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SCALING LIMITS OF RANDOM PLANAR MAPS WITH
LARGE FACES

BY JEAN-FRANÇOIS LE GALL AND GRÉGORY MIERMONT

Université Paris-Sud

We discuss asymptotics for large random planar maps under the assump-
tion that the distribution of the degree of a typical face is in the domain of
attraction of a stable distribution with index α ∈ (1,2). When the number
n of vertices of the map tends to infinity, the asymptotic behavior of dis-
tances from a distinguished vertex is described by a random process called
the continuous distance process, which can be constructed from a centered
stable process with no negative jumps and index α. In particular, the profile
of distances in the map, rescaled by the factor n−1/2α , converges to a random
measure defined in terms of the distance process. With the same rescaling of
distances, the vertex set viewed as a metric space converges in distribution
as n → ∞, at least along suitable subsequences, toward a limiting random
compact metric space whose Hausdorff dimension is equal to 2α.

1. Introduction. The goal of the present work is to discuss the continuous
limits of large random planar maps when the distribution of the degree of a typ-
ical face has a heavy tail. Recall that a planar map is a proper embedding of a
finite connected graph in the two-dimensional sphere. For technical reasons, it is
convenient to deal with rooted planar maps, meaning that there is a distinguished
oriented edge called the root edge. One is interested in the “shape” of the graph
and not in the particular embedding that is considered. More rigorously, two rooted
planar maps are identified if they correspond via an orientation-preserving homeo-
morphism of the sphere. The faces of the map are the connected components of the
complement of edges and the degree of a face counts the number of edges that are
incident to it. Large random planar graphs are of particular interest in theoretical
physics, where they serve as models of random geometry [1].

A simple way to generate a large random planar map is to choose it uniformly
at random from the set of all rooted p-angulations with n faces (a planar map is
a p-angulation if all faces have degree p). It is conjectured that the scaling limit
of uniformly distributed p-angulations with n faces, when n tends to infinity (or,
equivalently, when the number of vertices tends to infinity), does not depend on the
choice of p and is given by the so-called Brownian map. Since the pioneering work
of Chassaing and Schaeffer [7], there have been several results supporting this con-
jecture. Marckert and Mokkadem [22] introduced the Brownian map and proved
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a weak form of the convergence of rescaled uniform quadrangulations toward the
Brownian map. A stronger version, involving convergence of the associated met-
ric spaces in the sense of the Gromov–Hausdorff distance, was derived in Le Gall
[19] in the case of uniformly distributed 2p-angulations. Because the distribution
of the Brownian map has not been fully characterized, the convergence results of
[19] require the extraction of suitable subsequences. Proving the uniqueness of the
distribution of the Brownian map is one of the key open problems in this area.

A more general way of choosing a large planar map at random is to use Boltz-
mann distributions. In this work, we restrict our attention to bipartite maps, where
all face degrees are even. Given a sequence q = (q1, q2, q3, . . .) of nonnegative
real numbers and a bipartite planar map m, the associated Boltzmann weight is

Wq(m) = ∏
f ∈F(m)

qdeg(f )/2,(1)

where F(m) denotes the set of all faces of m and deg(f ) is the degree of the
face f . One can then generate a large planar map by choosing it at random from the
set of all planar maps with n vertices (or with n faces) with probability weights that
are proportional to Wq(m). Such distributions arise naturally (possibly in slightly
different forms) in problems involving statistical physics models on random maps.
This is discussed in Section 8 below.

Assuming certain integrability conditions on the sequence of weights, Marckert
and Miermont [21] obtain a variety of limit theorems for large random bipartite
planar maps chosen according to these Boltzmann distributions. These results are
extended in Miermont [23] and Miermont and Weill [25] to the nonbipartite case,
including large triangulations. In all of these papers, limiting distributions are de-
scribed in terms of the Brownian map. Therefore, these results strongly suggest
that the Brownian map should be the universal limit of large random planar maps,
under the condition that the distribution of the degrees of faces satisfies some in-
tegrability property. Note that, even though the distribution of the Brownian map
has not been characterized, many of its properties can be investigated in detail and
have interesting consequences for typical large planar maps; see, in particular, the
recent papers [20] and [24] (and Bettinelli [3], for similar results, for random maps
on surfaces of higher genus).

In the present work, we consider Boltzmann distributions such that, even for
large n, a random planar map with n vertices will have “macroscopic” faces,
which, in some sense, will remain present in the scaling limit. This leads to a
(conjectured) scaling limit which is different from the Brownian map. In fact, our
limit theorems involve new random processes that are closely related to the stable
trees of [12], in contrast to the construction of the Brownian map [19, 22], which
is based on Aldous’ continuum random tree (CRT).

Let us informally describe our main results, referring to the following sections
for more precise statements. For technical reasons, we consider planar maps that
are both rooted and pointed (in addition to the root edge, there is a distinguished
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vertex, denoted by v∗). Roughly speaking, we choose the Boltzmann weights qk in
(1) in such a way that the distribution of the degree of a (typical) face is in the do-
main of attraction of a stable distribution with index α ∈ (1,2). This can be made
more precise by using the Bouttier–Di Francesco–Guitter bijection [4] between bi-
partite planar maps and certain labeled trees called mobiles. A mobile is a (rooted)
plane tree, where vertices at even distance (resp., odd distance) from the root are
called white (resp., black) and white vertices are assigned integer labels that satisfy
certain simple rules; see Section 3.1. In the Bouttier–Di Francesco–Guitter bijec-
tion, a (rooted and pointed) planar map m corresponds to a mobile θ(m) in such a
way that each face of m is associated with a black vertex of θ(m) and each vertex
of m (with the exception of the distinguished vertex v∗) is associated with a white
vertex of θ(m). Moreover, the degree of a face of m is exactly twice the degree of
the associated black vertex in the mobile θ(m) (see Section 3.1 for more details).

Under appropriate conditions on the sequence of weights q , formula (1) defines
a finite measure Wq on the set of all rooted and pointed planar maps. Moreover, if
Pq is the probability measure obtained by normalizing Wq , then the mobile θ(m)

associated with a planar map m distributed according to Pq is a critical two-type
Galton–Watson tree, with different offspring distributions μ0 and μ1 for white and
black vertices, respectively, and labels chosen uniformly over all possible assign-
ments (see [21] and Proposition 4 below). The distribution μ0 is always geometric,
whereas μ1 has a simple expression in terms of the weights qk .

We now come to our basic assumption. In the present work, we choose the
weights qk in such a way that μ1(k) behaves like k−α−1, when k → ∞, for some
α ∈ (1,2). Recalling that the degree of a face of m is equal to twice the degree of
the associated black vertex in the mobile θ(m), we see that, in a certain sense, the
face degrees of a planar map distributed according to Pq are independent, with a
common distribution that belongs to the domain of attraction of a stable law with
index α.

We equip the vertex set V (m) of a planar map m with the graph distance dgr and
would like to investigate the properties of this metric space when m is distributed
according to Pq and conditioned to be large. For every integer n ≥ 1, denote by
Mn a random planar map distributed according to Pq(·|#V (m) = n). Our goal is to
get information about typical distances in the metric space (V (Mn), dgr) when n

is large and, if at all possible, to prove that these (suitably rescaled) metric spaces
converge in distribution as n → ∞ in the sense of the Gromov–Hausdorff dis-
tance. As a motivation for studying the particular conditioning {#V (m) = n}, we
note that our results will have immediate application to Boltzmann distributions
on nonpointed rooted planar maps: simply observe that a given rooted planar map
with n vertices corresponds to exactly n different rooted and pointed planar maps.

To achieve the preceding goal, we use another nice feature of the Bouttier–Di
Francesco–Guitter bijection: up to an additive constant depending on m, the dis-
tance between v∗ and an arbitrary vertex v ∈ V (m) \ {v∗} coincides with the label
of the white vertex of θ(m) associated with v. Thus, in order to understand the
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asymptotic behavior of distances from v∗ in the map Mn, it suffices to get infor-
mation about labels in the mobile θ(Mn) when n is large. To this end, we first
consider the tree T (Mn) obtained by ignoring the labels in θ(Mn). Under our ba-
sic assumption, the results of [12] can be applied to prove that the tree T (Mn)

converges in distribution, modulo a rescaling of distances by the factor n−(1−1/α),
toward the so-called stable tree with index α. The stable tree can be defined by a
suitable coding from the sample path of a centered stable Lévy process with no
negative jumps and index α, under an appropriate excursion measure. The pre-
ceding convergence to the stable tree is, however, not sufficient for our purposes
since we are primarily interested in labels. Note that, under the assumptions made
in [21] on the weight sequence q (and, in particular, in the case of uniformly dis-
tributed 2p-angulations), the rescaled trees T (Mn) converge toward the CRT and
the scaling limit of labels is described in [21] as Brownian motion indexed by the
CRT or, equivalently, as the Brownian snake driven by a normalized Brownian ex-
cursion. In our “heavy tail” setting, however, the scaling limit of the labels is not
Brownian motion indexed by the stable tree, but is given by a new random process
of independent interest, which we call the continuous distance process.

Let us give an informal presentation of the distance process—a rigorous defin-
ition can be found in Section 4 below. We view the stable tree as the genealogical
tree for a continuous population and the distance of a vertex from the root is in-
terpreted as its generation in the tree. Fix a vertex a in the stable tree. Among
the ancestors of a, countably many of them, denoted by b1, b2, . . . , correspond to
a sudden creation of mass in the population: each bk has a macroscopic number
δk > 0 of “children” and one can also consider the quantity rk ∈ [0, δk], which is
the rank among these children of the one that is an ancestor of a. The preceding
description is informal in our continuous setting (there are no children), but can
be made rigorous thanks to the ideas developed in [12] and, in particular, to the
coding of the stable tree by a Lévy process. We then associate with each vertex
bk a Brownian bridge (Bk(t))t∈[0,δk] (starting and ending at 0) with duration δk ,
independently when k varies, and we set

D(a) =
∞∑

k=1

Bk(rk).

The resulting process D(a) when a varies in the stable tree is the continuous dis-
tance process. As a matter of fact, since vertices of the stable tree are parametrized
by the interval [0,1] (using the coding by a Lévy process), it is more convenient
to define the continuous distance process as a process (Dt)t∈[0,1] indexed by the
interval [0,1] (or even by R+ when we consider a forest of trees).

