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NONASYMPTOTIC BOUNDS FOR
AUTOREGRESSIVE TIME SERIES MODELING

By Alexander Goldenshluger and Assaf Zeevi1

University of Haifa and Stanford University

The subject of this paper is autoregressive (AR) modeling of a station-
ary, Gaussian discrete time process, based on a finite sequence of obser-
vations. The process is assumed to admit an AR(∞) representation with
exponentially decaying coefficients. We adopt the nonparametric minimax
framework and study how well the process can be approximated by a finite-
order AR model. A lower bound on the accuracy of AR approximations is
derived, and a nonasymptotic upper bound on the accuracy of the reg-
ularized least squares estimator is established. It is shown that with a
“proper” choice of the model order, this estimator is minimax optimal in
order. These considerations lead also to a nonasymptotic upper bound on
the mean squared error of the associated one-step predictor. A numerical
study compares the common model selection procedures to the minimax
optimal order choice.

1. Introduction. The standard methods for estimating parameters of
time series are based on the assumption that the observations come from
an autoregressive (AR), moving average (MA), or mixed (ARMA) model of
known orders. This assumption can rarely be justified in practice, and the
less stringent assumption is that the time series data are observations from a
linear stationary process. A common approach to modeling linear stationary
processes is based on an AR approximation. In this framework a finite order
AR model is fitted to the observations. The order of the AR model should
provide an “optimal” finite AR approximation to the process, and it is usu-
ally chosen by selection procedures based on the data. This nonparametric
AR approach to modeling linear stationary processes has been investigated
by Shibata (1980), Bhansali (1981, 1986), An, Chen and Hannan (1982) and
Hannan and Kavalieris (1986).
Shibata (1980) considered the problem of predicting a Gaussian infinite-

order AR process by fitting a finite AR model. The notion of optimality for
the model selection procedure proposed by Shibata (1980) is based on an
asymptotic lower bound on the mean squared prediction error. Specifically,
the procedure is asymptotically efficient if it attains the lower bound asymp-
totically. Shibata (1980) also established that the final prediction error (FPE)
[Akaike (1970)] and the AIC [Akaike (1974)] criteria are asymptotically effi-
cient in the above sense, provided that the linear process does not degen-
erate to a finite order autoregression. A similar result has been obtained
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by Bhansali (1986) for the AR transfer function criterion (CAT) proposed by
Parzen (1974).
Another motivation for fitting an AR model is the estimation of the spectral

density function. Berk (1974) used AR approximation to estimate the spectral
density of a linear process. It was shown there that the order of the approxi-
mating AR model should increase with the number of observations to ensure
the consistency of the associated spectral density estimator. Shibata (1981)
suggested another definition of selection procedures optimality which is based
on an asymptotic lower bound for the relative integrated squared error in
estimating the spectral density function. It was shown there that the FPE
and AIC criteria are asymptotically efficient in this sense, provided that the
linear process does not degenerate to a finite-order autoregression. Similar
results for the CAT criterion have been obtained by Bhansali (1986). Some
recent results on AR approximation can be found in Gerencsér (1992) and
Bülmann (1995).
In spite of the fact that the FPE, AIC, and CAT criteria are asymptotically

efficient as described above, the finite sample behavior of these selection pro-
cedures is not so clear. The definitions of optimality adopted in Shibata (1980,
1981) and Bhansali (1986) are essentially asymptotic. The assumption that
the underlying linear process does not degenerate to a finite autoregression
is also based on asymptotic considerations. If this assumption is violated, the
AIC and FPE overestimate the true model order, and a different penalty term
is called for. In particular, by penalizing each parameter by a factor of lnn,
with n being the sample size, one obtains the minimum description length
(MDL) principle of Rissanen (1983), and the BIC criterion of Schwarz (1978).
These criteria lead to consistent estimation of the model dimension in the
case of an underlying finite-order autoregression. However, if the underlying
process does not degenerate to a finite autoregression, they are not asymp-
totically efficient in the aforementioned sense [cf. the discussion in Shibata
(1980), page 161]. Moreover, even if the underlying “true” linear process does
not degenerate to a finite-order autoregression, the coefficients in its AR(∞)
representation can be small. In these situations, effectively the model is “close”
to being finite-dimensional, and the behavior of the asymptotic efficient proce-
dures can be poor even for “large” sample sizes. Several interesting questions
arise in this context. Given a fixed number of observations from a linear pro-
cess, how well can the underlying process be modeled using a finite-order
autoregression? How can the finite sample behavior of selection procedures be
assessed? It is evident that another notion of optimality is needed in order to
address these questions.
In this paper we propose to use the nonparametric minimax approach to

measuring the accuracy of an AR approximation. This framework is very com-
mon in nonparametric estimation problems such as nonparametric regression,
density estimation and spectral density estimation. According to this method-
ology, we assume that the linear process belongs to a certain class, and the
quality of an approximating AR model (and the associated one-step predic-
tor) is measured by its worst-case modeling (respectively, prediction) risk over
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the class. Establishing nonasymptotic upper and lower bounds on the risk,
one can assess the accuracy of an estimator. Throughout the paper we con-
sider the class of linear processes admitting an AR(∞) representation with
exponentially decaying coefficients. The practical importance of the class fol-
lows from the fact that it includes (but is not limited to) all causal invertible
ARMA�p�q� processes. We derive a nonasymptotic lower bound on the accu-
racy of an AR approximation and show that the least squares estimator with a
“proper” choice of the order is minimax optimal in order. These considerations
lead also to a nonasymptotic upper bound on the mean squared error of the
associated one-step predictor. Further, we present some numerical examples
comparing common selection procedures (FPE, AIC and MDL) to the min-
imax optimal one. We note that our derivation is based on an exponential
inequality on deviations of the sample covariances from their expectations;
these results are of independent interest. The same technique has been used
in Goldenshluger (1998) for derivation of nonasymptotic bounds in estimating
impulse response sequences of linear dynamic systems.
The rest of the paper is organized as follows. In Section 2 we state for-

mally the problem of nonparametric AR approximation in the minimax frame-
work. Section 3 describes the construction of the estimator, and presents main
results. In Section 4 we present our numerical examples. Some remarks are
collected in Section 5. The proofs are given in Appendices A, B and C.

2. Minimax framework and overview of results. Let �Xt�t∈Z be a
real-valued, purely nondeterministic, Gaussian stationary process with zero
mean, E�Xt�2 = 1, spectral density function f�λ�, λ ∈ �−π�π	 and covariance
function γ�k�, k ∈ Z. According to the Wold decomposition theorem, �Xt�t∈Z
can be represented as an MA�∞� process,

Xt =
∞∑
j=0

ψjεt−j� ψ0 = 1�
∞∑
j=0

ψ2j < ∞�(1)

where 
εt�t∈Z is a sequence of independent Gaussian innovations withEεt = 0
and Eε2t = σ2ε . Assume that the MA transfer function ��z� = ∑∞

j=0ψjz
j has

no zeros in the unit disc �z� ≤ 1, z ∈ C and
∑∞

j=0 �ψj� < ∞; then the linear
process �Xt�t∈Z can also be represented as an invertible AR(∞) process,

Xt =
∞∑
j=1

φjXt−j + εt� t ∈ Z�(2)

where the coefficients φj, j = 1� � � � �∞ are given by 1/��z� = 1− ∑∞
j=1φjz

j.
Given observations X1� � � � �Xn from the process �Xt�t∈Z, we are interested in
modeling �Xt�t∈Z and predicting the future valueXn+1. The representation (2)
motivates the use of AR approximation to approach the problems of modeling
and prediction.
Assume that the process �Xt�t∈Z belongs to a certain family, and the qual-

ity of an approximating AR model (and the associated one step predictor)
is measured by the worst-case modeling (respectively, prediction) error over
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the family. The problem of modeling the process �Xt�t∈Z by a finite order
AR model is identical to estimating the corresponding coefficient sequence
φ = �φ1� φ2� � � �� in the AR(∞) representation of �Xt�t∈Z. More formally, let �
be a family of stationary Gaussian processes �Xt�t∈Z with zero mean and unit
variance, admitting an AR(∞) representation (2). Let φ̂ = φ̂�X1� � � � �Xn� be
an estimator of the sequence φ = �φ1� φ2� � � ��; then the quality of the estima-
tor φ̂ is measured by its maximal risk over � ,

