sign of S and the inclusion of w in the end zone

i 0.025 0.05 0.10 0.50 0.90 0.95 0.975 b�i

3 −31�8 −28�5 −15�3 473.2 2976.4 4239.8 5555.0 0.030
4 −4�3 −4�2 −4�0 6.1 57.9 84.1 111.2 0.188
5 −1�1 −1�1 −1�1 −0�0 5.3 8.0 10.9 0.471
6 −0�4 −0�4 −0�4 −0�2 1.2 1.8 2.5 0.709
7 −0�2 −0�2 −0�2 −0�1 0.4 0.6 0.9 0.844
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10. Estimation of f . Our interpretation of Figure 1 tacitly assumed that
an estimator ν̂ should be evaluated in terms of its accuracy in estimating
the degrees of freedom ν. However the ultimate goal of smoothing is to have
f̂λ̂ = Aλ̂y be a good estimator of f . One might imagine that ν̂�2� was really not
inferior to ν̂�1� in the left panel of Figure 1, but was just doing a better job of
tracking the different f ’s involved in the simulation. This section argues that
this is not the case, and that the estimation of ν by ν̂ is a reasonable perfor-
mance criterion, at least in the GML empirical Bayes context of Section 3. We
will continue to use notation such as f̂λ̂ in place of f̂λ�ν̂�, remembering that λ
is a monotone function of ν.

The orthogonal transformations in (2.7) show that

�f − f̂λ̂�2/σ2 = �g − ĝλ̂�2�(10.1)

ĝλ̂ = aλ̂z, while

Eλ��g − ĝλ̂�2 �z� = ��aλ − aλ̂�z�2 + tr�aλ�
= ∑�bλ̂i − bλi�2wi + ν

(10.2)

according to (3.2), (3.3). Moreover, a Taylor expansion of λ̂�w� around w = µλ

yields

bλ̂i − bλi =̇ aλibλi∑
aλjbλj

�ν̂ − ν��(10.3)

Here we have used (3.19) and Fisher consistency ν̂�µλ� = ν.
Combining (10.1)–(10.3) gives the useful approximation

Eλ��f − f̂λ̂�2/σ2 �z� =̇ ν + �ν̂ − ν�2Q�w��(10.4)

where Q�w� = �∑a2
λib

2
λiwi�/�

∑
aλibλi�2. If ν̂�1��w� and ν̂�2��w� are competing

estimates of ν, we can rewrite (11.4) as

R�w� ≡ Eλ��f − f̂λ̂�2��2�z� − νσ2

Eλ �f − f̂λ̂�1��2�z� − νσ2
=̇ �ν̂�2� − ν�2

�ν̂�1� − ν�2 �(10.5)

R�w� is the ratio of a posteriori “excess risk”, the increase in the conditional
squared estimation error of f that comes from having to estimate ν. The point
here is that R�w�, a measure of estimation efficiency for f , depends directly
on how well ν̂�1� and ν̂�2� estimate ν. In the simulation experiment of Figure 1,
hereforth called “Experiment 1,” the median of �ν̂�2� − ν�2/�ν̂�1� − ν�2 equalled
1.58, agreeing reasonably well with our previous efficiency comparisons.

Formula (10.5) was checked for Experiment 1. Let R�w� and R̂�w� be the
exact and approximate ratios in (10.5), the exact value being evaluated from
(10.2); their logs had mean and standard deviation

log�R�w�� = 0�78± 2�47� log R̂�w� = 0�72± 2�59(10.6)

and correlation 0.986. R�w� exceeded 1, indicating a preference for GML over
Cp, in 405 of the 600 trials.
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A different, unconditional, comparison is obtained by taking the expectation
over z in (10.7) but ignoring the correlations between λ̂�w� and the individ-
ual wi,

Eλ

{�f − f̂λ̂�2��2
σ2

− �f − f̂λ̂�1��2
σ2

}
=̇ Eλ

∑{�bλ̂�2�i − bλi�2
bλi

− �bλ̂�1�i − bλi�2
bλi

}
=̇ qλEλ��ν̂�2� − ν�2 − �ν̂�1� − ν�2�

=̇ qλ

iν

[
1

E�p1� p2�2
− 1

]
�

(10.7)

with qλ = �∑a2
λibλi�/�

∑
aλibλi�2. Here we have used (11.3), (5.5), (5.7) and

Eλ�wi� = 1/bλi. For Experiment 1 the last expression in (10.7) yields 0.46 as
the estimated excess squared error risk for Cp compared to GML.