Much of the technical work contained in this article is devoted to proving that
the rescaled labels in the mobile θ(Mn) converge in distribution to the continuous
distance process. The proper rescaling of labels involves the multiplicative factor
n−1/2α instead of n−1/4, as in earlier work. This indicates that the typical diame-
ter of our random planar maps Mn is of order n1/2α , rather than n1/4 in the case
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of maps with faces of bounded degree. Because conditioning on the total number
of vertices makes the proof more difficult, we first establish a version of the con-
vergence of labels for a forest of independent mobiles having the distribution of
θ(m) under Pq . The proof of this result (Theorem 1) is given in Section 5. We then
derive the desired convergence for the conditioned objects in Section 6.

Finally, we obtain asymptotic results for the planar maps Mn in Section 7. The-
orem 4 gives precise information about the profile of distances from the distin-
guished vertex v∗ in Mn. Precisely, let ρ

(n)
Mn

be the measure on R+ defined by∫
ρ

(n)
Mn

(dx)ϕ(x) = 1

n

∑
v∈V (Mn)

ϕ(n−1/2αdgr(v∗, v)).

Then, the sequence of random measures ρ
(n)
Mn

converges in distribution toward the

measure ρ(∞) defined by∫
ρ(∞)(dx)ϕ(x) =

∫ 1

0
dt ϕ

(
c(Dt − D)

)
,

where c > 0 is a constant depending on the sequence of weights and D =
mint∈[0,1] Dt .

We also investigate the convergence of the suitably rescaled metric spaces
V (Mn) in the Gromov–Hausdorff sense. Theorem 5 shows that, at least along a
subsequence, the random metric spaces (V (Mn),n

−1/2αdgr) converge in distribu-
tion toward a limiting random compact metric space. Furthermore, the Hausdorff
dimension of this limiting space is a.s. equal to 2α, which should be compared with
the value 4 for the dimension of the Brownian map [19]. The fact that the Hausdorff
dimension is bounded above by 2α follows from Hölder continuity properties of
the distance process that are established in Section 4. The proof of the correspond-
ing lower bound is more involved and depends on some properties of the stable tree
and its coding by Lévy processes, which are investigated in [12]. Similarly as in
the case of the convergence to the Brownian map, the extraction of a subsequence
in Theorem 5 is needed because the limiting distribution is not characterized.

The paper is organized as follows. Section 2 introduces Boltzmann distributions
on planar maps and formulates our basic assumption on the sequence of weights.
Section 3 recalls the Bouttier–Di Francesco–Guitter bijection and the key result
giving the distribution of the random mobile associated with a planar map under
the Boltzmann distribution (Proposition 4). Section 3 also introduces several dis-
crete functions coding mobiles, in terms of which most of the subsequent limit
theorems are stated. Section 4 is devoted to the definition of the continuous dis-
tance process and to its Hölder continuity properties. In Section 5, we address the
problem of the convergence of the discrete label process of a forest of random
mobiles toward the continuous distance process of Section 4. We then deduce a
similar convergence for labels in a single random mobile conditioned to be large
in Section 6. Section 7 deals with the existence of scaling limits of large random
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planar maps and the calculation of the Hausdorff dimension of limiting spaces.
Finally, Section 8 discusses some motivation coming from theoretical physics.

Notation. The symbols K,K ′,K1,K
′
1,K2, . . . will stand for positive constants

that may depend on the choice of the weight sequence q = (q1, q2, . . .), but, unless
otherwise indicated, do not depend on other quantities. The value of these con-
stants may vary from one proof to another. The notation C(R) stands for the space
of all continuous functions from R+ into R and the notation D(Rd) stands for the
Skorokhod space of all càdlàg functions from R+ into Rd . If X = (Xt)t≥0 is a
process with càdlàg paths, Xs− denotes the left limit of X at s for every s > 0. We
denote the set of all finite measures on R+ by Mf (R+) and this set is equipped
with the usual weak topology. If (ak) and (bk) are two sequences of positive num-
bers, the notation ak ∼ bk (as k → ∞) means that the ratio ak/bk tends to 1 as
k → ∞. Unless otherwise indicated, all random variables and processes are de-
fined on a probability space (�, F ,P).

2. Critical Boltzmann laws on bipartite planar maps.

2.1. Boltzmann distributions. A rooted and pointed bipartite map is a pair
(m, v∗), where m is a rooted bipartite planar map and v∗ is a distinguished ver-
tex of m. As in Section 1, the graph distance on the vertex set V (m) is denoted
by dgr and we let e−, e+ be, respectively, the origin and the target of the root edge
of m. By the bipartite nature of m, the quantities dgr(e+, v∗), dgr(e−, v∗) differ.
Moreover, this difference is at most 1 in absolute value since e+ and e− are linked
by an edge. We say that (m, v∗) is positive if

dgr(e+, v∗) = dgr(e−, v∗) + 1.

It is called negative otherwise, that is, if dgr(e+, v∗) = dgr(e−, v∗) − 1.
We let M∗+ denote the set of all rooted and pointed bipartite planar maps that

are positive. In the sequel, the mention of v∗ will usually be implicit, so we will
simply denote the generic element of M∗+ by m. For our purposes, it is useful to
add an element † to M∗+, which can be seen roughly as the vertex map with no
edge and a single vertex v∗ “bounding” a single face of degree 0.

Let q = (q1, q2, . . .) be a sequence of nonnegative real numbers. For every m ∈
M∗+ \ {†}, set

Wq(m) = ∏
f ∈F(m)

qdeg(f )/2,

where F(m) denotes the set of all faces of m. By convention, we set Wq(†) = 1.
This defines a σ -finite measure on M∗+, whose total mass is

Zq = Wq(M∗+) ∈ [1,∞].
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We say that q is admissible if Zq < ∞, in which case we can define Pq = Z−1
q Wq

as the probability measure obtained by normalizing Wq . The measure Pq is called
the Boltzmann distribution on M∗+ with weight sequence q .

Following [21], we have the following simple criterion for the admissibility
of q . Introduce the function

fq(x) =
∞∑

k=1

N(k)qkx
k−1, x ≥ 0,(2)

where

N(k) =
(

2k − 1
k − 1

)
.

Let Rq ≥ 0 be the radius of convergence of this power series. Note that by
monotone convergence, the quantity fq(Rq) = fq(Rq−) ∈ [0,∞] exists, as well
as f ′

q(Rq) = f ′
q(Rq−).

PROPOSITION 1 [21]. The sequence q is admissible if and only if the equation

fq(x) = 1 − 1

x
, x ≥ 1,(3)

has a solution. If this holds, then the smallest such solution equals Zq .

On the interval [0,Rq), the function fq is convex, so the equation (3) has at
most two solutions. Let us now pause for a short informal discussion, inspired
by [21]. For a “typical” admissible sequence q , the graphs of fq and of the function
x 	→ 1 − 1/x will cross at x = Zq without being tangent. In this case, the law of
the number of vertices of a Pq -distributed random map will have an exponential
tail. An admissible sequence q is called critical if the graphs are tangent at Zq ,
that is, if

Z2
qf

′
q(Zq) = 1.(4)

For critical sequences, the law of the number of vertices of a Pq -distributed ran-
dom map may have a tail heavier than exponential. In the case where Rq > Zq ,
[21] shows that this tail follows a power law with exponent −1/2. However, the
law of the degree of a typical face in such a random map will have an exponential
tail.

In the present paper, we will be interested in the “extreme” cases where q is a
critical sequence such that Zq = Rq . We will show that in a number of these cases,
the degree of a typical face in a Pq -distributed random map also has a heavy tail
distribution.



8 J.-F. LE GALL AND G. MIERMONT

2.2. Choosing the Boltzmann weights. We start from a sequence q◦ :=
(q◦

k )k∈N of nonnegative real numbers such that

q◦
k ∼

k→∞k−a(5)

for some real number a > 3/2. In agreement with (2), we set

f◦(x) = fq◦(x) =
∞∑

k=1

N(k)q◦
k xk−1

for every x ≥ 0. By Stirling’s formula, we have

N(k) ∼
k→∞

22k−1
√

πk

so that the radius of convergence of the series defining f◦ is 1/4. Furthermore,
the condition a > 3/2 guarantees that f◦(1/4) and f ′◦(1/4) are (well defined and)
finite.

PROPOSITION 2. Set

c = 4

4f◦(1/4) + f ′◦(1/4)
, β = f ′◦(1/4)

4f◦(1/4) + f ′◦(1/4)

and define a sequence q = (qk)k∈N by setting

qk = c(β/4)k−1q◦
k .(6)

Then, the sequence q is both admissible and critical, and Zq = Rq = β−1.

REMARK. As the proof will show, the choice given for the constants c and β

is the only one for which the conclusion of the proposition holds.

PROOF OF PROPOSITION 2. Consider a sequence q = (qk)k∈N defined as in
the proposition, with an arbitrary choice of the positive constants c and β . If fq is
defined as in (2), it is immediate that

fq(x) = cf◦(βx/4).

Hence, Rq = β−1. Assume, for the moment, that the sequence q is admissible and
Zq = Rq . By Proposition 1, we have fq(β−1) = 1 − β or, equivalently,

cf◦(1/4) = 1 − β.(7)

Furthermore, the criticality of q will hold if and only if f ′
q(β

−1) = β2 or, equiva-
lently,

cf ′◦(1/4) = 4β.(8)
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Conversely, if (7) and (8) both hold, then the sequence q is admissible by Propo-
sition 1, the curves x → fq(x) and x → 1 − 1/x are tangent at x = β−1 and a
simple convexity argument shows that β−1 is the unique solution of (3) so that
Zq = β−1 = Rq , again by Proposition 1.

We conclude that the conditions (7) and (8) are necessary and sufficient for the
conclusion of the proposition to hold. The desired result thus follows. �

We now introduce our basic assumption, placing a further restriction on the
value of the parameter a.

ASSUMPTION (A). The sequence q is of the form given in Proposition 2, with
a sequence q◦ satisfying (5) for some a ∈ (3/2,5/2). We set α := a −1/2 ∈ (1,2).

This assumption will be in force throughout the remainder of this work, with
the exception of the beginning of Section 3.2 (including Proposition 4), where we
consider a general admissible sequence q .

Many of the subsequent asymptotic results will be written in terms of the con-
stant β , which lies in the interval (0,1), and the constant c0 > 0 defined by

c0 =
(

2c�(2 − α)

α(α − 1)β
√

π

)1/α

.(9)

The reason for introducing this other constant will become clearer in Section 3.2.

3. Coding maps with mobiles.

3.1. The Bouttier–Di Francesco–Guitter bijection. Following [4], we now re-
call how bipartite planar maps can be coded by certain labeled trees called mobiles.