�m�φ̂�� 	 �= sup
�Xt�∈�

[
E�φ̂ − φ�2]1/2�

where �·� is the standard l2 norm in the space of sequences. The minimax
estimator φ̂∗ = φ̂∗�X1� � � � �Xn� is the one minimizing the maximal risk,

�∗
m�n�� 	 �= inf

φ̂
�m�φ̂�� 	 = inf

φ̂
sup

�Xt�∈�

[
E�φ̂ − φ�2

]1/2
�

where the infimum is taken here over all possible estimators. Typically, the
minimax estimators cannot be constructed; therefore, as usual in nonparamet-
ric estimation, we will be interested in optimal in order estimators for which

�m�φ̂�� 	 ≤ C�n��∗
m�n�� 	� sup

n
C�n� < ∞�(3)

Similarly, in the problem of the prediction ofXn+1 using observationsX1� � � � �

Xn we will measure the accuracy of a prediction method X̂n+1�X1� � � � �Xn�
by its maximal prediction error over � ,

�p�X̂n+1�� 	 �= sup
�Xt�∈�

[
E�X̂n+1 − Xn+1�2 − σ2ε

]
�

The minimax prediction error is defined as the infimum of the maximal pre-
diction error, over all possible prediction methods,

�∗
p�n�� 	 �= inf

X̂n+1
�p�X̂n+1�� 	 = inf

X̂n+1
sup

�Xt�∈�

[
E�X̂n+1 − Xn+1�2 − σ2ε

]
�

In what follows, we will be interested in optimal in order predictors for which
(3) holds with �m replaced by �p.
Throughout the paper we restrict attention to the following family �ρ�l�L�

of stationary Gaussian processes �Xt�t∈Z satisfying EXt = 0, E�Xt�2 = 1. For
given finite real numbers ρ > 1, 0 < l < 1 and L > 1, define �ρ�l�L� as

�ρ�l�L� �= 
�Xt�� 0 < l ≤ ���z�� ≤ L� for �z� ≤ ρ��
where��·� is the MA(∞) transfer function. In words, the MA(∞) transfer func-
tion of the process �Xt�t∈Z ∈ �ρ�l�L� is analytic in an open set containing the
disc �z� ≤ ρ, and bounded from above and below by constants L and l, respec-
tively. The class �ρ�l�L� contains Gaussian stationary processes with spectral
density function f�λ� bounded away from zero and infinity, which can be con-
tinued analytically over the interior of the strip 
�x+iy� ∈ C� �y� < lnρ� in the
complex plane. The parameters l and L in the definition of �ρ�l�L� guarantee
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uniform lower and upper bounds on the spectral density function. This, in turn,
implies uniform bounds on the eigenvalues of the covariance matrices of all
orders [cf. Grenander and Szegö (1984)]. The practical importance of the class
�ρ�l�L� stems from the fact that it contains causal invertible ARMA �p�q�
processes with proper restrictions on the magnitude of the coefficients. For
example, all MA(1) processes with the coefficient �ψ1� ≤ ρ−1 min
1− l�L − 1�
belong to �ρ�l�L�. The processes from �ρ�l�L� admit AR(∞) representation
with uniformly bounded exponentially decaying coefficients.

Remark 1. We note here a simple imbedding relationship between classes
�ρ�l�L� with different parameters: �ρ�l�L� ⊆ �r�l�L�, ∀ρ ≥ r > 1. As we
shall see, the only important parameter for constructing a rate optimal AR
estimator (predictor) is ρ.

Remark 2. The classes of analytic functions are quite standard in non-
parametric estimation problems. Our class is similar to those in Golubev and
Levit (1996) and Golubev, Levit and Tsybakov (1997). In the context of spec-
tral density estimation, a closely related class of processes was considered by
Efromovich (1998).

The main contributions of this paper are the following. We study how well
processes �Xt�t∈Z ∈ �ρ�l�L� can be approximated by a finite order AR model,
obtaining a lower bound on the minimax risk �∗

m�n��ρ�l�L�	. We prove that
if the sample size n is large enough then

�∗
m�n��ρ�l�L�	 ≥ K�l�L�

(
ρ − 1
ρ

)
1√
lnρ

√
lnn
n

�

where the constant K�l�L� depends on l and L only. A nonasymptotic upper
bound on the maximal risk of the regularized least squares estimator is
derived. We show that the least squares estimator associated with the order
d∗ = ��2 lnρ�−1 lnn� of the approximating AR model is optimal in order in
the sense of inequality (3). These results have immediate implications for the
prediction problem. In particular, we derive a nonasymptotic upper bound on
�p�X̂n+1��ρ�l�L�	 for the corresponding one-step predictor and argue that
the predictor associated with the order d∗ is essentially minimax optimal in
order. The nonasymptotic bounds we obtain are based on exponential inequal-
ities on deviations of sample covariances from their expectations; these results
are of independent interest. Further, through numerical examples we compare
small samples behavior of some common order selection procedures to the min-
imax optimal choice d∗. In particular, simulating an MA(1) process, we found
that for moderate values of ρ, that is, when the zeros are not “too close” to the
unit disc, the AIC and FPE lead to an order selection that is comparable to the
minimax optimal one. However, if ρ is close to unity then the AIC and FPE
tend to select a smaller model order than the minimax optimal one. The MDL
turns out to be slightly more conservative than the other methods, with the
differences becoming marginal for larger values of ρ.
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3. Main results. Consider the following estimate of the AR sequence
φ = �φ1� φ2� � � ��. Fix a natural number d and define

θd = �φ1� � � � � φd�′� Zt = �Xt−1� � � � �Xt−d�′�

We estimate θd by the regularized least squares method,

θ̂d =
(
1
n

n∑
t=1

ZtZ
′
t + n−1Id

)−1( 1
n

n∑
t=1

XtZt

)
� θ̂d = �φ̂1� � � � � φ̂d�′�(4)

where Id is the identity d × d matrix. The corresponding estimate φ̂ of the
sequence φ = �φ1� φ2� � � �� is given by

φ̂ = �φ̂1� φ̂2� � � � � φ̂d�0�0� � � ��(5)

and the one-step predictor X̂d
n+1 based on φ̂ is defined by

X̂d
n+1 =

d∑
j=1

φ̂jXn+1−j�(6)

The reason why we consider a regularized version of the least squares esti-
mate is that we are interested in a nonasymptotic upper bound on the expected
value of the squared modeling (prediction) error. For this purpose we have to
control the norm of the random matrix �n−1∑n

t=1ZtZ
′
t�−1. Without the regu-

larization term the matrix n−1∑n
t=1ZtZ

′
t can be singular with nonzero prob-

ability for every fixed n. We note also that the vectors Zt, t = 1� � � � � n defined
above can involve Xt with t ≤ 0. In this case we suppose that the correspond-
ing components of the vectors in (4) are replaced by zero. It should be stressed,
however, that in our analysis we do not assume that Xt = 0 for t ≤ 0.

3.1. Accuracy of AR approximation. We are now ready to study the quality
of an AR approximation of the stationary Gaussian process �Xt�t∈Z ∈ �ρ�l�L�.