An exact version of (10.7) that takes into account the correlation between
λ̂�w� and wi is based on the following lemma, taken from Section 2 of Efron
and Morris (1973).

Lemma.

Eλ��bλ̂�w�i − bλi�2wi� = E
�i�
λ

{�bλ̂�w�i − bλi�2
bλi

}
�(10.8)

where E
�i�
λ indicates expectation with respect to

wi ∼ χ2
3/bλi independently of wj

ind∼χ2
1/bλj for j $= i�(10.9)

Combined with (10.1), (10.2), the lemma gives

Theorem 5.

Eλ

{�f − f̂λ̂�w��2
σ2

}
= ν +∑

E
�i�
λ

{�bλ̂�w�i − bλi�2
bλi

}
�(10.10)

A decision-theoretic approach to minimizing Eλ�f − f̂λ̂�w��2 would find esti-
mators λ̂�i��w� that were optimal in some sense with respect to the loss func-
tion �bλ̂i − bλi�2/bλi. [Notice that we could use different estimators λ̂�i��w� for
different components i.] A simpler expedient is to estimate λ in the ith case
by the MLE with respect to (10.9). The same calculation as in (3.22) shows
that the ith MLE λ̂�i� satisfies (3.23) for the �n+ 2�-vector w�i�,

w�i� = �w1�w2� � � � �wi−1�wi/3�wi/3�wi/3�wi+1� � � � �wn��(10.11)

Dividing wi into three smaller parts usually makes λ̂�i� bigger than the origi-
nal GML estimate λ̂, and ν̂�i� smaller than ν̂. A Taylor series expansion gives
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an approximation based on l̈λ̂�w�, (3.22),

λ̂�i� =̇ λ̂ · �1+ aλ̂i/�−l̈λ̂�w���(10.12)

Since the GML estimator ν̂ itself tends to underestimate ν there is not much
incentive for actually using ν̂�i� in place of ν̂.

We can think of Experiment 1 as an efficient way to compare the perfor-
mance of GML and Cp in estimating f over a wide variety of cases, namely
for 600 independent f vectors selected according to f ∼ N�0� σ2Cλ�, (7.2). The
superiority of GML in this comparison is almost guaranteed by its status as
the empirical Bayes MLE. This does not mean that GML is better for every
f . Averaging over different ensembles of f ’s could easily tip the comparison in
favor of Cp, as suggested by the simulation in Figure 4.

Section 3 of Stein (1990) gives a different, and elegant, approach to results
like (10.5) and Theorem 5. Working in the � �1� context, with the sampling
points xi equally spaced, Stein shows that in a precise sense the asymptotic
excess prediction risk using Cp is twice that for GML. (This result applies to
linear rather than cubic splines.)

Wahba (1985) presents nine small sample simulations as a supplement to
her asymptotic arguments favoring Cp over GML [actually GCV (4.21) over
GML (3.28).] Starting with a known f , she generates y ∼ N�f� σ2I�, computes
f̂λ̂�1� and f̂λ̂�2� and compares them as estimates of f . Ten y’s are generated for
each of three different f ’s and three different σ ’s, but it is the choice of f that
dominates the results, from the point of view of Figure 1. Wahba’s experiment
concerns three vectors f rather than 600. The three f ’s are interesting, repre-
senting unimodal, bimodal and trimodal linear combinations of beta functions.
All three favor Cp over GML, but not more decisively than many of the real-
izations of Experiment 1.

It is important to notice that the results in this paper do not depend on
“f .” Everything, from the geometric characterization of Figures 2 and 3 to the
standard errors, efficiencies and curvatures of Sections 5 and 6, is determined
by U and aλ in (2.3). In the smoothing spline case U and aλ are themselves
determined by the covariate vector x. Moreover, as discussed in Section 7, our
numerical results are quite forgiving of substantial changes in x.

This point of view has a great advantage: it isolates the estimation of
the smoothing parameter λ, eliminating f as a nuisance parameter. In some
ways, though, this simplification is an oversimplification. Current work by
the author [Efron (2000)] compares Cp and GML in the standard frequentist
model where f is fixed. In this context the possible biases of GML play a major
role, making Cp more attractive, though it is still badly flawed by the reversal
instabilities of Section 6.