By definition, a plane tree T is a finite subset of the set

U =
∞⋃

n≥0

Nn(10)

of all finite sequences of positive integers (including the empty sequence ∅) which
satisfies three obvious conditions. First, ∅ ∈ T . Then, for every v = (u1, . . . , uk) ∈
T with k ≥ 1, the sequence (u1, . . . , uk−1) (the “parent” of v) also belongs to T .
Finally, for every v = (u1, . . . , uk) ∈ T , there exists an integer kv(T ) ≥ 0 (the
“number of children” of v) such that vj := (u1, . . . , uk, j) belongs to T if and
only if 1 ≤ j ≤ kv(T ). The elements of T are called vertices. The generation of
a vertex v = (u1, . . . , uk) is denoted by |v| = k. The notions of an ancestor and a
descendant in the tree T are defined in an obvious way.

For our purposes, vertices v such that |v| is even will be called white vertices
and vertices v such that |v| is odd will be called black vertices. We denote by T ◦
(resp., T •) the set of all white (resp., black) vertices of T .
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FIG. 1. A rooted mobile.

A (rooted) mobile is a pair θ = (T , (�(v))v∈T ◦) that consists of a plane tree
and a collection of integer labels assigned to the white vertices of T such that the
following properties hold:

(a) �(∅) = 0.
(b) Let v ∈ T •, v(0) be the parent of v, p = kv(T )+1 and v(j) = vj , 1 ≤ j ≤ p−1

be the children of v. Then, for every j ∈ {1, . . . , p}, �(v(j)) ≥ �(v(j−1)) − 1,
where, by convention, v(p) = v(0).

Condition (b) means that if one lists the white vertices adjacent to a given black
vertex in clockwise order, then the labels of these vertices can decrease by at most 1
at each step. See Figure 1 for an example of a mobile.

We denote by 
 the (countable) set of all mobiles. We will now describe the
Bouttier–Di Francesco–Guitter (BDG) bijection between 
 and M∗+. This bijec-
tion can be found in Section 2 of [4], with the minor difference that [4] deals with
maps that are pointed, but not rooted.

Let θ = (T , (�(v))v∈T ◦) be a mobile with n + 1 vertices. The contour sequence
of θ is the sequence v0, . . . , v2n of vertices of T which is obtained by induction
as follows. First, v0 = ∅ and then, for every i ∈ {0, . . . ,2n − 1}, vi+1 is either the
first child of vi that has not yet appeared in the sequence v0, . . . , vi or the parent of
vi if all children of vi already appear in the sequence v0, . . . , vi . It is easy to verify
that v2n = ∅ and that all vertices of T appear in the sequence v0, v1, . . . , v2n. In
fact, a given vertex v appears exactly kv(T )+ 1 times in the contour sequence and
each appearance of v corresponds to one “corner” associated with this vertex.

The vertex vi is white when i is even and black when i is odd. The contour
sequence of T ◦, also called the white contour sequence of θ , is, by definition, the
sequence v◦

0, . . . , v◦
n defined by v◦

i = v2i for every i ∈ {0,1, . . . , n}.
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The image of θ under the BDG bijection is the element (m, v∗) of M∗+ that is
defined as follows. First, if n = 0, meaning that T = {∅}, we set (m, v∗) = †. Sup-
pose that n ≥ 1 so that T • has at least one element. We extend the white contour
sequence of θ to a sequence v◦

i , i ≥ 0, by periodicity, in such a way that v◦
i+n = v◦

i

for every i ≥ 0. Then, suppose that the tree T is embedded in the plane and add an
extra vertex v∗ not belonging to the embedding. We construct a rooted planar map
m whose vertex set is equal to

V (m) = T ◦ ∪ {v∗}
and whose edges are obtained by the following device. For i ∈ {0,1, . . . , n − 1},
we let

φ(i) = inf{j > i :�(v◦
j ) = �(v◦

i ) − 1} ∈ {i + 1, i + 2, . . .} ∪ {∞}.
We also set v◦∞ = v∗, by convention. Then, for every i ∈ {0,1, . . . , n − 1}, we
draw an edge between v◦

i and v◦
φ(i). More precisely, the index i corresponds to

one specific “corner” of v◦
i and the associated edge starts from this corner. The

construction can then be made in such a way that edges do not cross (and do not
cross the edges of the tree) so that one indeed gets a planar map. This planar map
m is rooted at the edge linking v◦

0 = ∅ to v◦
φ(0), which is oriented from v◦

φ(0)

to ∅. Furthermore, m is pointed at the vertex v∗, in agreement with our previous
notation.

See Figure 2 for an example and Section 2 of [4] for a more detailed description.

FIG. 2. The Bouttier–Di Francesco–Guitter construction for the mobile of Figure 1.
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PROPOSITION 3 (BDG bijection). The preceding construction yields a bijec-
tion from 
 onto M∗+. This bijection enjoys the following two properties:

1. each face f of m contains exactly one vertex v of T •, with deg(f ) = 2(kv(T )+
1);

2. the graph distances in m to the distinguished vertex v∗ are linked to the labels
of the mobile in the following way: for every v ∈ T ◦ = V (m) \ {v∗},

dgr(v∗, v) = �(v) − min
v′∈T ◦ �(v′) + 1.

In our study of scaling limits of random planar maps, it will be important to
derive asymptotics for the random mobiles associated with these maps via the
BDG bijection. These asymptotics are more conveniently stated in terms of random
processes coding the mobiles. Let us introduce such coding functions.

Let θ = (T , (�(v))v∈T ◦) be a mobile with n + 1 vertices (so that n = #T − 1)
and let v◦

0, . . . , v◦
n be, as previously, the white contour sequence of θ . We set

Cθ
i = 1

2 |v◦
i | for 0 ≤ i ≤ n, Cθ

i = 0 for i > n.(11)

We call (Cθ
i ,0 ≤ i ≤ n) the contour process of the mobile θ . It is a simple exercise

to check that the contour process Cθ determines the tree T . Similarly, we set

�θ
i = �(v◦

i ) for 0 ≤ i ≤ n, �θ
i = 0 for i > n(12)

and call �θ the contour label process of θ . The pair (Cθ ,�θ) determines the
mobile θ .

For technical reasons, we introduce variants of the preceding contour functions.
Let n◦ = #T ◦ − 1 and let w◦

0 = ∅,w◦
1, . . . ,w

◦
n◦ , be the list of vertices of T ◦ in

lexicographical order. The height process of θ is defined by

Hθ
i = 1

2 |w◦
i | for 0 ≤ i ≤ n◦, Hθ

i = 0 for i > n◦.
Similarly, we introduce the label process, which is defined by

Lθ
i = �(w◦

i ) for 0 ≤ i ≤ n◦, Lθ
i = 0 for i > n◦.

We will also need the Lukasiewicz path of T ◦. This is the sequence Sθ =
(Sθ

0 , Sθ
1 , . . .), defined as follows. First, Sθ

0 = 0. Then, for every i ∈ {0,1, . . . , n◦},
Sθ

i+1 − Sθ
i + 1 is the number of (white) grandchildren of w◦

i in T . Finally,
Sθ

i = Sθ
n◦+1 = −1 for every i > n◦. It is easy to see that Sθ

i ≥ 0 for every
i ∈ {0,1, . . . , n◦} so that

#T ◦ = n◦ + 1 = inf{i ≥ 0 :Sθ
i = −1}.

Let us briefly comment on the reason for introducing these different processes.
In our applications to random planar maps, asymptotics for the pair (Cθ ,�θ),
which is directly linked to the white contour sequence of θ , turn out to be most
useful. On the other hand, in order to derive these asymptotics, it will be more
convenient to consider first the pair (Hθ ,Lθ).

In the following, the generic element of 
 will be denoted by (θ, (�(v))v∈T ◦),
as previously.
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3.2. Boltzmann distributions and Galton–Watson trees. Let q be an admissi-
ble sequence, in the sense of Section 2, and let M be a random element of M∗+
with distribution Pq . Our goal is to describe the distribution of the random mobile
associated with M via the BDG bijection. We closely follow Section 2.2 of [21].

We first need the notion of an alternating two-type Galton–Watson tree. Re-
call that white vertices are those of even generation and black vertices are those
of odd generation. Informally, an alternating two-type Galton–Watson tree is just
a Galton–Watson tree where white and black vertices have a different offspring
distribution. More precisely, if μ0 and μ1 are two probability distributions on the
nonnegative integers, the associated (alternating) two-type Galton–Watson tree is
the random plane tree whose distribution is specified by saying that the numbers
of children of the different vertices are independent, the offspring distribution of
each white vertex is μ0 and the offspring distribution of each black vertex is μ1;
see [21], Section 2.2, for a more rigorous presentation.

We also need to introduce the notion of a discrete bridge. Consider an integer
p ≥ 1 and the set

Ep :=
{
(x1, . . . , xp) ∈ {−1,0,1,2, . . .}p :

p∑
i=1

xi = 0

}
.

Note that Ep is a finite set and, indeed, #Ep = N(p), with N(p) as in (2). Let
(X1, . . . ,Xp) be uniformly distributed over Ep . The sequence (Y0, Y1, . . . , Yp)

defined by Y0 = 0 and

Yj =
j∑

i=1

Xi, 1 ≤ j ≤ p,

is called a discrete bridge of length p.

PROPOSITION 4 ([21], Proposition 7). Let M be a random element of M∗+
with distribution Pq and let θ = (T , (�(v), v ∈ T ◦)) be the random mobile associ-
ated with M via the BDG bijection. Then:

1. the random tree T is an alternating two-type Galton–Watson tree with offspring
distributions μ0 and μ1 given by

μ0(k) = Z−1
q fq(Zq)

k, k ≥ 0,

and

μ1(k) = Zk
qN(k + 1)qk+1

fq(Zq)
, k ≥ 0;

2. conditionally given T , the labels (�(v), v ∈ T ◦) are distributed uniformly over
all possible choices that satisfy the constraints (a) and (b) in the definition of
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a mobile; equivalently, for every v ∈ T •, with the notation introduced in prop-
erty (b) of the definition of a mobile, the sequence (�(v(j)) − �(v(0)),0 ≤ j ≤
kv(T ) + 1) is a discrete bridge of length kv(T ) + 1 and these sequences are
independent when v varies over T •.

A random mobile having the distribution described in the proposition will be
called a (μ0,μ1)-mobile. The law Q of a (μ0,μ1)-mobile is a probability distrib-
ution on 
.

Note that the respective means of μ0 and μ1 are

m0 := ∑
k≥0

kμ0(k) = Zqfq(Zq), m1 := ∑
k≥0

kμ1(k) = Zqf
′
q(Zq)/fq(Zq)

so that m0m1 = Z2
qf

′
q(Zq) is less than or equal to 1 and equality holds if and only

if q is critical.
We now return to a weight sequence q satisfying our basic Assumption (A).