Theorem 1. Let

M = 1+ Lρ

l�ρ − 1� � r = 1+ 1
lnρ

�(7)

Suppose that n and d satisfy the following conditions:

n

�lnn�5 ≥ c1d�rM�5�
√

n

lnn
≥ c2�L/l�2d2

√
rM�(8)

where c1 and c2 are absolute constants which can be specified explicitly. Then
for the estimate �4� and �5� one has

�m�φ̂��ρ�l�L�	 ≤ K1�l�L�
(

1
n�ρ − 1� +

√
d

ρd�ρ − 1� +
√
d

n

)
�(9)

where K1�l�L� depends on l and L only.
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Remark 3. Accuracy of the AR approximation is limited by two factors.
First, we approximate the process by a finite-order AR model. The result-
ing approximating error [second term in the right-hand side of (9)] becomes
smaller as the order d of the approximating AR model increases. Second, we
estimate parameters of the approximating model. The resulting estimating
error [third term in the right-hand side of (9)] grows as the order of the approx-
imating model increases. The order d is viewed as a “smoothing parameter”
that controls a trade-off between the approximation and estimation errors.
The first term in the right-hand side of (9) is due to the use of a regularized
version of the least squares estimator.

The following statement is an immediate consequence of Theorem 1.

Corollary 1. Let n be large enough so that

n

�lnn�6 ≥ c1r
6M5�

√
n

�lnn�5/2 ≥ c2

(
L

l lnρ

)2√
rM�(10)

Then for the least squares estimator �4� and �5� associated with the choice
d∗ �= ��2 lnρ�−1 lnn� one has

�m�φ̂∗��ρ�l�L�	 ≤ K2�l�L�
(

ρ

ρ − 1

)
1√
lnρ

√
lnn
n

�(11)

where K2�l�L� depends on l and L only.

The next step in the analysis is to determine the limits of achievable accu-
racy for AR approximation. The following theorem gives a lower bound on
approximation of �Xt�t∈Z ∈ �ρ�l�L� by a finite-order AR model.

Theorem 2. Let n be large enough so that for some constant K3 depending
on l and L only,

lnn ≥ K3�l�L� lnρ�(12)

Then

�∗
m�n��ρ�l�L�	 ≥ K4�l�L�

(
ρ − 1
ρ

)
1√
lnρ

√
lnn
n

�(13)

Theorem 2 and Corollary 1 imply that the least squares estimator (4) and
(5) associated with the order d∗ = ��2 lnρ�−1 lnn� is optimal in order in the
sense of inequality (3). It is interesting to note that for the class of spec-
tral densities corresponding to processes closely related to the class �ρ�l�L�,
this choice of the order leads to the asymptotically minimax spectral estimate
[Efromovich (1998)].
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3.2. Prediction via AR approximation. In this section we establish a
nonasymptotic upper bound on accuracy of the one-step predictor which is
based on AR approximation. To simplify analysis we assume that the estimate
φ̂ of the sequence φ is based on �n/2� first observations �X1� � � � �X�n/2�� only.
The assumption of this type is quite usual in investigating accuracy of predic-
tion methods based on the estimated parameters. For instance, Shibata (1980)
assumed the more stringent assumption that we have two independent real-
izations of the linear process: the first time series is used for estimating param-
eters, and then the estimated parameters are used to predict the second time
series.
The associated one-step predictor is defined in (6). We note also that

Theorem 1 remains unaltered for the estimate in question with n replaced
by n/2.

Theorem 3. Let n > 4d and (8) hold with some absolute constants c1
and c2. Then one has

�p�X̂d
n+1��ρ�l�L�	

≤ K5�l�L�
(

1
n2�ρ − 1�2 + d

ρ2d�ρ − 1�2 + d

n

)(
1+ dρ−2d

�ρ − 1�2
)
�

(14)

where K5�l�L� depends on l and L only.

Now, choosing the model order d we obtain the prediction bounds.

Corollary 2. Let (10) hold with some absolute constants c1 and c2, and

n�lnn�−1 ≥ 2�lnρ�−1. Then for the one-step predictor X̂d
n+1 associated with the

choice

d∗ = ��2 lnρ�−1 lnn��
one has

�p�X̂d∗
n+1��ρ�l�L�	 ≤ K6�l�L�

(
ρ

ρ − 1

)2( 1
lnρ

)
lnn
n

�(15)

where K6�l�L� depends on l and L only.

Referring back to (9), we see that the upper bound on prediction accuracy
given in (14) behaves as the square of accuracy of modeling. This is not surpris-
ing given the construction of the one-step predictor (6); clearly the resulting
accuracy is determined by the quality of modeling via the AR approximation.
In fact, one can argue that the predictorXd∗

n+1 is optimal in order. For the sake
of simplicity assume as in Shibata (1980) that we have two independent copies
Y1� � � � �Yn andX1� � � � �Xn of the same linear process from �ρ�l�L�. Our goal
is to predictXn+1. Let X̂n+1 be an arbitrary prediction method forXn+1 based
on the observations Y1� � � � �Yn. Then X̂n+1 can be decomposed into a sum of
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two random variables X̂′
n+1 and X̂

′′
n+1 such that X̂

′
n+1 is the projection of X̂n+1

on sp
Xn�Xn−1� � � ��, and X̂′′
n+1 is orthogonal to sp
Xn�Xn−1� � � ��. Therefore,

�∗
p�n��ρ�l�L�	 ≥ sup

�Xt�∈�ρ�l�L�
E

∣∣∣∣X̂′
n+1 −

∞∑
j=1

φjXn+1−j

∣∣∣∣2

= sup
�Xt�∈�ρ�l�L�

E

∣∣∣∣ ∞∑
j=1

�φ̂j − φj�Xn+1−j

∣∣∣∣2�
where φ̂j, j = 1�2� � � � are measurable functions of Y1� � � � �Yn. Hence

�∗
p�n��ρ�l�L�	 ≥ K7�l�L� sup

φ∈�ρ�l�L�
E�φ̂ − φ�2�

where the supremum is taken over all sequences φ = �φ1� φ2� � � �� that define,
through the AR(∞) representation, the linear processes from �ρ�l�L�. Then
the lower bound on the minimax prediction risk follows from Theorem 2.

4. Numerical examples. The choice of model order, d�n� = O�lnn�,
arises in Shibata (1980), and more recently in Hannan, Kavalieris (1986) and
Gerencsér (1992). In particular, Shibata (1980) showed that the data-driven
order selector based on the final prediction error (FPE) behaves asymptotically
as O�lnn� for the class of processes, similar to �ρ�m�L�. To investigate the
practical impact of the above results, we compare the common model selection
strategies (AIC, FPE and MDL) to the minimax optimal rule through a simple
numerical example.
Consider the following MA(1) process

Xt = εt + ψ1εt−1

with 
εt� a sequence of i.i.d. standard Gaussian random variables. We focus
our attention on three particular cases, namely ψ1 = 0�1�0�5�0�9, and the
corresponding “margin of stability” ρ = 10�2�1�1111. This range of values
will illustrate the sensitivity of the order selection methods to the moduli of
the zeros of the transfer function ��·�. Suppose we are given n consecutive
observations X1�X2� � � � �Xn from the process �Xt�. The selection procedures
are defined [following the definitions in Shibata (1980)] as

AIC�d� �= �n + 2d�σ̂2d�
FPE�d� �= n��n + d�/�n − d��σ̂2d�
MDL�d� �= �n + d lnn�σ̂2d

with

σ̂2d �= 1
n − d

n∑
t=d+1

(
Xt −

d∑
j=1

φ̂jXt−j

)2
�
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Fig. 1. Model order selected by different procedures plotted against the sample size (log scale);
(a) ρ = 1�1111, (b) ρ = 2 and (c) ρ = 10.
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Recall also the minimax optimal order choice from Corollary 1: d∗ =
��2 lnρ�−1 lnn�.
The experiment was conducted by simulating 100 sample paths from the

process, for each trial run a model order was selected using the three pro-
cedures, for sample sizes n = 100�500�1000�5000�10000�50000 and 100000.
Finally, we averaged out the selected orders over the 100 runs. The graphs in
Figure 1 depict the behavior of the different order selection procedures.
A close look at Figure 1 reveals that the AIC and FPE, which are known to

be asymptotically equivalent, behave in an almost identical way also for small
values of sample size. The MDL leads to a choice that is more conservative
than AIC and FPE, with this behavior being more pronounced for the case of
small ρ. For the case of large ρ, the all three criteria are roughly the same
as the minimax optimal choice. The case of moderate ρ depicts a behavior
of AIC and FPE which is quite on a par with the minimax optimal choice.
However, if ρ is close to unity, then the AIC and FPE tend to select a smaller
model order than the minimax optimal one. It is interesting to note that all
procedures lead to an order selection that exhibits logarithmic-like growth in
the sample size, even for small sample sizes. This behavior is consistent with
the asymptotic logarithmic growth of the order selected by AIC and FPE [cf.
Shibata (1980), Example 4.1] and for MDL [cf. Gerencér (1992), Theorem 4].
To summarize the results, we observe that an infinite order ARmodel that is

closer to a parametric (finite-dimensional) model gives rise to an order selec-
tion that is “close” to minimax optimal by all three methods. The case of
more slowly decaying coefficients (larger ψ and ρ closer to unity, respectively)
reveals that AIC and FPE “underestimate” with MDL being even more con-
servative. We note in passing that similar numerical results were obtained for
more complicated ARMA structures.