11. Remarks, details and summary. Remarks on our results, includ-
ing some proofs, details, and technical points, appear in this section, which
concludes with a summary of the paper’s main ideas.
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A. Positive stable laws. An exponential family dη�w� = eηw−ψ�η�do�w� hav-
ing η = −cob

p and µ = 1/b, must satisfy ψ′�η� = 1/b = �−η/co�−1/p, and so

ψ�η� = −co
α

(−η

co

)α

�α = �p− 1�/p�(11.1)

as in (4.4)–(4.7). If w is a positive variate we have∫ ∞

0
eηwdo�w� = eψ�η� = e−�c1−α

o /α�·�−η�α �(11.2)

According to Feller [(1971), Theorem 1 of Section XIII.6], do�w� must then be
the density of a positive stable law of order α = �p− 1�/p.

For co = 1, (12.2) becomes
∫∞
0 eηwdo�w� = e−�−η�α/α. Changing variables to

w̃ = c1w and η̃ = η/c1, with c1 = c
�1−α�/α
o , gives∫ ∞

0
eη̃w̃do�w̃/c1�/c1 = e−�c1−α

o /α�·�−η̃�α �(11.3)

Laplace transform theory says that do�w̃/c1�/c1 in (11.3) must represent the
same density as do�w� in (11.2). In other words, the choice of co in �4�2� or
�4�9� scales the carrier density do�·� by a multiplicative factor of c�1−α�/α

o .
For p = 2, α = 1/2, do�w� is the “inverse Gaussian” density [Feller (1971),

Section XIII.3] defined in terms of φ�x� = e−x2/2/
√
2π by

do�w� = �2co/w3�1/2φ
((

2co
w

)1/2)
�(11.4)

d
�2�
b �w� = e−co�b2w−2b�do�w� is the density (4.2) appearing in Figure 4, used

with co = 1�334 to generate the w vectors in the simulation of Figure 4.

B. Repeated sampling interpretation of co. The choice of the constant co in
exponential family (4.2) affects the variance but not the expectation ofw, (4.7),
which suggests that co has a sample size interpretation. The following result
is easy to verify for positive integer co: if w1�w2� � � � �wco

are independently
distributed according to density (4.2) with co = 1, then w̄ = ∑

wl/co has
density (4.2) with constant co.

C. lim�� �p�� = � �1�. Writing d
�p�
b �w� in (4.2) as

d
�p�
b �w� = e−co�bpw−�bp−1−1�α�eco/αd�p�

o �w�(11.5)

and letting p → 1, co = 1/2, the exponent in (12.5) goes to − 1
2 �bw− log�b�� as

in the � �1� density (4.1).
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D. Computational methods for smoothing splines. The Splus command
smoothspline�x�y� spar = λ� produces f̂ = Aλy but not the matrix Aλ. How-
ever, setting y = ei, the ith coordinate vector, yields f̂ equal to the ith
column of Aλ, giving Aλ by successive use of e1�e2� � � � �en. A standard eigen-
decomposition of Aλ then gives U and aλ in (2.3). This need only be done for
one value of λ, say λo, since

aλ = aλo

/[
aλo

+ λ

λo

�1− aλo
�
]
�(11.6)

and U does not depend on λ.

E. Fixed-frame smoothers. The fact that U in (2.3) does not depend on
λ, forming a “fixed frame” for the transformations (2.7), is essential to our
methods. Less important is the splinelike choice of eigenvalues aλi = �1 +
λki�−1, (2.4). This produces convenient algebraic expressions such as (3.19)
and makes the line of expectations in Figure 2 and 3 genuinely linear, but is
not crucial to the computations. We can proceed more generally, for example,
with the equation

∑
ḃλi�wi − 1/bλi� = 0 replacing (3.23), and still carry out

the calculations, albeit with increased numerical difficulties.
Hastie’s 1996 paper on pseudosplines begins with any convenient fixed

frame (“seed basis”), for example orthogonal polynomials in x, and goes on
to construct approximations of form (2.3) for a general family of smoothers.

F. The estimator ν̂�1�5�. In an obvious sense ν̂�1�5� is a compromise esti-
mator, conceivably more robust than either ν̂�1� or ν̂�2�. Both experiments
in Figure 1 were also analyzed using ν̂�1�5�, but with inconclusive results:
ν̂�1�5� outperformed ν̂�2� modestly in both simulations, but still gave eccentric
results in Experiment 1. The cross-curvature γ�1�1�5� = 0�78 is less than
γ�1�2� = 1�19 but still big enough to suggest serious LRR effects in (6.13).