Recall that the sequence q , which is both admissible and critical, is given in terms
of the sequence q◦ by (6) and that we have q◦

k ∼ k−α−1/2 as k → ∞, with α ∈
(1,2).

Then, μ0 is the geometric distribution with parameter fq(Zq) = 1 − β and

μ1(k) = c

1 − β
4−kN(k + 1)q◦

k+1, k = 0,1, . . . .

From the asymptotic behavior of q◦
k , we obtain

μ1(k) ∼
k→∞

2c

(1 − β)
√

π
k−α−1.

In particular, if we set μ1(k) = μ1([k,∞)), this yields

μ1(k) ∼
k→∞

2c

α(1 − β)
√

π
k−α.(13)

Let μ be the probability distribution on the nonnegative integers which is the
law of

U∑
i=1

Vi,

where U is distributed according to μ0, V1,V2, . . . are distributed according to μ1
and the variables U,V1,V2, . . . are independent. Then, μ is critical, in the sense
that

∞∑
k=0

kμ(k) = m0m1 = 1.

Notice that μ is just the distribution of the number of individuals at the second
generation of a (μ0,μ1)-mobile. It will be important to have information on the
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tail μ(k) := μ([k,∞)) of μ. This follows easily from the estimate (13) and the
definition of μ. First, note that

μ(k) = P

[
U∑

i=1

Vi ≥ k

]
≥ P[∃i ∈ {1, . . . ,U} :Vi ≥ k] = 1 − E

[(
1 − μ1(k)

)U ]
.

Then,

1 − E
[(

1 − μ1(k)
)U ] = 1 − β

1 − (1 − μ1(k))(1 − β)
∼

k→∞
1 − β

β
μ1(k).

Using (13), we get

μ(k) ≥ 2c

αβ
√

π
k−α + o(k−α).

A corresponding upper bound is easily obtained by writing, for every ε ∈ (0,1/2),

μ(k) ≤ P[∃i ∈ {1, . . . ,U} :Vi ≥ (1 − ε)k]

+ P

[{
U∑

i=1

Vi ≥ k

}
∩ {∀i ∈ {1, . . . ,U} :Vi ≤ (1 − ε)k

}]

and checking that the second term in the right-hand side is o(k−α) as k → ∞. To
see this, first note that the probability of the event {U > K logk} is o(k−α) if the
constant K is chosen sufficiently large. If U ≤ K log k, then the event in the second
term may hold only if there are two distinct values of i ∈ {1,2, . . . , [K log k]} such
that Vi ≥ εk/(K log k). The desired estimate then follows from (13).

We have thus obtained

μ(k) ∼
k→∞

2c

αβ
√

π
k−α,

which we can rewrite in the form

μ(k) ∼
k→∞

α − 1

�(2 − α)
cα

0 k−α(14)

with the constant c0 defined in (9). The reason for introducing the constant c0 and
writing the asymptotics (14) in this form becomes clear when discussing scaling
limits. Recall that 1 < α < 2 by our assumption that 3

2 < a < 5
2 . By (13) or (14), μ

is then in the domain of attraction of a stable law with index α. Recalling that μ is
critical, we have the following, more precise, result.

Let ν be the probability distribution on Z obtained by setting ν(k) = μ(k + 1)

for every k ≥ −1 [and ν(k) = 0 if k < −1]. Let S = (Sn)n≥0 be a random walk on
the integers with jump distribution ν. Then,(

n−1/αS[nt]
)
t≥0

(d)−→
n→∞(c0Xt)t≥0,(15)



16 J.-F. LE GALL AND G. MIERMONT

where the convergence holds in distribution in the Skorokhod sense and X is a
centered stable Lévy process with index α and no negative jumps, with Laplace
transform given by

E[exp(−uXt)] = exp(tuα), t, u ≥ 0.(16)

See, for instance, Chapter VII of Jacod and Shiryaev [16] for a thorough discussion
of the convergence of rescaled random walks toward Lévy processes.

3.3. Discrete bridges. Recall from Proposition 4 that the sequence of labels of
white vertices adjacent to a given black vertex in a (μ0,μ1)-mobile is distributed
as a discrete bridge. In this section, we collect some estimates for discrete bridges
that will be used in the proofs of our main results.

We consider a random walk (Yn)n≥0 on Z starting from 0 and with jump distri-
bution

ν∗(k) = 2−k−2, k = −1,0,1, . . . .

Fix an integer p ≥ 1 and let (Y
(p)
n )0≤n≤p be a vector whose distribution is the

conditional law of (Yn)0≤n≤p given that Yp = 0. Then, the process (Y
(p)
n )0≤n≤p is

a discrete bridge with length p. Indeed, a simple calculation shows that(
Y

(p)
1 , Y

(p)
2 − Y

(p)
1 , . . . , Y (p)

p − Y
(p)
p−1

)
is uniformly distributed over the set Ep .

LEMMA 1. For every real r ≥ 1, there exists a constant K(r) such that for
every integer p ≥ 1 and k, k′ ∈ {0,1, . . . , p},

E
[(

Y
(p)
k − Y

(p)

k′
)2r ] ≤ K(r)|k − k′|r .

PROOF. We may, and will, assume that p ≥ 2. Let us first suppose that k ≤
k′ ≤ 2p/3. By the definition of Y (p) and then the Markov property of Y , we have

E
[(

Y
(p)
k − Y

(p)

k′
)2r ] = E[|Yk − Yk′ |2r1{Yp=0}]

P(Yp = 0)
= E

[
|Yk − Yk′ |2r πp−k′(−Yk′)

πp(0)

]
,

where πn(x) = P(Yn = x) for every integer n ≥ 0 and x ∈ Z. A standard local limit
theorem (see, e.g., Section 7 of [29]) shows that if g(x) = (4π)−1/2e−x2/4, then
we have

√
nπn(x) = g

(
x/

√
n
) + εn(x) where sup

x∈Z

|εn(x)| →
n→∞ 0.

Then,

πp−k′(−Yk′)

πp(0)
≤ √

3

√
p − k′πp−k′(−Yk′)√

pπp(0)
≤ K,
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where

K = √
3
(4π)−1/2 + supn≥1 supx∈Z |εn(x)|

infn≥1
√

nπn(0)
< ∞.

It follows that

E
[(

Y
(p)
k − Y

(p)

k′
)2r ] ≤ KE[|Yk − Yk′ |2r ].

Then, the bound E[|Yk − Yk′ |2r ] ≤ K ′
(r)|k − k′|r , with a finite constant K ′

(r)

depending only on r , is a consequence of Rosenthal’s inequality for i.i.d. centered
random variables [26], Theorem 2.10. We have thus obtained the desired estimate
under the restriction k ≤ k′ ≤ 2p/3.

If p/3 ≤ k ≤ k′ ≤ p, the same estimate is readily obtained by observing
that (−Y

(p)
p−n,0 ≤ n ≤ p) has the same distribution as Y (p). Finally, in the case

k ≤ p/3 ≤ 2p/3 ≤ k′, we apply the preceding bounds successively to E[|Yk −
Y[p/2]|2r ] and to E[|Y[p/2] − Yk′ |2r ]. �

An immediate consequence of the lemma (applied with r = 1) is the bound

E
[(

Y
(p)
j

)2] ≤ K(1) min{j,p − j} ≤ 2K(1)

j (p − j)

p
(17)

for every integer p ≥ 2 and j ∈ {0,1, . . . , p}.
Finally, a conditional version of Donsker’s theorem gives(

1√
2p

Y
(p)
[pt]

)
0≤t≤1

(d)−→
p→∞(γt )0≤t≤1,(18)

where γ is a standard Brownian bridge. Such results are part of the folklore of the
subject; see Lemma 10 in [3] for a detailed proof of a more general statement.

4. The continuous distance process. Our goal in this section is to discuss the
so-called continuous distance process, which will appear as the scaling limit of the
label processes Lθ and �θ of Section 3.1 when θ is a (μ0,μ1)-mobile conditioned
to be large in some sense.

4.1. Definition and basic properties. We consider the centered stable Lévy
process X with no negative jumps and index α, and Laplace exponent as in (16).
The canonical filtration associated with X is defined, as usual, by

Ft = σ {Xs,0 ≤ s ≤ t}
for every t ≥ 0. We let (ti)i∈N be a measurable enumeration of the jump times of
X and set xi = �Xti for every i ∈ N. Then, the point measure∑

i∈N

δ(ti ,xi )
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is Poisson on [0,∞) × [0,∞) with intensity

α(α − 1)

�(2 − α)
dt

dx

xα+1 .

For s ≤ t , we set

I s
t = inf

s≤r≤t
Xr

and It = I 0
t . For every x ≥ 0, we set

Tx = inf{t ≥ 0 :−It > x}.
We recall that the process (Tx, x ≥ 0) is a stable subordinator of index 1/α with
Laplace transform

E[exp(−uTx)] = exp(−xu1/α);(19)

see, for example, Theorem 1 in [2], Chapter VII.
Suppose that, on the same probability space, we are given a sequence (bi)i∈N of

independent (one-dimensional) standard Brownian bridges over the time interval
[0,1] starting and ending at the origin. Assume that the sequence (bi)i∈N is inde-
pendent of the Lévy process X. Then, for every i ∈ N, we introduce the rescaled
bridge

b̃i(r) = x
1/2
i bi(r/xi), 0 ≤ r ≤ xi,

which, conditionally on F∞, is a standard Brownian bridge with duration xi .
Recall that Xs− denotes the left limit of X at s for every s > 0.

PROPOSITION 5. For every t ≥ 0, the series∑
i∈N

b̃i(I
ti
t − Xti−)1{Xti−≤I

ti
t }1{ti≤t}(20)

converges in L2-norm. The sum of this series is denoted by Dt . The process
(Dt , t ≥ 0) is called the continuous distance process.

REMARK. In a more compact form, we can write

Dt = ∑
i∈N : ti≤t

b̃i

(
(I

ti
t − Xti−)+

)
.

PROOF OF PROPOSITION 5. Note that in (20), the summands are well de-
fined since, obviously, I

ti
t ≤ Xti for every ti ≤ t so that I

ti
t − Xti− ≤ �Xti = xi .