5. Discussion. (i) The method of AR approximations is quite common
for spectral density estimation in time series analysis [see, e.g., Berk (1974),
Shibata (1981), Parzen (1983) among many others]. The minimax optimal
model order (d∗ = �lnn/�2 lnρ��) for the AR approximation is also the opti-
mal choice for spectral density estimation, and gives rise to the same conver-
gence rates over the class �ρ�l�L�. It is worth noting, however, that spectral
density estimation and AR approximation are not equivalent in the sense of
comparison of experiments. Specifically, assume that the process belongs to
the class of all invertible MA(q) processes whose MA-transfer function has no
zeros inside the disc �z� ≤ ρ, ρ > 1. This class is a subset of �ρ�l�L� with
proper l and L. The spectral density of such a process can be estimated with
the parametric rate O�√q/n�, while the accuracy of the AR approximation
is O�√lnn/�n lnρ��. An important impilication of this fact is that even if a
stationary process is approximated by an AR model with high accuracy, the
corresponding spectral density estimate may be poor.
(ii) The nonparametric minimax approach, as applied to AR approxima-

tion, provides a useful criterion for assessment of finite sample behavior of
selection methods. Within this approach, optimal selection methods are spec-
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ified, and achievable lower bounds on the estimation accuracy are calculated.
Note, however, that implementation of the minimax optimal rule requires
a priori information on the parameter ρ of the class�ρ�l�L�. Developing adap-
tive selection rules with good minimax properties remains a challenging open
problem. We conjecture that in the adaptive setting the rates of convergence
for AR approximation remain unchanged.
(iii) Throughout the paper we assume that the process �Xt�t∈Z is Gaussian.

This assumption is used to simplify the derivation of the exponential inequal-
ities on the covariance estimates (Lemma 2 below). In addition, it facilitates
the evaluation of higher order moments. The main results of the paper can be
obtained under moment growth restrictions accompanied with some require-
ments ensuring exponential mixing properties of the process �Xt�t∈Z.
(iv) The family �ρ�l�L� allows for the processes admitting AR(∞) repre-

sentation with exponentially decaying coefficients. It seems that the exponen-
tial decay of the coefficients is essential for the exponential inequalities we
derive. The techniques advocated in Lemma 6 and Lemma 7 below preclude
polynomially decaying sequences. Thus, this restriction is a direct consequence
of the limitations of our machinery. An interesting problem is to study rates
of AR approximation for other classes of stationary, for example, with polyno-
mially decaying AR coefficients.

APPENDIX

A. Preliminary results. We collect here several preliminary results
which will be used repeatedly in the subsequent proofs.
We start with establishing a relation between the properties of the sequences

γ�k�, ψj and φj to the class �ρ�l�L�. Let us define *d ≡ 
γ�i−j��i� j=1�����d for
every natural number d.

Lemma 1. Let �Xt�t∈Z ∈ �ρ�l�L�; then
�ψj� ≤ Lρ−j� �φj� ≤ l−1ρ−j� j = 1�2� � � � �(16)

In addition, we have

L−2 ≤ σ2ε ≤ l−2�(17)

�γ�k�� ≤ �L/l�2 ρ2

ρ2 − 1
ρ−�k�� k ∈ Z�(18)

and for any d

�l/L�2 ≤ �*d� ≤ �L/l�2� �l/L�2 ≤ �*−1
d � ≤ �L/l�2�(19)

where �·� stands for the standard Euclidean norm of a matrix.

Proof. By definition of the class �ρ�l�L�, ��z� is analytic in the open
disc �z� < ρ, and ���z�� ≤ L. Therefore the announced bound on �ψj� follows
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immediately from the Cauchy estimates for the derivatives of ��z� [see, e.g.,
Rudin (1974), page 229]. Further, note that

L−1 ≤ �,�z�� = 1/���z�� ≤ l−1 for�z� < ρ�

Again applying the Cauchy estimates we obtain (16).
Note that f�λ� = �2π�−1σ2ε ���e−iλ��2, and therefore,

�2π�−1σ2ε l
2 ≤ f�λ� ≤ �2π�−1σ2εL

2�(20)

Taking into account that γ�0� = 1 = ∫ π
−π f�λ�dλ, we obtain (17). The inequal-

ity (18) is an immediate consequence of the following evident inequalities:

�γ�k�� = σ2ε

∣∣∣∣ ∞∑
j=0

ψjψj+�k�

∣∣∣∣ ≤ L2σ2ε ρ
−�k�

∞∑
j=0

ρ−2j = L2σ2ε ρ
2

�ρ2 − 1�ρ
−�k�

and (17) [here we have used the bound on ψj established in (16)]. The bounds
on �*d� and �*−1

d � follow from the theorem on the eigenvalues of the Toeplitz
forms [cf. Grenander and Szego (1984)]. In particular, we have

l2σ2ε ≤ λmin�*d	 ≤ λmax�*d	 ≤ L2σ2ε �

where λmin�·	 and λmax�·	 denote the minimal and maximal eigenvalues of a
matrix, respectively. Applying (17) we obtain (19) which completes
the proof. ✷

A.1. An exponential inequality for sample covariances. Here we establish
an exponential inequality on the deviation of sample covariances from their
expectations. This result is basic for our future developments; furthermore, it
is interesting in its own right.

Lemma 2. Let �Xt�t∈Z ∈ �ρ�l�L�; then there exist absolute constants C1
and C2 such that for every integer k one has

P

{∣∣∣∣ 1n n∑
t=1

XtXt+k − γ�k�
∣∣∣∣ > δ

}

≤


exp

(
− δ2n

4C1Mk∗r

)
� 0 ≤ δ ≤

(
k∗r
n

)2/5(C3
1M

3

C2

)1/5
�

exp
(

−1
4

[
δn

C2k∗r

]1/3)
� δ ≥

(
k∗r
n

)2/5(C3
1M

3

C2

)1/5
�

(21)

where M and r are defined in �7� and k∗ = �k� whenever k �= 0, and k∗ = 1
whenever k = 0. The constants C1 and C2 are specified explicitly in the proof
of the lemma.

Remark 4. To establish the result of the lemma we use the general expo-
nential inequalities for weakly dependent random sequences found in Saulis
and Statulevičus (1991). Several other exponential-type inequalities for
weakly dependent random sequences appear already in the literature [cf., e.g.,
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Doukhan (1994), Bosq (1996)], of which Bosq [Theorem 1.4 (1996)] deals with
conditions that are probably most akin to our set up. However, the machinery
in Saulis and Statulevičus (1991) seems more suitable for our purposes, and
leads to tighter bounds, in particular since we use the moderate deviations
regime in (21).

For the proof, see Appendix C.1.