G. Complete repeated sampling. A complete repeated sampling version of
(7.2) is based on the model

fl ∼ N�0� σ2Cλ� and

yl�fl ∼ N�f� σ2I� independently for l = 1�2� � � � �m�
(11.7)

We observe y1�y2� � � � �ym and wish to infer λ. This differs from (7.3), (7.4) in
that there are repeated (unobservable) realizations of f as well as of y. Each
yl gives zl = U′yl/σ and wl = z2l , where the wl vectors are independently
distributed according to (3.8). The average vector w̄ = ∑

wl/m is sufficient
for λ. It follows essentially the same curved exponential family as before, (3.8),

except that instead of (3.7) we have w̄i

ind∼χ2
m/�mbλi�.

Figure 2, with w replaced by w̄, applies exactly as drawn. As m gets large,
w̄ moves closer to the line of expectations since

w̄ ∼ �µλ� diag�2/mb2λi���(11.8)
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In other words we obtain the nice “local” behavior of maximum likelihood esti-
mation, leading to the usual asymptotic optimality properties, obviating con-
cerns about nonlocal pathology due to the local reversal region or the end zone.

The trouble with model (11.7) is that it does not apply to the usual smooth-
ing situation, where more data collection can provide more data vectors yl,
but all of which still refer to the same unknown f . This leads to the partial
repeated sampling model of Section 7, which does not enjoy the usual asymp-
totic properties of maximum likelihood estimation.

H. Estimating equation unbiasedness. The estimators λ̂�p�, (4.12), and ν̂�p�

enjoy a form of unbiasedness relating to estimating equations. For any vector
b having positive components, define

Q
�p�
b �w� =∑[

b
p
i wi −

p

p− 1
b
p−1
i

]
�(11.9)

so λ̂�p� = argminλ�Q�p�
bλ

�w��. Suppose that the true expectation of w is 1/bo

for some vector bo, as in (3.12) for instance. Then the expectation of Q is
Ebo

�Q�p�
b �w�� =∑�bp

i /boi − �p/�p− 1��bp−1
i �, having gradient vector

∇bEbo

{
Q

�p�
b �w�} = p

(
� � � � b

p−2
i

[
bi

boi

− 1
]
� � � �

)′
�(11.10)

It is easy to see from (12.10) that Ebo
�Q�p�

b �w�� is minimized at b = bo.

This means that the estimating equation Q
�p�
bλ

�w�, whose minimization
gives λ̂�p�, has its minimum expected value at bλo

when λo is the true param-
eter value, no matter which family � �po� is giving w. This kind of “estimating
equation unbiasedness” bolsters our contention that all the estimators λ̂�p�

are estimating the same thing. Estimating equation unbiasedness is not a
universal property; it fails for instance if we change the Cp criterion (4.13) to
�y − f̂λ�2 + cσ2 tr�Aλ� for some value other than c = 2.

I. Better estimates of standard error. The first-order approximation for the
standard deviation of an MLE, sd�ν̂� =̇ 1/i1/2ν , (5.5), is extended to higher order
in formula (10.1) of Efron (1975),

sd�ν̂� =̇ 1

i
1/2
ν

�1+ γ2
ν + 4<2

ν/iν�1/2�(11.11)

where γ2
ν is the squared curvature γ2

λ�ν�, (6.4), and <ν is a type of “naming
curvature” having to do with the relationship between ν and the optimum
local representation of � �p�. [Formula (12.11) does not include a bias term
discussed in Efron (1975).] It can be shown that for the MLE ν̂�p� in � �p�,

<2
ν = �∑a2

λibλi�2
2�∑aλibλi�4

�(11.12)
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not depending on p. In the case p = 1, ν = 8, (12.11) gives

sd�ν̂� = 1�195 · �1+ 0�0760+ 0�1331�1/2 = 1�32�

compared to the simulation estimate 1.37.

J. Cross-Validation. Ordinary cross-validation, as opposed to GCV, (8.21),
is often advocated as a selection criterion; see Section 3.2 of Green and
Silverman (1994). Section 7 of Efron (1986) discusses why this is appropriate
when the pairs �xi� yi� are thought of as randomly sampled from a bivari-
ate distribution, but not in the regression context of this paper where x is
considered fixed.