The nonzero summands in (20) correspond to those values of i for which ti ≤ t

and Xti− ≤ I
ti
t . Conditionally on F∞, these summands are independent centered

Gaussian random variables with respective variances

E[b̃i(I
ti
t − Xti−)2|F∞] = (I

ti
t − Xti−)(Xti − I

ti
t )

xi

≤ I
ti
t − Xti−.
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The equality in the previous display follows from the fact that Varb(a)(t) = t (a−t)
a

whenever b(a) is a Brownian bridge with duration a > 0 and 0 ≤ t ≤ a.
We then have

E

[∑
i∈N

b̃i (I
ti
t − Xti−)21{Xti−≤I

ti
t }1{ti≤t}

]

≤ E

[∑
i∈N

(I
ti
t − Xti−)1{Xti−≤I

ti
t }1{ti≤t}

]

= E

[∑
ti≤t

(I
ti
t − I

ti−
t )

]
≤ E[Xt − It ] = E[−It ],

where the last equality holds because X is centered. It is well known that
E[−It ] < ∞. Indeed, −It even has exponential moments; see Corollary 2 in [2],
Chapter VII. Since the summands in (20) are centered and orthogonal in L2, the
desired convergence readily follows from the preceding estimate. �

In order to simplify the presentation, it will be convenient to adopt a point
process notation, by letting (xs, bs) = (xi, bi) whenever ti = s for some i ∈ N

and, by convention, xs = 0, bs = 0 (i.e., the path with duration zero started from
the origin) when s /∈ {ti , i ∈ N}. The process b̃s is defined accordingly and is equal
to 0 when bs = 0. We can thus rewrite

Dt = ∑
0<s≤t

b̃s

(
(I s

t − Xs−)+
)
.(21)

Let us conclude this section with a useful scaling property. For every r > 0, we
have

(r−1/αXrt , r
−1/2αDrt )t≥0

(d)= (Xt ,Dt)t≥0.(22)

This easily follows from our construction and the scaling property of X.

4.2. Hölder regularity. In this subsection, we prove the following regularity
property of D.

PROPOSITION 6. The process (Dt , t ≥ 0) has a modification that is locally
Hölder continuous with any exponent η ∈ (0,1/2α).

We start with a few preliminary lemmas.

LEMMA 2. For every real t > 0 and r > −1, we have E[(−It )
r ] < ∞.
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PROOF. By scaling, it is enough to consider t = 1. As mentioned in the last
proof, the case r ≥ 0 is a consequence of Corollary 2 in [2], Chapter VII. To handle
the case r < 0, we use a scaling argument to write

P(−I1 > x) = P(Tx < 1) = P(xαT1 < 1) = P
(
(T1)

−1/α > x
)
,

so −I1 has the same distribution as T
−1/α
1 . We have already observed that the

process (Tx, x ≥ 0) is a stable subordinator with index 1/α. This implies that
E[(T1)

s] < ∞ for every 0 ≤ s < 1/α, from which the desired result follows. �

LEMMA 3. For every real t ≥ 0 and r > 0, we have E[|Dt |r ] < ∞.

PROOF. Again by scaling, we may concentrate on the case t = 1. Arguing
as in the proof of Proposition 5, we get that, conditionally on F∞, the random
variable D1 is a centered Gaussian variable with variance∑

0<s≤1

(I s
1 − Xs−)(Xs − I s

1 )

�Xs

1{Xs−<Is
1 } ≤ ∑

0<s≤1

(Xs − I s
1 )1{Xs−<Is

1 }.

Note that this time, we chose the upper bound Xs − I s
1 rather than I s

1 −Xs− for the
summands as the latter is ineffective for getting finiteness of high moments. Thus,
if N denotes a standard normal variable and Kr = E[|N |r ], we have

E[|D1|r ] = E[|N |r ] × E

[( ∑
0<s≤1

(I s
1 − Xs−)(Xs − I s

1 )

�Xs

1{Xs−<Is
1 }

)r/2]
(23)

≤ KrE

[( ∑
0<s≤1

(Xs − I s
1 )1{Xs−<Is

1 }
)r/2]

.

By a standard time-reversal property of Lévy processes, the process (X1 −
X(1−s)−,0 ≤ s < 1) has the same distribution as (Xs,0 ≤ s < 1), which entails
that ∑

0<s≤1

(Xs − I s
1 )1{Xs−<Is

1 }
(d)= ∑

0<s≤1

(Xs− − Xs−)1{Xs−<Xs},(24)

where Xs = sup0≤r≤s Xr . For every integer k ≥ 0, we introduce the process

A
(k)
t = ∑

0<s≤t

(Xs− − Xs−)2k

1{Xs−<Xs}, t ≥ 0,

which is an increasing càdlàg process adapted to the filtration (Ft ), with compen-
sator

Ã
(k)
t = α(α − 1)

�(2 − α)

∫ t

0
ds(Xs − Xs)

2k
∫ ∞

0

dx

xα+1 1{Xs<Xs+x}

= α − 1

�(2 − α)

∫ t

0
(Xs − Xs)

2k−α ds.
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Note that E[Ã(k)
t ] < ∞ since this expectation is

α − 1

�(2 − α)
E[(X1 − X1)

2k−α]
∫ t

0
s2k/α−1 ds

and time reversal shows that E[(X1 − X1)
2k−α] = E[(−I1)

2k−α] < ∞, by Lem-
ma 2, since 2k − α ≥ 1 − α > −1. In order to complete the proof of Lemma 3, we
will need the following, stronger, fact.

LEMMA 4. For all integers k,p ≥ 0, we have E[(Ã(k)
1 )p] < ∞.

PROOF. We must show that∫
[0,1]p

ds1 · · ·dspE

[ p∏
i=1

(Xsi − Xsi )
2k−α

]
< ∞.(25)

When k ≥ 1, we have 2k − α > 0 and the result easily follows from Hölder’s
inequality, using a scaling argument, then time reversal and Lemma 2, just as we
did to verify that E[Ã(k)

t ] < ∞. The case k = 0 is slightly more delicate. We rewrite
the left-hand side of (25) as

p!
∫

0≤s1≤···≤sp≤1
ds1 · · ·dsp E

[ p∏
i=1

(Xsi − Xsi )
1−α

]
.

By Proposition 1 in [2], Chapter VI, the reflected process X − X is Markov with
respect to the filtration (Ft ). When started from a value x ≥ 0, this Markov process
has the same distribution as x ∨ X − X under P and thus stochastically dominates
X − X (started from 0). Consequently, since 1 − α < 0, we get, for 0 = s0 ≤ s1 ≤
· · · ≤ sp ≤ 1, that

E

[ p∏
i=1

(Xsi − Xsi )
1−α

]

= E

[
(Xs1 − Xs1)

1−αE

[ p∏
i=2

(Xsi − Xsi )
1−α

∣∣∣Xs1 − Xs1

]]

≤ E

[
(Xs1 − Xs1)

1−αE

[ p∏
i=2

(Xsi−s1 − Xsi−s1)
1−α

]]

≤
p∏

i=1

E[(Xsi−si−1 − Xsi−si−1)
1−α]

by induction. Finally, by scaling and a simple change of variables, we get that (25)
is bounded above by

p!E[(X1 − X1)
1−α]p

∫
[0,1]p

p∏
i=1

s
1/α−1
i dsi,
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which is finite by Lemma 2 since X1 − X1
(d)= −I1, by time reversal. �

We now complete the proof of Lemma 3. Note that A(k+1) is the square bracket
of the compensated martingale A(k) − Ã(k) for every k ≥ 0. For any real r ≥ 1, the
Burkholder–Davis–Gundy inequality [8], Chapter VII.92, gives the existence of a
finite constant K ′

r , depending only on r , such that

E
[∣∣A(k)

1 − Ã
(k)
1

∣∣r ] ≤ K ′
rE

[(
A

(k+1)
1

)r/2]
.

Since Ã
(k)
1 has moments of arbitrarily high order by Lemma 4, and E[A(k)

1 ] =
E[Ã(k)

1 ] < ∞, a repeated use of the last inequality shows that E[(A(k−i)
1 )2i ] < ∞

for every i = 0, . . . , k. In particular, E[(A(0)
1 )2k ] < ∞ for every integer k ≥ 0. The

desired result now follows from (23) and (24). �

PROOF OF PROPOSITION 6. Fix s ≥ 0 and t > 0. Let u = sup{r ∈ (0, s] :
Xr− < Is

s+t } with the convention that sup ∅ = 0. Then, I r
s+t = I r

s for every r ∈
[0, u), whereas I r

s+t = I s
s+t for r ∈ [u, s]. By splitting the sum (21), we get

Ds = ∑
0<r<u

b̃r

(
(I r

s − Xr−)+
) + b̃u

(
(Iu

s − Xu−)+
) + ∑

u<r≤s

b̃r

(
(I r

s − Xr−)+
)

and, similarly,

Ds+t = ∑
0<r<u

b̃r

(
(I r

s+t − Xr−)+
) + b̃u

(
(Iu

s+t − Xu−)+
)

+ ∑
s<r≤s+t

b̃r

(
(I r

s+t − Xr−)+
)
.

In the last display, we should also have considered the sum over r ∈ (u, s], but, in
fact, this term gives no contribution because we have Xr− ≥ I s

s+t = I r
s+t for these

values of r , by the definition of u. Moreover, as I r
s = I r

s+t for r ∈ [0, u), we have∑
0<r<u

b̃r

(
(I r

s − Xr−)+
) = ∑

0<r<u

b̃r

(
(I r

s+t − Xr−)+
)
.

Also, a simple translation argument shows that we may write∑
s<r≤s+t

b̃r

(
(I r

s+t − Xr−)+
) = D

(s)
t ,

where the process D(s) has the same distribution as D and, in particular, D
(s)
t has

the same distribution as Dt . By combining the preceding remarks, we get

Ds+t − Ds − D
(s)
t = − ∑

u<r≤s

b̃r

(
(I r

s − Xr−)+
)

+ (
b̃u

(
(Iu

s+t − Xu−)+
) − b̃u

(
(Iu

s − Xu−)+
))

.
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Conditionally on F∞, the right-hand side of the last display is distributed as a
centered Gaussian variable with variance bounded above by∑

u<r≤s

(I r
s − Xr−)+ + (Iu

s − Iu
s+t ) = ∑

u<r≤s

(I r
s − I r−

s ) + (Iu
s − Iu

s+t )

≤ Xs − Iu
s+t = Xs − I s

s+t .

Furthermore, Xs − I s
s+t has the same distribution as −It , by the Markov property

of X.
Now, let p ≥ 1. From previous considerations, we obtain

E[|Ds+t − Ds |p] ≤ 2p(
E

[∣∣D(s)
t

∣∣p] + E
[∣∣Ds+t − Ds − D

(s)
t

∣∣p])
≤ 2p(

E[|Dt |p] + KpE[(−It )
p/2])

= 2p(
E[|D1|p] + KpE[(−I1)

p/2])tp/2α,

where we have made further use of the scaling properties of X and D. The constant
in front of tp/2α is finite, by Lemmas 2 and 3. The classical Kolmogorov continuity
criterion then yields the desired result. �

In what follows, we will always consider the continuous modification of (Dt ,
t ≥ 0).