B. Proofs of main results.

B.1. Proof of Theorem 1. In the proof below Ki, i = 1�2� � � � stand for
absolute positive constants (unless otherwise specified), possibly different in
different instances.
We first outline the main ideas in the proof. By straightforward algebra we

have

θ̂d − θd = Q−1
(

−n−1θd + 1
n

n∑
t=1

Zt

∞∑
j=d+1

φjXt−j + 1
n

n∑
t=1

Ztεt

)
�(22)

where Q �= n−1∑n
t=1ZtZ

′
t +n−1Id. Thus, to prove a bound on the 12 distance

between θd and θ̂d, we must bound the norm of the matrix Q−1, and of the
vector multiplying it from the right in (22). The latter bound involves straight-
forward algebraic manipulations, therefore the real problem is to control the
norm of Q−1. The key idea here is the following. Partition the sample space
into two sets. One set corresponds to the samples of �Xt�t∈Z, for which the
elements of Q are uniformly “close” to their expectations. For the complement
of this set, �Q−1� does not grow faster then n. Exponential inequalities on
the uniform convergence of sample means to their expectations, in the spirit
of Lemma 2, ensure that the “bad” set essentially does not contribute to the
overall bound. We shall now make these statements rigorous.

Step 1. First, proceed to bound �Q−1�, where �·� denotes the standard
Euclidean matrix norm. Note that the i� j-entry Qij of the matrix Q with
i �= j may be expressed as follows:

Qij = 1
n

n∑
t=1

Xt−iXt−j

= 1
n

n∑
τ=1

XτXτ+j−i − 1
n

n∑
τ=n−j+1

XτXτ+j−i + 1
n

0∑
τ=1−j

XτXτ+j−i

�= Q̂ij − Wij + Vij�

This, in turn, may be written as

Q = Q̂ − W + V + n−1Id = *d�Id + *−1
d �Q̃ + n−1Id�	�(23)
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where Q̂ = �Q̂ij�; W = �Wij�; V = �Vij�; i� j = 1� � � � � d, and Q̃ �= V − W+
Q̂−*d. Observe that *d is nonsingular for every d (this follows from Lemma 1).
Thus, the task of bounding �Q−1� is reduced to establishing a bound on the
norm of �Id +*−1

d �Q̃+n−1Id�	−1*−1
d , where the only stochastic term is Q̃. The

main idea is the following. Write

Q̃ = �V − E�V	� − �W − E�W	� + �Q̂ − *d��
utilizing the fact that E�V	 = E�W	. Note also that E�Q̂	 = *d. In addition,
due to Lemma 2 we can evaluate how close Q̂ to *d is. Now, the key to bounding
�Q̃�, is to establish nonasymptotic exponential bounds on the probability that
each one of the terms V, W and Q̂ deviate from their expectations.

Lemma 3. Let �Xt�t∈Z ∈ �ρ�l�L�. For any fixed i� j ∈ 
1� � � � � d� we have

P
�Vij − EVij� > δ�

≤


exp

(
− δ2n

4C1d

)
� 0 ≤ δ ≤ �dn−1C2

1C
−1
2 	1/3�

exp

(
−1
4

√
δn

C2d

)
� δ ≥ �dn−1C2

1C
−1
2 	1/3�

(24)

where C1 and C2 are as in Lemma 2. The same relations hold for Wij.

For the proof, see Appendix C.2

Step 2. Recall that by definition EVij = EWij, so that

Q̃ = �V − E�V�� + �E�W� − W� + Q̂ − *d�

Applying the results of Lemma 2 and Lemma 3 we bound the norm of the
matrix Q−1. Let us fix κ ∈ �0�1� and define the event

Aκ =
{
ω ∈ 8 � max

i� j=1�����d
�Q̃ij� ≤ Cκ

}
�(25)

where

Cκ = 6
√
C1rM

√
d

n
ln

(
6d2

κ

)
�(26)

Here, and in the sequel, 8 is the sample set of the underlying probability
space �8�� �P�.

Lemma 4. Let �Xt�t∈Z ∈ �ρ�l�L� and for a fixed κ ∈ �0�1� let d and n be
such that

d−1n ≥ �36C1rM ln�6d2/κ��5(27)
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and

n−1 + dCκ ≤ 1
2�l/L�2�(28)

Then P�Ac
κ� ≥ 1 − κ, and �*dQ

−1� ≤ 2 if the event Aκ holds, and �Q−1� ≤ n
otherwise.

For the proof, see Appendix C.3.

Step 4. Now, recall for completeness (22),

θ̂d − θd = Q−1
(

−n−1θd + 1
n

n∑
t=1

Zt

∞∑
j=d+1

φjXt−j + 1
n

n∑
t=1

Ztεt

)
= Q−1��1 + �2 + �3� = Q−1� �

Having established a bound on �Q−1*d� we proceed to bound E�� �.

Lemma 5. Let �Xt�t∈Z ∈ �ρ�l�L�. Then,

��1� ≤ 1
nl�ρ − 1� �

�E��2�4�1/2 ≤ K1dρ
−2d

l2�ρ − 1�2 �

�E��3�4�1/2 ≤ K2d

l2n
�

where K1 and K2 are absolute constants.

For the proof, see Appendix C.4.

Step 5. Now we complete the proof of Theorem 1. We will proceed to bound
E�θ̂d−θd�2 by evaluating the expectation over two disjoint subsets correspond-
ing to the events Aκ and Ac

κ. Let κ = 6d2n−6, Aκ be given by (25) with Cκ

defined by (26) with κ in question. It can be immediately checked that under
(8) conditions of the Lemma 4 hold. Thus we can write

E��θ̂d − θd�21
Aκ�	 ≤ �*−1
d �2E��*dQ

−1�2��1 + �2 + �3�21
Aκ�	
�a�≤ 4�*−1

d �2E���1 + �2 + �3�21
Aκ��
≤ 16�*−1

d �2���1�2 + E��2�2 + E��3�2�
�b�≤ K3�*−1

d �2l−2
(

1
n2�ρ − 1�2 + d

ρ2d�ρ − 1�2 + d

n

)
�
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where (a) follows from Lemma 4, and (b) follows from the bounds established
in Lemma 5. Similarly, we have

E��θ̂d − θd�21
Ac
κ�	 ≤ 4E��Q−1�2���1�2 + ��2�2 + ��3�2�1
Ac

κ�	

≤ 4n2
[
��1�2P�Ac

κ� +
(√

E��2�4 +
√
E��3�4

)√
P�Ac

κ�
]

≤ K4n
2l−2

[
κ

n2�ρ − 1�2 + d
√
κ

ρ2d�ρ − 1�2 +
√
κd

n

]
�

Substituting expression for κ and combining the two bounds above we have

�E�θ̂d − θd�2	1/2 ≤ K5�*−1
d �l−1

(
1

n�ρ − 1� +
√
d

ρd�ρ − 1� +
√
d

n

)
�(29)

whence

�E�φ̂ − φ�2	1/2 ≤ �E�θ̂d − θd�2	1/2 +
( ∞∑
j=d+1

�φj�2
)1/2

≤ K5�*−1
d �l−1

(
1

n�ρ − 1� +
√
d

ρd�ρ − 1� +
√
d

n

)
+ 1

lρd�ρ − 1� �

Applying (19) completes the proof. ✷

B.2. Proof of Theorem 2. Proof of the theorem rests upon the standard
technique for deriving lower bounds in nonparametric estimation problems.
In the proof below Ki, i = 1�2� � � � denote positive constants depending on l
and L only.
Let us fix a natural number N, and consider the following family � of the

sequences φ = �φ1� φ2� � � ��: φ belongs to � if and only if

φj =
{ ±βρ−N� j = 1� � � � �N�
0� otherwise�

where β is a positive number to be chosen. We complement � by the zero
sequence φ�0� = �0�0� � � ��. It is evident that there exists a choice of con-
stant K1 (e.g., take K1 ≤ min
1 − L−1� l−1 − 1�), such that with the choice
β = K1�1−ρ−1� every φ ∈ � defines a process �Xt�t∈Z from �ρ�l�L�. In addi-
tion, cardinality of � is equal to 2N + 1. According to the Varshamov–Gilbert
lemma [see, e.g., Korostelev and Tsybakov (1993), page 79], one can choose
a subfamily � ′ ⊂ � so that any two distinct sequences φ′� φ′′ from � ′ dif-
fer by at least N/16 components, cardinality of � ′ is equal to 2�N/8� + 1 and
φ�0� ∈ � ′. Thus, for any φ′� φ′′ one has