K. Proof of Theorem 3. For a given value of λ we can standardize the
curved exponential family (4.5) to have µλ = 0 and Vλ = I via the linear
transformations

w → V
−1/2
λ �w − µλ� and η → V

1/2
λ η(11.13)

without changing the likelihood as a function of λ, or values of iλ, Mλ, γλ or
γ2
λ�p0� p�. In this coordinate system iλ = �η̇λ�2 and (6.1) becomes

Mλ =
( �η̇λ�2 �η̇λ��η̈λ�Cos
�η̇λ��η̈λ�Cos �η̈λ�2

)
where Cos = η̇′

λη̈λ

�η̇λ��η̈λ�
�(11.14)

Moreover, comparing (6.2) and (6.6) gives

γ2
λ = �η̇λ�2�η̈λ�2�1− Cos2�

�η̇λ�6
= �oλ�2

i2λ
�(11.15)

The observed Fisher information in a curved exponential family is −l̈λ�w� =
iλ−η̈′

λ�w−µλ�, equaling iλ−η̈′
λw now that µλ = 0. Forw in�λ� η̈′

λw = o′
λw by

orthogonality so, since T in (6.7) is invariant under transformations (11.13),

− l̈λ�w� = iλ

[
1− o′

λ

iλ
w
]
= iλ�1−T��(11.16)

verifying (6.8). It is clear from (11.16) that the shortest vector w in �λ satis-
fying −l̈λ�w� = 0 must be

w0 = iλ
�oλ�2

oλ = 1
γλ

oλ

�oλ�
�(11.17)

using (11.15), which verifies (6.9). Finally, (6.10) follows directly from defini-
tion (6.7) and cov�p0�

λ �w� ≡ V
�p0�
λ .

In the standardized coordinates (11.13), the extension (6.12) of LRR�p�
λ out-

side of �λ is made parallel to η̇λ,

LRR�p�
λ = �l̇λ�w� = 0 and T ≥ 1� ⊕ c η̇λ�(11.18)

c ∈ �−∞�∞�. This gives good results in simple situations such as Fisher’s
circle model [Efron (1978)], but is justified here mainly by simulations like
those in Figure 6.
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L. Extending the Families � �p�. The curved exponential families � �p�,
(4.9), can be extended in a natural way into the end zone. Letting θ ≡ 1/λ in
(2.4), we can write the components of aλ as

aθi = θ

θ + ki

for i = 1�2� � � � � n�(11.19)

The components of bθ = 1− aθ = k/�θ + k� are positive for

θ ∈ �−kmin�∞��(11.20)

where kmin is the minimum positive ki value, kmin = k3 for smoothing splines.
Using b

p
θi in (4.9), the curved family � �p� is now defined for θ in �−kmin�∞�,

which extends the line of expectations �µθ = 1+ θ/k� into the end zone.
We can now have estimates θ̂ less than zero in Figure 2, corresponding to

w vectors in the end zone. This is useful way to quantify how far in the end
zone w may lie.

Summary. This paper compares the Cp and GML criteria for selecting the
smoothing parameter of a scatterplot smoother. The use of curved exponential
families permits a finite-sample analysis, avoiding the mathematical and def-
initional difficulties of asymptotics for the smoother problem, at the expense
of considerably less generality.

Some main conclusions.

1. Both Cp and GML have simple geometric descriptions, as shown in Figures
2 and 3, that are independent of any probability models for the data.

2. Both Cp and GML are maximum likelihood estimates, each within its own
one-parameter curved exponential family. These two are members of a class
of curved exponential families described in Section 4, each member of which
defines its own selection criterion.

3. Exponential family theory gives simple approximations for the standard
errors and efficiencies of the Cp and GML estimators; see Section 5.

4. The GML curved family, described in Section 3, is based on a familiar
normal-theory hierarchical (or empirical Bayesian) model. GML performs
well within this family as shown in the left panel of Figure 1 and is
its recommended selection criterion, perhaps after augmentation by bias
corrections.

5. GML can be badly biased toward oversmoothing when the data is sampled
from the curved family for which Cp is the MLE, as shown in the right
panel of Figure 4.

6. The Cp exponential family, which offers the only maximum likelihood jus-
tification for the Cp estimate, is useful for challenging GML but not really
believable in its own right as a sampling model for the data in a smoothing
problem, as seen in the top panel of Figure 4, for instance.

7. The Cp estimator performs erratically even within its own exponential fam-
ily. Section 6 shows that the trouble lies in that family’s very large curva-
ture, which produces the bad estimation effects seen in Figure 6.
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