REMARK. The process D is closely related to the so-called exploration
process associated with X, as defined in the monograph [12]. The latter is a
measure-valued strong Markov process (ρt , t ≥ 0) such that, for every t ≥ 0, ρt

is an atomic measure on [0,∞) and the masses of the atoms of ρt are precisely
the quantities (I s

t − Xs−)+, s ≤ t , that are involved in the definition of Dt (see
the proof of Theorem 5 below for more information on this exploration process).
As a matter of fact, part of the proof of Proposition 6 resembles the proof of the
Markov property for (ρt , t ≥ 0); see [12], Proposition 1.2.3. However, the defini-
tion of ρt requires the introduction of the continuous-time height process (see the
next section), which is not needed in the definition of Dt .

4.3. Excursion measures. It will be useful to consider the distance process D

under the excursion measure of X above its minimum process I . Recall that X − I

is a strong Markov process, that 0 is a regular recurrent point for this Markov
process and that −I provides a local time for X − I at level 0 (see [2], Chapters VI
and VII). We write N for the excursion measure of X − I away from 0 associated
with this choice of local time. This excursion measure is defined on the Skorokhod
space D(R) and, without risk of confusion, we will also use the notation X for the
canonical process on the space D(R). The duration of the excursion under N is
σ = inf{t > 0 :Xt = 0}. For every a > 0, we have

N(σ ∈ da) = da

α�(1 − 1/α)a1+1/α
.
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This easily follows from formula (19) for the Laplace transform of Tx .
In order to assign an independent bridge to each jump of X, we consider an

auxiliary probability space (�∗, F ∗,P∗) which supports a countable collection
of independent Brownian bridges (bi)i∈N. We then argue on the product space
D(R) × �∗, which is equipped with the product measure N ⊗ P∗. With a slight
abuse of notation, we will write N instead of N ⊗ P∗ in what follows.

The construction of the distance process under N is then similar to the con-
structions in the preceding subsections. The process X has a countable number of
jumps under N and these jumps can be enumerated, for instance, by decreasing
size, as a sequence (ti)i∈N. The same formula (20) can be used to define the dis-
tance process Dt under N. It is again easy to check that the series (20) converges,
say in N-measure. Note that Dt = 0 on {σ ≤ t}.

To connect this construction with the previous subsections, we may consider,
under the probability measure P, the first excursion interval of X − I (away
from 0) with length greater than a, where a > 0 is fixed. We denote this interval
by (g(a), d(a)). Then, the distribution of (X(g(a)+t)∧d(a)

, t ≥ 0) under P coincides
with that of (Xt , t ≥ 0) under N(·|σ > a). Furthermore, it is easily checked that
the finite-dimensional marginals of the process (D(g(a)+t)∧d(a)

, t ≥ 0) under P also
coincide with those of (Dt , t ≥ 0) under N(·|σ > a). The point here is that the only
jumps that may give a nonzero contribution in formula (20) are those that belong to
the excursion interval of X−I that straddles t . From the previous observations and
Proposition 6, we deduce that the process (Dt , t ≥ 0) also has a Hölder continuous
modification under N and, from now on, we will deal with this modification.

Finally, it is well known that the scaling properties of stable processes allow
one to make sense of the conditioned measure N(·|σ = a) for any choice of a > 0.
Using the scaling property (22), it is then a simple matter to define the distance
process D also under this conditioned measure. Furthermore, the Hölder continuity
properties of D still hold under N(·|σ = a).

5. Convergence of labels in a forest of mobiles. We now consider a sequence
F = (θ1, θ2, . . .) of independent random mobiles. We assume that, for every i ∈ N,
θi = (Ti , (�i(v), v ∈ T ◦

i )) is a (μ0,μ1)-mobile. We will call F a (random) labeled
forest. It will also be useful to consider the (unlabeled) forest F, defined as the
sequence (T1, T2, . . .).

For our purposes, it will be important to distinguish the vertices of the different
trees in the forest F. This can be achieved by a minor modification of the formalism
of Section 3.1, letting T1 be a (random) subset of {1}× U , T2 be a subset of {2}× U
and so on. Whenever we deal with a sequence of trees or of mobiles, we will tacitly
assume that this modification has been made.

Our goal is to study the scaling limit of the collection of labels in the forest F.

5.1. Statement of the result. We first recall known results about scaling limits
of the height process. We let (H ◦

n )n≥0 denote the height process of the forest F.
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This means that the process H ◦ is obtained by concatenating the height processes
[Hθi (n),0 ≤ n ≤ #T ◦

i − 1] of the mobiles θi . Equivalently, let u0, u1, . . . be the
sequence of all white vertices of the forest F, listed one tree after another and in
lexicographical order for each tree. Then, H ◦

n is equal to half the generation of un.
Scaling limits of (H ◦

n )n≥0 are better understood, thanks to the connection be-
tween the height process and the Lukasiewicz path of the forest F. We denote this
Lukasiewicz path by (S◦

n)n≥0. This means that S◦
0 = 0 and, for every integer n ≥ 0,

S◦
n+1 −S◦

n +1 is the number of (white) grandchildren of un in F. Then, (S◦
n)n≥0 is a

random walk with jump distribution ν, as defined before (15). To see this, note that
for every i ∈ N, the set T ◦

i of all white vertices of Ti can be viewed as a plane tree,
simply by saying that a white vertex of Ti is a child in T ◦

i of another white ver-
tex of Ti if and only if it is a grandchild of this other vertex in the tree Ti . Modulo
this identification, T ◦

1 , T ◦
2 , . . . are independent Galton–Watson trees with offspring

distribution μ. The fact that (S◦
n)n≥0 is a random walk with jump distribution ν is

then a consequence of well-known results for forests of i.i.d. Galton–Watson trees;
see, for example, Section 1 of [18].

Moreover, the height process (H ◦
n )n≥0 is related to the random walk (S◦

n)n≥0 by
the formula

H ◦
n = #

{
k ∈ {0,1, . . . , n − 1} :S◦

k = min
k≤j≤n

S◦
j

}
.(26)

The integers k that appear in the right-hand side of (26) are exactly those for which
uk is an ancestor of un distinct from un. For each such integer k, the quantity

S◦
k+1 − min

k+1≤j≤n
S◦

j + 1(27)

is the rank of uk+1 among the grandchildren of uk in F. We again refer to Section 1
of [18] for a thorough discussion of these results and related ones. For every integer
k such that uk is a strict ancestor of un, it will also be of interest to consider the
(black) parent of uk+1 in the forest F. As a consequence of the preceding remarks,
the number of children of this black vertex is less than or equal to S◦

k+1 − S◦
k + 1

and the rank of uk+1 among these children is less than or equal to the quantity (27).
Let us now discuss scaling limits. We can apply the convergence (15) to the

random walk (S◦
n)n≥0. As a consequence of the results in Chapter 2 of [12] (see,

in particular, Theorem 2.3.2 and Corollary 2.5.1), we have the joint convergence(
n−1/αS◦[nt], n−(1−1/α)H ◦[nt]

)
t≥0

(d)−→
n→∞(c0Xt, c

−1
0 Ht)t≥0,(28)

where the convergence holds in distribution, in the Skorokhod sense, and (Ht)t≥0
is the so-called continuous-time height process associated with X, which may be
defined by the limit in probability

Ht = lim
ε→0

1

ε

∫ t

0
1{Xs>Is

t −ε} ds.
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Note that the preceding approximation of Ht is a continuous analog of (26). The
process (Ht)t≥0 has continuous sample paths and satisfies the scaling property

(Hrt )t≥0
(d)= (r1−1/αHt)t≥0

for every r > 0. We refer to [12] for a thorough analysis of the continuous-time
height process.

We aim to establish a version of (28) that includes the convergence of rescaled
labels. The label process (L◦

n, n ≥ 0) of the forest F is obtained by concatenating
the label processes Lθ1,Lθ2, . . . of the mobiles θ1, θ2, . . . (cf. Section 3.1). Our
goal is to prove the following theorem.

THEOREM 1. We have(
n−1/αS◦[nt], n−(1−1/α)H ◦[nt], n−1/2αL◦[nt]

)
t≥0

(d)−→
n→∞

(
c0Xt, c

−1
0 Ht,

√
2c0Dt

)
t≥0,

where the convergence holds in the sense of weak convergence of the laws in the
Skorokhod space D(R3).

The proof of Theorem 1 is rather long and occupies the remaining part of this
section. We will first establish the convergence of finite-dimensional marginals
of the rescaled label process and then complete the proof by using a tightness
argument.

5.2. Finite-dimensional convergence.

PROPOSITION 7. For every choice of 0 ≤ t1 < t2 < · · · < tp , we have

n−1/2α(
L◦[nt1],L

◦[nt2], . . . ,L
◦[ntp]

) (d)−→
n→∞

√
2c0(Dt1,Dt2, . . . ,Dtp).

Furthermore, this convergence holds jointly with the convergence (28).

PROOF. In order to write the subsequent arguments in a simpler form, it will
be convenient to use the Skorokhod representation theorem to replace the conver-
gence in distribution (28) by an almost sure convergence. For every n ≥ 1, we can
construct a labeled forest F(n) having the same distribution as F, in such a way that
if S(n) is the Lukasiewicz path of F(n) and H(n) is the height process of F(n), then
we have the almost sure convergence(

n−1/αS
(n)
[nt], n

−(1−1/α)H
(n)
[nt]

)
t≥0

(a.s.)−→
n→∞(c0Xt, c

−1
0 Ht)t≥0,(29)

in the sense of the Skorokhod topology. We also use the notation F(n) for the
unlabeled forest associated with F(n).

We denote by u
(n)
0 , u

(n)
1 , . . . the white vertices of the forest F(n) listed in lexico-

graphical order. For every k ≥ 0, we denote the label of u
(n)
k by L

(n)
k = �(n)(u

(n)
k ).
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In order to get the convergence of one-dimensional marginals in Proposition 7, we
need to verify that for every t > 0,

n−1/2αL
(n)
[nt]

(d)−→
n→∞

√
2c0Dt.

We fix t > 0 and ε ∈ (0,1). We denote by si , i = 1,2, . . . , the sequence consist-
ing of all times s ∈ [0, t] such that

Xs− < Is
t .

The times si are ranked in such a way that �Xsi < �Xsj if i > j .

On the other hand, let J (n)
t be the set of all integers k ∈ {0,1, . . . , [nt]−1} such

that

S
(n)
k = min

k≤p≤[nt]S
(n)
p .