�φ′ − φ′′� ≥ K2

√
N�1− ρ−1�ρ−N �= s�(30)

Let φ̂n be an arbitrary estimate of φ based on the data 
Xt�nt=1; then
sup

�Xt�∈�ρ�m�L�
E�φ̂n − φ� ≥ sup

φ∈� ′
E�φ̂n − φ� ≥ s

2
sup
φ∈� ′

P
�φ̂n − φ� ≥ s/2��(31)
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Now consider the problem of testing between 2�N/8� + 1 hypotheses Hj� φ =
φ�j� using observations 
Xt�nt=1; here φ�j�, j = 0� � � � �2�N/8� stand for the
sequences from � ′. Define the decision rule τ� �X1� � � � �Xn� → 
0� � � � �2�N/8��
as follows. Given the observations, we compute φ̂n and check to which of the
sequences φ�j� ∈ � ′ it is closer in �·�-distance. Then we have

sup
φ∈� ′

P
�φ̂ − φ� ≥ s/2� = sup
j=0�����2�N/8�

P
τ �= j�Hj�

and we should evaluate from below the probability of error under the decision
rule τ. This can be done using the Fano inequality [see, e.g., Ibragimov and
Has’minskii (1981), page 323]. Let gj�y�, j = 0� � � � �2�N/8� denote joint density
of observationsX1� � � � �Xn under the hypothesisHj. Denote by� �gi�gj� the
Kullback–Leibler distance between the densities gi and gj. Then we have for
i �= j,

� �gi�gj� ≤ sup
i�j

Ei ln
gi�X1�����Xn�
gj�X1�����Xn�

�a�= sup
i�j

Ei

[
− 1
2σ2ε

n∑
t=1

((
Xt−

N∑
k=1

φ
�i�
k Xt−k

)2
−

(
Xt−

N∑
k=1

φ
�j�
k Xt−k

)2)]
�b�= sup

i�j

n

2σ2ε
Ei

( N∑
k=1

(
φ

�i�
k −φ

�j�
k

)
Xt−k

)2

≤ n

2σ2ε
sup
i�j

N∑
k�l=1

(
φ

�i�
k −φ

�j�
k

)(
φ

�i�
l −φ

�j�
l

)
Ei�Xt−kXt−l	

= n

2σ2ε
sup
i�j

(
φ�i� −φ�j�

)′
*

�i�
N

(
φ�i� −φ�j�

)
�

where Ei denotes expectation with respect to the distribution related to the
hypothesisHi, and *

�i�
N = 
Ei�Xt−kXt−l	�Nk� l=1 is theN×N covariance matrix

under Hi. Here (a) follows from the fact that �Xt� is a Gaussian process, and
(b) is obtained by taking expectation with respect to the density gi. Using the
bounds established in Lemma 1 on σ2ε and on the maximal eigenvalue of the
covariance matrix *N (which are uniform over the class �ρ�l�L� and N) we
have

� �gi�gj� ≤ nL2

2
�L/l�2 sup

i� j

�φ�i� − φ�j��2 ≤ K3nNρ−2N�

Now set

N =
⌊

1
2 lnρ

ln
(
K4n

)⌋ (32)

then due to the Fano inequality we can choose a constant K4 so that under
(12) probability of the error under τ will be at least, say, 1/4. Combining (30),
(31) and (32) we come to the required statement. ✷
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B.3. Proof of Theorem 3.

Step 1. We have the following decomposition of the prediction error:

Xn+1 − X̂d
n+1 =

d∑
j=1

�φj − φ̂j�Xn+1−j +
∞∑

j=d+1
φjXn+1−j + εn+1

�= �1 + �2 + εn+1�

Therefore,

E�Xn+1 − X̂d
n+1�2 = E��1 + �2�2 + σ2ε ≤ 2

(
E��1�2 + E��2�2

)
+ σ2ε �

where we have used the fact that εn+1 is independent of Xt, for t ≤ n.
We first establish a bound on E��1�2. One clearly has

�1 =
d∑

j=1
�φ̂j − φj�Xn+1−j

=
d∑

j=1
�φ̂j − φj�εn+1−j +

∞∑
k=1

ψk

d∑
j=1

�φ̂j − φj�εn+1−j−k

�= ηn+1 +
∞∑
k=1

ψkηn+1−k�

where the second equality follows from the MA(∞) representation of the pro-
cess �Xt�t∈Z, and ηt �= ∑d

j=1�φ̂j − φj�εt−j. Thus, we have

E��1�2 ≤ 4
[
E�ηn+1�2 + E

( d∑
k=1

ψkηn+1−k

)2
+ E

( ∞∑
k=d+1

ψkηn+1−k

)2]

= 4
[
E�ηn+1�2 +

d∑
k� l=1

ψkψlE�ηn+1−kηn+1−l	

+
∞∑

k� l=d+1
ψkψlE�ηn+1−kηn+1−l	

]
= 4�E�ηn+1�2 + �11 + �12��

Let � n
−∞ denote the σ-algebra on the common probability space �8�� �P� that

is generated by the sequence �εn� εn−1� � � ��. We have

E�ηn+1�2 = E
d∑

i� j=1
�φ̂i − φi��φ̂j − φj�εn+1−iεn+1−j

= E

(
d∑

i� j=1
�φ̂i − φi��φ̂j − φj�E

[
εn+1−iεn+1−j�� �n/2�

−∞
])

(33)

= σ2εE�θ̂d − θd�2�
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where the second equality follows from from the fact that φ̂ is �
�n/2�

−∞ -
measurable and εn+1−i, i = 1� � � � � d are independent of � �n/2�

−∞ because n/2>d.
Further, applying the same reasoning for k� l = 1� � � � � d we obtain

E�ηn+1−kηn+1−l	 = E
d∑

i� j=1
�φ̂i − φi��φ̂j − φj�εn+1−k−iεn+1−l−j

= E

(
d∑

i� j=1
�φ̂i − φi��φ̂j − φj�E

[
εn+1−k−iεn+1−l−j�� �n/2�

−∞
])

= σ2εE
d∑

i� j=1� i=l+j−k

�φ̂i − φi��φ̂j − φj�

≤ K1σ
2
εE�θ̂d − θd�2�

Here we again have used the fact that φ̂ is �
�n/2�

−∞ -measurable, and εn+1−l−j,

i� l = 1� � � � � d are independent of � �n/2�
−∞ because n/4 > d. Therefore,

�11 ≤ K1σ
2
εE�θ̂d − θd�2

(
d∑

k=1
�ψk�

)2
≤ K1σ

2
ε

L2

�ρ − 1�2E�θ̂d − θd�2(34)

(here we have taken into account that �ψk� ≤ Lρ−k).
To bound from above �12 note first that for k ≥ d+1 by the Cauchy–Schwarz

inequality,

E�ηn+1−k�2 = E

( d∑
i=1

�φ̂i − φi�εn+1−k−i

)2
≤

d∑
i=1

E
[
�θ̂d − θd�2ε2n+1−k−i

]
≤ K2dσ

2
ε �E�θ̂d − θd�4�1/2�

Thus, one has

�12 ≤ K2dσ
2
ε �E�θ̂d − θd�4�1/2

( ∞∑
k=d+1

�ψk�
)2

≤ K2dσ
2
ε �E�θ̂d − θd�4�1/2ρ−2d L2

�ρ − 1�2 �
(35)

Combining (35), (34) and (33) we come to the bound on E��1�2,

E��1�2 ≤ K3σ
2
ε

[
E�θ̂d − θd�2 + dρ−2dL2

�ρ − 1�2
(
E�θ̂d − θd�4)1/2]�(36)

Step 2. Our next step is to bound from above E�θ̂d − θ�4. Choose
κ = 6d2n−10, and let Aκ be given by (25) with Cκ for κ in question. Write

E�θ̂d − θd�4 = E�θ̂d − θd�41
Aκ� + E�θ̂d − θd�41
Ac
κ��
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It can be easily verified that under premise of the theorem the conditions of
Lemma 4 hold. Therefore,

E�θ̂d − θd�41
Aκ� ≤ 24�*−1
d �4E���1 + �2 + �3�41
Aκ��

≤ K4�*−1
d �4���1�4 + E��2�4 + E��3�4��

Applying Lemma 5 we obtain

E�θ̂d − θd�41
Aκ� ≤ K5�*−1
d �4l−4

(
1

n4�ρ − 1�4 + d

ρ4d�ρ − 1�4 + d2

n2

)
�

For the other term, involving the indicator of the event Ac
κ, the result follows

the derivation in the proof of Theorem 1. In particular, we now require bounds
in Lemma 5 to hold for �E��j�8�1/2 for j = 2�3. It is straightforward to extend
the results of the lemma; the details are omitted. Thus, we obtain

E�θ̂d − θd�41
Ac
κ� ≤ K6n

4l−4
(

κ

n4�ρ − 1�4 + d2
√
κ

ρ4d�ρ − 1�4 + d2
√
κ

n2

)
and finally, substituting κ = 4d2n−10 and combining the above bounds we have

�E�θ̂d − θd�4�1/2 ≤ K7�L4/l6�
(

1
n2�ρ − 1�2 + d

ρ2d�ρ − 1�2 + d

n

)
�

Thus, it follows from (36) and (29) that

E��1�2 ≤ K8σ
2
ε �L4/l6�

(
1

n2�ρ − 1�2 + d

ρ2d�ρ − 1�2 + d

n

)(
1+ dρ−2dL2

�ρ − 1�2
)
�

Step 3. Now we complete the proof of the theorem. We have the following
upper bound on E��2�2:

E��2�2 = E

∣∣∣∣ ∞∑
j=d+1

φjXn+1−j

∣∣∣∣2 ≤
( ∞∑
j=d+1

φj

)2
≤ l−2ρ−2d�ρ − 1�−2�

where we have used the fact that �φk� ≤ l−1ρ−k. Combining the above
bounds on E��1�2 and E��2�2 we come to (14). This completes the proof of
the theorem. ✷

C. Proofs of auxiliary results.

C.1. Proof of Lemma 2.

Step 1. First observe that the process �Xt�t∈Z is strongly mixing. We
recall the definition of the strong mixing condition [cf. Bradley (1986), page
169]. For −∞ ≤ s ≤ k ≤ ∞ let � k

s denote the σ-algebra generated by
�Xs�Xs+1� � � � �Xk�. The process �Xt�t∈Z is said to be strongly mixing if

αX�τ� = sup
s∈Z

α�� s
−∞�� ∞

s+τ� → 0 as τ → ∞�
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where

α�� s
−∞�� ∞

s+τ� = sup
A∈� s−∞� B∈� ∞

s+τ

�P�AB� − P�A�P�B���

Since �Xt�t∈Z is Gaussian and stationary, we have αX�τ� = α�� 0
−∞�� ∞

τ �. The
strong mixing coefficient αX�τ� is bounded from above by the maximal corre-
lation coefficient,

αX�τ� ≤ sup
ζ1� ζ2

E�ζ1ζ2��(37)

where the supremum in (37) is taken over all pairs of zero mean random
variables �ζ1� ζ2� such that ζ1 ∈ � 0

−∞, ζ2 ∈ � ∞
τ and E�ζ1�2 = E�ζ2�2 = 1.

Further, let �τ−1�f� denote the error of the best approximation of the spectral
density f�λ� by trigonometric polynomials of the degree ≤ τ−1 on the interval
�−π�π	 in the uniform norm. We have

�τ−1�f� ≤ 1
π

max
λ∈�−π�π	

∣∣∣∣ ∞∑
k=τ

γ�k� cos�λk�
∣∣∣∣ ≤ 1

π

∞∑
k=τ

�γ�k��

≤ L2σ2ε ρ
2

π�ρ − 1�2ρ
−τ�

(38)

where the last inequality follows from (18). It is well known [cf. Ibragimov
and Rozanov (1978), page 146] that for a stationary process with continuous
and strictly positive spectral density the maximal correlation coefficient does
not exceed �minλ∈�−π�π	 f�λ�	−1�τ−1�f�. Taking into account (20) we obtain

αX�τ� ≤ 2�L/l�2
(

ρ

ρ − 1

)2
ρ−τ�(39)

Now fix integer number k and define

Ut�k = 1
n
XtXt+k − γ�k�

n
� t ∈ Z�

Without loss of generality we assume that k is a nonnegative integer number.
Let �s

t� k be the σ-algebra generated by �Ut�k�Ut+1� k� � � � �Us�k�. Observe that
�t

−∞� k ⊆ � t+k
−∞ and �∞

t+τ� k ⊆ � ∞
t+τ. This implies that the process �Ut�k�t∈Z is

also strongly mixing with the rate

αU�τ� ≤ αX�τ − k� ∀ τ > k�

For τ ≤ k we have the following trivial inequality αU�τ� ≤ 1.

Step 2. To complete the proof of the lemma we need the following two aux-
iliary statements, adapted from Saulis and Statulevičus [(1991), Theorem 4.17,
Lemma 2.4].
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Lemma 6. Let �Yt�t∈Z be a strongly mixing random process, Sn = ∑n
t=1Yt,

and cump�Sn� be the pth order cumulant of the sum Sn. For ν > 0 define the
function

En�αY� ν	 = max
{
1 

n∑
τ=0

�αY�τ�	1/ν
}
�

If for some µ ≥ 0, H > 0

E�Yt�p ≤ �p!�µ+1Hp� t = 1� � � � � n� p = 2�3� � � � �

then �cump�Sn�� ≤ 2p�1+µ�+112p−1�p!�2+µHp
En�αX�2�p − 1�	�p−1n.

For definition of the cumulants see, for example, Brillinger [(1975), page 19].

Lemma 7. Let ξ be an arbitrary random variable with Eξ = 0. If there
exist µ1 ≥ 0, H1 > 0 and H > 0 such that

�cump�ξ�� ≤
(
p!
2

)1+µ1 H1

Hp−2 � p = 2�3� � � � �

then

P��ξ� ≥ x� ≤
{
exp
−x2/�4H1��� 0 ≤ x ≤ �H1+µ1

1 H�1/�2µ1+1��
exp
−�xH�1/�1+µ1�/4�� x ≥ �H1+µ1

1 H�1/�2µ1+1��

Step 3. Using Lemma 6 we will derive the upper bound on the cumulants
of the sum

∑n
t=1Ut�k, and then applying Lemma 7 we will obtain the required

exponential inequality. First, we verify the conditions of Lemma 6 in order to
apply it to the process �Ut�k�t∈Z. Observe that for any natural p we have

E�Ut�k�p ≤ 2p−1

np

(�γ�k��p + �E�Xt�2pE�Xt+k�2p	1/2)
≤ 2p−1

np
�1+ p!2p� ≤ 22pp!

np
�

where the second inequality follows from the fact that Xt is a Gaussian ran-
dom variable, �γ�k�� ≤ E�Xt�2 = 1, and E�Xt�2p ≤ p! 2p. Further,

En�αU�2�p − 1�	 ≤ k +
n∑

τ=k

�αX�τ − k�	1/�2p−2�

�a�≤ k +
(

2Lρ
l�ρ − 1�

)2/�2p−2� n−k∑
τ=0

ρ−τ/�2p−2�

≤ k +
(

2Lρ
l�ρ − 1�

)1/�p−1� ρ1/�2p−2�

ρ1/�2p−2� − 1

�b�≤ k +
(

2Lρ
l�ρ − 1�

)1/�p−1�(
1+ 2p − 2

lnρ

)
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where (a) follows from the bound in (39), and (b) follows from the elementary
inequality exp�x� − 1 ≥ x for x ≥ 0. Thus, one has