We list the elements of J (n)
t as J (n)

t = {a(n)
1 , a

(n)
2 , . . . , a

(n)
kn

}, in such a way that

S
(n)

a
(n)
i +1

− S
(n)

a
(n)
i

≤ S
(n)

a
(n)
j +1

− S
(n)

a
(n)
j

if 1 ≤ j ≤ i ≤ kn.

The convergence (29) ensures that almost surely, for every i ≥ 1,

1

n
a

(n)
i −→

n→∞ si,

1

c0n1/α

(
S

(n)

a
(n)
i +1

− S
(n)

a
(n)
i

) −→
n→∞ �Xsi ,(30)

1

c0n1/α

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S

(n)

a
(n)
i

)
−→
n→∞ I

si
t − Xsi−.

By the observations following (26), we know that the (white) ancestors of u
(n)
[nt]

are the vertices u
(n)
k for all k ∈ J (n)

t . In particular, the generation of u
(n)
[nt] is (twice)

H
(n)
[nt] = #J (n)

t , in agreement with (26). We can then write

L
(n)
[nt] = �(n)(u(n)

[nt]
) = ∑

j∈J (n)
t

(
�(n)(u(n)

ϕn(j)

) − �(n)(u(n)
j

))
,(31)

where, for j ∈ J (n)
t , ϕn(j) is the smallest element of ({j + 1, . . . , [nt] − 1} ∩

J (n)
t ) ∪ {[nt]}. Equivalently, u

(n)
ϕn(j) is the unique (white) grandchild of u

(n)
j that is

also an ancestor of u
(n)
[nt].

Now, consider the Lévy process X. As a consequence of classical results of
fluctuation theory (see, e.g., Lemma 1.1.2 in [12]), we know that the ladder height
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process of X is a subordinator without drift, hence a pure jump process. By apply-
ing this to the dual process (X(t−r)− − Xt,0 ≤ r < t), we obtain that

Xt − It =
∞∑
i=1

(I
si
t − Xsi−).

It follows that we can fix an integer N ≥ 1 such that, with probability greater than
1 − ε, we have

Xt − It −
N∑

i=1

(I
si
t − Xsi−) = ∑

i>N

(I
si
t − Xsi−) ≤ ε

2
.(32)

Now, note that

1

c0n1/α

(
S

(n)
[nt] − min

k≤[nt]S
(n)
k

) a.s.−→
n→∞Xt − It

and recall the convergences (30). Using (32), it follows that we can find n0 suffi-
ciently large such that for every n ≥ n0, with probability greater than 1 − 2ε, we
have

1

c0n1/α

((
S

(n)
[nt] − min

k≤[nt]S
(n)
k

)
−

N∧kn∑
i=1

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S

(n)

a
(n)
i

))
< ε.

Since
kn∑

i=1

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S

(n)

a
(n)
i

)
= S

(n)
[nt] − min

k≤[nt]S
(n)
k ,

we get that, for every n ≥ n0, with probability greater than 1 − 2ε,

1

c0n1/α

∑
i>N

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S

(n)

a
(n)
i

)
< ε.(33)

Now, recall (31). By Proposition 3 and the observations following (26), we
know that, conditionally on the forest F(n), for every j ∈ J (n)

t , the quantity

�(n)(u(n)
ϕn(j)

) − �(n)(u(n)
j

)
is distributed as the value of a discrete bridge with length pj ≤ S

(n)
j+1 −S

(n)
j +2, at a

time kj ≤ S
(n)
j+1 −minj+1≤k≤[nt] S(n)

k +1 such that pj −kj ≤ minj+1≤k≤[nt] S(n)
k −

S
(n)
j + 1. Thanks to our estimate (17) on discrete bridges, we thus have

E
[(

�(n)(u(n)
ϕn(j)

) − �(n)(u(n)
j

))2|F(n)] ≤ K
kj (pj − kj )

pj

≤ K
(

min
j+1≤k≤[nt]S

(n)
k − S

(n)
j + 1

)
.
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Furthermore, still conditionally on the forest F(n), the random variables
�(n)(u

(n)
ϕn(j)) − �(n)(u

(n)
j ) are independent and centered. It follows that for n ≥ n0,

E

[(
n−1/2α

∑
j∈J (n)

t \{a(n)
1 ,...,a

(n)
N }

(
�(n)(u(n)

ϕn(j)

) − �(n)(u(n)
j

)))2∣∣∣F(n)

]

≤ Kn−1/α
∑

j∈J (n)
t \{a(n)

1 ,...,a
(n)
N }

(
min

j+1≤k≤[nt]S
(n)
k − S

(n)
j + 1

)

≤ K
(
c0ε + n−1/α#J (n)

t

)
,

the last bound holding on a set of probability greater than 1 − 2ε, by (33). Since
#J (n)

t = H
(n)
[nt], we have n−1/α#J (n)

t −→ 0 a.s. as n → ∞, by (29).
From (31) and the preceding considerations, the limiting behavior of n−1/2α ×

L
(n)
[nt] will follow from that of

n−1/2α
∑

j∈{a(n)
1 ,...,a

(n)
N }

(
�(n)(u(n)

ϕn(j)

) − �(n)(u(n)
j

))
.

Recall that for every j ∈ {a(n)
1 , . . . , a

(n)
N }, the number of white grandchildren of

u
(n)
j in the forest F(n) is m

(n)
j = S

(n)
j+1 − S

(n)
j + 1. Moreover, u

(n)
ϕn(j) appears at the

rank

r
(n)
j = S

(n)
j+1 − min

j+1≤k≤[nt]S
(n)
k + 1

in the list of these grandchildren. The next lemma will imply that u
(n)
ϕn(j) is the child

of a black vertex whose number of children is also close to m
(n)
j .

LEMMA 5. We can choose δ > 0 small enough so that, for every fixed η > 0,
the following holds with probability close to 1 when n is large. For every white
vertex belonging to {u(n)

0 , u
(n)
1 , . . . , u

(n)
[nt]} that has more than ηn1/α white grand-

children in the forest F(n), all these grandchildren have the same (black) parent in
the forest F(n), except for at most n1/α−δ of them.

PROOF. Recall that μ0(k) = β(1 − β)k for every k ≥ 0. We choose δ > 0
such that 2δα < 1 and take n sufficiently large so that ηn1/α > 2n1/α−δ . Let us fix
i ∈ {0,1, . . . , [nt]}. The number of black children of u

(n)
i is distributed according

to μ0 and each of these black children has a number of white children distributed
according to μ1. Supposing that u

(n)
i has k black children, if it has a number M ≥

ηn1/α of grandchildren and simultaneously none of its black children has more
than M − n1/α−δ white children, this implies that at least two among its black
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children will have more than n1/α−δ/k white children. The probability that this
occurs is bounded above by

β

∞∑
k=2

(1 − β)k
(

k

2

)
μ1(n

1/α−δ/k)2.

From (13), there is a constant K such that μ1(k) ≤ Kk−α for every k ≥ 1. Hence,
the last displayed quantity is bounded by

K2β

( ∞∑
k=2

(1 − β)k
(

k

2

)
k2α

)
n−2+2δα = o(n−1).

The desired result follows by summing this estimate over i ∈ {0,1, . . . , [nt]}. �

We return to the proof of Proposition 7. We fix δ > 0, as in the lemma. We first
observe that for every j ∈ {a(n)

1 , . . . , a
(n)
N }, (30) implies that

lim
n→∞n−1/αr

(n)
j = c0(Xsj − I

sj
t ) > 0.

We then deduce from Lemma 5 that, with a probability close to 1 when n is large,
for every j ∈ {a(n)

1 , . . . , a
(n)
N }, un

ϕn(j) is the child of a black child of u
(n)
j , whose

number of white children is m̃
(n)
j such that

m
(n)
j ≥ m̃

(n)
j ≥ m

(n)
j − n1/α−δ.(34)

Moreover, the rank r̃
(n)
j of un

ϕn(j) among the children of its (black) parent satisfies

r
(n)
j ≥ r̃

(n)
j ≥ r

(n)
j − n1/α−δ.(35)

On the other hand, we know that, conditionally on F(n), the difference

�(n)(u(n)
ϕn(j)

) − �(n)(u(n)
j

)
is distributed as the value of a discrete bridge with length m̃

(n)
j + 1 at time r̃

(n)
j .

Thus, conditionally on F(n),

∑
j∈{a(n)

1 ,...,a
(n)
N }

(
�(n)(u(n)

ϕn(j)

) − �(n)(u(n)
j

)) (d)=
N∑

i=1

b
(n)
i

(̃
r
(n)

a
(n)
i

)
,

where, for every i ∈ {1, . . . ,N}, b
(n)
i is a discrete bridge with length m̃

(n)

a
(n)
i

+ 1 and

the bridges b
(n)
i are independent.
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Using Donsker’s theorem for bridges (18), the convergences (29) and (30) and
the bounds (34) and (35), together with scaling properties of Brownian bridges, it
is then a simple matter to obtain that, for every i ∈ {1, . . . ,N},

n−1/2αb
(n)
i

(̃
r
(n)

a
(n)
i

) (d)−→
n→∞

√
2c0γi(Xsi − I

si
t ),(36)

where, conditionally on X, γi = (γi(r))0≤r≤�Xsi
is a Brownian bridge with length

�Xsi . The preceding convergences hold jointly when i varies in {1, . . . ,N} with
Brownian bridges γ1, . . . , γN that are independent conditionally on X. Finally, it
follows that

n−1/2α
∑

j∈{a(n)
1 ,...,a

(n)
N }

(
�(n)(u(n)

ϕn(j)

) − �(n)(u
(n)
j )

) (d)−→
n→∞

√
2c0

N∑
i=1

γi(Xsi − I
si
t ).

From Proposition 5, the limit is close to
√

2c0Dt when N is large. This completes
the proof of the convergence of one-dimensional marginals. It is also clear from
our argument that the convergences (36) hold jointly with (29), so the convergence
of n−1/2αL◦[nt] must hold jointly with (28).

The same arguments yield the convergence of finite-dimensional marginals. It
would be tedious to write a detailed proof, but we sketch the method in the case of
two-dimensional marginals. So, fix 0 < s < t . We aim to prove that

n−1/2α(
L

(n)
[ns],L

(n)
[nt]

) (d)−→
n→∞

√
2c0(Ds,Dt).

It is convenient to argue separately on the events {Is > It } and {Is = It }. Discard-
ing sets of probability zero, the first event corresponds to the case where s and t

belong to different excursion intervals of X − I away from 0 and the second event
corresponds to the case where s and t are in the same excursion interval of X − I .