En�αU�2�p − 1�	�p−1 ≤ 2p−2
[
kp−1 + 2Lρ

l�ρ − 1��p − 1�p−1
(
1+ 2

lnρ

)p−1]

≤ 2p−2kp−1
∗ �p − 1�!ep−1

(
1+ 2

lnρ

)p−1(
1+ 2Lρ

l�ρ − 1�
)

≤ �4e�p−1p!�k∗r�p−1M�

where the inequality �p−1�p−1 ≤ �p−1�!ep−1 has been used, and k∗, r andM
are defined in (7). Setting µ = 0 and H = 4n−1 we see that Lemma 6 applies
for �Ut�k�t∈Z, and thus∣∣∣∣cump

( n∑
t=1

Ut�k

)∣∣∣∣ ≤ 23p+1122p−2�p!�3�k∗r�p−1Mn−p+1�(40)

Now, to apply Lemma 7, put µ1 = 2, H1 = C1Mk∗rn−1 and H = n�C2k∗r�−1,
where C1, and C2 are absolute constants (C1 = 210122, C2 = 23122). It is
immediately seen that the conditions of Lemma 7 hold for the parameters in
question. Applying Lemma 7 completes the proof. ✷

C.2. Proof of Lemma 3. The basis is the same argument as the one in
Theorem 2. Recall the definition of Vij:

Vij = 1
n

0∑
τ=1−j

XτXτ+j−i 

we have EVij = jn−1γ�j− i�, whence E�Vij� ≤ dn−1. Fix i� j ∈ 
1� � � � � d� and
define

Ut = 1
n

�XtXt+j−i − γ�j − i�	�

then Vij − EVij = ∑0
t=1−j Ut. For any natural number p one has

E�Ut�p ≤ 2p−1

np

(�γ�j − i��p + [
E�Xt�2pE�Xt+j−i�2p

]1/2)
≤ p!22pn−p�

where the second inequality follows from the bound on E�Xt�2p established in
Step 4 of the proof of Theorem 2 and the fact that �γ�k�� ≤ 1� ∀k.
Taking into account the strong mixing property of the sequence �Ut�t∈Z and

the fact that Ej�αU�2�p − 1�	 ≤ j for 1 ≤ j ≤ d, we can apply Lemma 6 with
µ = 0 and H = 4n−1. Thus,∣∣∣∣cump

( 0∑
t=1−j

Ut

)∣∣∣∣ ≤ 23p+112p−1�p!�2d
p−1

np−1 �(41)
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It is immediately seen that the conditions of Lemma 7 hold with µ1 = 1,
H = n�C2d�−1, and H1 = C1dn

−1, and C1 and C2 may be chosen as in Theo-
rem 2. The same argument is valid for Wij. This completes the proof. ✷

C.3. Proof of Lemma 4. (i) First we establish that P�Aκ� ≥ 1−κ. We have

P�Ac
κ� ≤ P

{
max

i� j=1�����d
(�Vij − EVij� + �Wij − EWij� + ��Q̂ − *d�ij�) > Cκ

}
≤ P

{
max

i� j=1�����d
�Vij − EVij� > Cκ/3

}
+ P

{
max

i� j=1�����d
�Wij − EWij� > Cκ/3

}
+P

{
max

i� j=1�����d
��Q̂ − *d�ij� > Cκ/3

}
�= P1 + P2 + P3�

It can be easily verified that under the condition of (27), Cκ ≤ �d/n�2/5. Thus
we may apply the results of Lemma 2 and Lemma 3 in the range of “moderate”
deviations. Note that P3 can be bounded using the first inequality in (21) and
the Toeplitz structure of the matrix Q̂ − *d,

P3 ≤ 2d exp
{

− C2
κ n

36C1drM

}
�

The probabilities P1 and P2 are bounded, in turn, using the first inequality
in (24),

Pi ≤ 2d2 exp
{

− C2
κ n

36C1d

}
� i = 1�2�

Thus using the fact that r ≥ 1 and M ≥ 1, we have

P�Ac
κ� ≤ 6d2 exp

{
− C2

κ n

36C1drM

}
�

Now, it is straightforward to verify that the choice of Cκ is made so as to
satisfy P�Ac

κ� ≤ κ.
(ii) Suppose that the event Aκ holds. Since Q̃ is a symmetric d × d matrix

we have

�Q̃� = λmax�Q̃� ≤ max
i

{∑
j

�Q̃ij�
}

≤ dCκ�(42)

Therefore (23) and the definition of Q̃ together imply that

�Q−1*d� ≤ 1

1− �*−1
d �Q̃ + n−1Id��

�(43)

provided that �*−1
d �Q̃ + n−1Id�� < 1. This condition will subsequently be ver-

ified. Taking into account (19) we have

�*−1
d �Q̃ + n−1Id�� ≤ �*−1

d ��n−1 + dCκ�
≤ �L/l�2�n−1 + dCκ� ≤ 1/2�

(44)
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where the last inequality follows from the condition imposed in (28). Thus,
(44) along with (43) imply the statement of the lemma for the case where the
event Aκ holds.
(iii) Now consider the case of ω ∈ Ac

κ. Independently of the event Aκ, the
matrix Q is positive-definite, λmin�Q	 ≥ n−1 and whence λmax�Q−1	 ≤ n. Since
Q−1 is symmetric, we obtain immediately that �Q−1� ≤ n. This completes the
proof of the lemma. ✷

C.4. Proof of Lemma 5. The upper bound on ��1� follows immediately
from (16):

��1� = n−1�θd� = n−1
( d∑
j=1

�φj�2
)1/2

≤ 1
nl�ρ − 1� �

Let us denote the kth component of �2 as

�2� k �= 1
n

n∑
t=1

Xt−k

∞∑
j=d+1

φjXt−j� k = 1�2� � � � � d�

We have

E��2� k�4 =
∞∑

j1�����j4=d+1
φj1

φj2
φj3

φj4

×E
[
γ̂�k − j1�γ̂�k − j2�γ̂�k − j3�γ̂�k − j4�

]
�

where γ̂�k − j� = n−1∑n
t=1Xt−kXt−j. Applying repeatedly the Cauchy–

Schwartz inequality and taking into account that �Xt�t∈Z is Gaussian and
stationary with E�Xt�2 = 1, we obtain

E
[
γ̂�k − j1�γ̂�k − j2�γ̂�k − j3�γ̂�k − j4�

] ≤ E�Xt�8 ≤ 105�

Therefore,

E��2� k�4 ≤ E�Xt�8
( ∞∑
j=d+1

�φj�
)4

≤ 105
ρ4dl4�ρ − 1�4 �

and thus

E��2�4 = E
d∑

k� l=1
��2� k�2��2� l�2 ≤ 105d2

ρ4dl4�ρ − 1�4 �

Now we derive an upper bound on E��3�4. Denote

�3� k �= 1
n

n∑
t=1

Xt−kεt = Sn

n
� k = 1�2� � � � � d�
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To bound E��3� k�4 = n−4�Sn�4 from above we note that 
Si��
i

−∞� 1 ≤ i ≤ n� is
a martingale (� i

−∞ = σ�εi� ε−1� � � ��). Therefore due to Burkholder’s inequality
[see, e.g., Hall and Heyde (1980), page 23] we have

E�Sn�4 = E

∣∣∣∣ n∑
t=1

Xt−kεt

∣∣∣∣4 ≤ K1E

∣∣∣∣ n∑
t=1

�Xt−kεt�2
∣∣∣∣2�

where K1 is an absolute constant. Thus,

E��3� k�4 ≤ K1

n4

n∑
t� τ=1

E
[
X2

t−kX
2
τ−kε

2
t ε
2
τ

] ≤ K1

n2
E�Xt�4E�εt�4 ≤ K2

σ4ε
n2

�

and finally

E��3�4 ≤ K2
d2σ4ε
n2

≤ K2
d2

l4n2
�

where the last inequality follows from (17). This completes the proof. ✷
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