On the event {Is > It }, things are easy. We first note that, conditionally on X,
Ds and Dt are independent on that event. This is the case because the jumps ti
that give a nonzero contribution in (20) belong to the excursion interval of X − I

that straddles t . Similarly, Ln[ns] and Ln[nt] are independent, conditionally given the

forest F(n), on the event

min
k≤[ns]S

(n)
k > min

k≤[nt]S
(n)
k .

Furthermore, the latter event converges to {Is > It } as n → ∞. Thus, the very
same arguments as in the case of one-dimensional marginals yield that the condi-
tional distribution of the pair n−1/2α(L

(n)
[ns],L

(n)
[nt]) given {Is > It } converges to the

conditional distribution of
√

2c0(Ds,Dt) given the same event.
On the event {Is = It }, we need to be a little more careful. Set

Js = {r ∈ [0, s] :Xr− < Ir
s },

Jt = {r ∈ [0, t] :Xr− < Ir
t }.
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Then, a.s. there exists a unique r0 ∈ Js such that

I s
t ∈ (Xr0−, I r0

s ).

Furthermore, we have Js ∩ Jt = Js ∩ [0, r0] = Jt ∩ [0, r0] and I r
s = I r

t for every
r ∈ Js ∩[0, r0). Using the convergence (29), we get that, a.s. on the event {Is = It },
for n sufficiently large, there exists a time j0(n) ∈ J (n)

s ∩ J (n)
t such that

S
(n)
j0(n) < min[ns]≤k≤[nt]S

(n)
k < min

j0(n)+1≤k≤[ns]S
(n)
k < S

(n)
j0(n)+1

and, furthermore, J (n)
s ∩ J (n)

t = J (n)
s ∩ [0, j0(n)] = J (n)

t ∩ [0, j0(n)]. The white
vertices that are common ancestors to u

(n)
[ns] and u

(n)
[nt] are exactly the vertices u

(n)
k

for k ∈ J (n)
s ∩[0, j0(n)]. Also, note that n−1j0(n) converges to r0, a.s. on the event

{Is = It }.
Write ψn : J (n)

s −→ J (n)
s ∪ {[ns]} for the function analogous to ϕn when t is

replaced by s. Analogously to (31), we have

L
(n)
[ns] = ∑

j∈J (n)
s

(
�(n)(u(n)

ψn(j)

) − �(n)(u(n)
j

))
,

L
(n)
[nt] = ∑

j∈J (n)
t

(
�(n)(u(n)

ϕn(j)

) − �(n)(u(n)
j

))
.

The terms corresponding to j ∈ J (n)
s ∩ [0, j0(n)) = J (n)

t ∩ [0, j0(n)) are the same
in both sums of the preceding display. On the other hand, conditionally on F(n),
the terms corresponding to j ∈ J (n)

s ∩ (j0(n), [ns]) in the first sum are independent
of the terms of the second sum and similarly for the terms corresponding to j ∈
J (n)

t ∩ (j0(n), [nt]) in the second sum. As for the term corresponding to j0(n), the
same arguments as in the proof of the convergence of one-dimensional marginals,
using Lemma 5 in particular, show that

n−1/2α(
�(n)(u(n)

ψn(j0(n))

) − �(n)(u(n)
j0(n)

)
, �(n)(u(n)

ϕn(j0(n))

) − �(n)(u(n)
j0(n)

))
(d)−→

n→∞
√

2c0
(
γ (Xr0 − I r0

s ), γ (Xr0 − I
r0
t )

)
,

where, conditionally given X, γ is a Brownian bridge with length �Xr0 .
Finally, let (ri)i∈N be a measurable enumeration of Js ∩ [0, r0) = Jt ∩ [0, r0),

(r ′
i )i∈N a measurable enumeration of Js ∩ (r0, s] and (r ′′

i )i∈N a measurable enu-
meration of Js ∩ (r0, t]. Set

L∞
s = ∑

i∈N

γi(Xri − I ri
s ) + γ (Xr0 − I r0

s ) + ∑
i∈N

γ ′
i (Xr ′

i
− I

r ′
i

s ),

L∞
t = ∑

i∈N

γi(Xri − I
ri
t ) + γ (Xr0 − I

r0
t ) + ∑

i∈N

γ ′′
i (Xr ′′

i
− I

r ′′
i

t ),
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where, conditionally given X, (γi)i∈N, (γ ′
i )i∈N, (γ ′′

i )i∈N and γ are indepen-
dent Brownian bridges and the duration of γi (resp., γ ′

i , γ ′′
i ) is �Xri (resp.,

�Xr ′
i
, �Xr ′′

i
). Then, by following the lines of the proof of the convergence

of one-dimensional marginals, we obtain that the conditional distribution of
n−1/2α(L

(n)
[ns],L

(n)
[nt]) given {Is = It } converges to the conditional distribution of√

2c0(L
∞
s ,L∞

t ) given the same event. However, the latter conditional distribu-
tion clearly coincides with the conditional distribution of

√
2c0(Ds,Dt) given

{Is = It }. So, we get the desired convergence for two-dimensional marginals and
the same argument as in the case of one-dimensional marginals gives a joint con-
vergence with (28). This completes the proof. �

5.3. Tightness of the rescaled label process. The next proposition will allow
us to complete the proof of Theorem 1.

PROPOSITION 8. There exists a constant K0 such that, for all integers i,
j ≥ 0,

E[(L◦
i − L◦

j )
4] ≤ K0|i − j |2/α.

Theorem 1 is an easy consequence of this proposition and Proposition 7. To see
this, define L

{n}
t = n−1/2αL◦

nt if nt is an integer and use linear approximation to
define L

{n}
t for every real t ≥ 0. By the bound of the proposition,

E
[(

L{n}
s − L

{n}
t

)4] ≤ K0|s − t |2/α,

if ns and nt are both integers. It readily follows that the same bound holds (possi-
bly with a different constant) for all reals s, t ≥ 0. Since 2/α > 1, standard criteria
entail that the sequence of the distributions of the processes L{n} is tight in the
space of probability measures on C(R). Theorem 1 then follows by using Propo-
sition 7.

PROOF OF PROPOSITION 8. We use the same notation as in Section 5.1. In
particular, u0, u1, u2, . . . are the white vertices of the forest F listed in lexicograph-
ical order and one tree after another, so L◦

i = �(ui) is the label of ui . We also set

J (i) =
{
k ∈ {0,1, . . . , i − 1} :S◦

k ≤ min
k+1≤�≤i

S◦
�

}
in such a way that the vertices uk, k ∈ J (i) are the white vertices of F that are
strict ancestors of ui .

We fix two nonnegative integers i < j . If k ∈ J (i), then we write ϕ(k) for the
index such that uϕ(k) is the (unique) grandchild of uk that is also an ancestor of ui .
We similarly define ψ(k) for k ∈ J (j) in such a way that uψ(k) is the grandchild
of uk that is an ancestor of uj .
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In the case where ui and uj belong to the same tree of the forest, we define i0
by requiring that ui0 is the most recent white common ancestor of ui and uj in F.
If i0 < i, then we have

S◦
i0

≤ min
i≤k≤j

S◦
k ≤ S◦

ϕ(i0)
.(37)

This easily follows from the relations between the sequence T ◦
1 , T ◦

2 , . . . and the
Lukasiewicz path S◦ (see, e.g., [12], Section 0.2, or [18], Section 1) and we leave
the proof as an exercise for the reader. It may happen that i0 = i (but not that
i0 = j ) and, in that case, we set ϕ(i0) = i0, by convention.

In the case where ui and uj belong to different trees of the forest, we take i0 =
−∞, by convention, and we also agree that ϕ(−∞) [resp., ψ(−∞)] is defined in
such a way that uϕ(−∞) [resp., uψ(−∞)] is the root of the tree containing ui (resp.,
containing uj ).

We then have

L◦
i − L◦

j = �(ui) − �(uj )

= ∑
k∈J (i)∩(i0,i)

(
�
(
uϕ(k)

) − �(uk)
)

(38)
− ∑

k∈J (j)∩(i0,j)

(
�
(
uψ(k)

) − �(uk)
)

+ �
(
uϕ(i0)

) − �
(
uψ(i0)

)
.

As in the proof of Proposition 7, we can write∑
k∈J (i)∩(i0,i)

(
�
(
uϕ(k)

) − �(uk)
) = ∑

k∈J (i)∩(i0,i)

bk(rk),

where, conditionally on F, the processes bk are independent discrete bridges, bk

has length mk ≤ S◦
k+1 − S◦

k + 2 and rk ∈ {1, . . . ,mk − 1} is such that

rk ≤ S◦
k+1 − min

k+1≤�≤i
S◦

� + 1,(39)

mk − rk ≤ min
k+1≤�≤i

S◦
� − S◦

k + 1.(40)

From the bound of Lemma 1 and (40), we get, with some constant K1,

E

[( ∑
k∈J (i)∩(i0,i)

bk(rk)

)4∣∣∣F]
≤ K1

( ∑
k∈J (i)∩(i0,i)

(mk − rk)

)2

≤ K1

( ∑
k∈J (i)∩(i0,i)

(
min

k+1≤�≤i
S◦

� − S◦
k + 1

))2

≤ 2K1

((
S◦

i − min
i≤�≤j

S◦
�

)2 +
(
H ◦

i − min
i≤�≤j

H ◦
�

)2)
.
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In the last inequality, we have used the identity

#{k ∈ J (i) ∩ (i0, i)} = H ◦
i − min

i≤�≤j
H ◦

�

and the bound ∑
k∈J (i)∩(i0,i)

(
min

k+1≤�≤i
S◦

� − S◦
k

)
≤ S◦

i − min
i≤�≤j

S◦
� ,

which follows from (37) in the case i0 < i.
To simplify notation, set

Jn = min
0≤k≤n

S◦
k

and note that

S◦
i − min

i≤�≤j
S◦

�

(d)= −Jj−i .

LEMMA 6. There exists a constant K2 such that, for every integer n ≥ 1,

E[(Jn)
2] ≤ K2n

2/α.

LEMMA 7. There exists a constant K3, which does not depend on the choice
of i and j , such that

E
[(

H ◦
i + H ◦

j − 2 min
i≤�≤j

H ◦
�

)2]
≤ K3|i − j |2(1−1/α).

The proof of these lemmas is postponed to the end of the section. By combining
Lemmas 6, 7 and the previous observations, we get, with a certain constant K4,

E

[( ∑
k∈J (i)∩(i0,i)

(
�
(
uϕ(k)

) − �(uk)
))4]

≤ K4|i − j |2/α.

We still have to treat the other two terms in the right-hand side of (38). As
previously, we have∑

k∈J (j)∩(i0,j)

(
�
(
uψ(k)

) − �(uk)
) = ∑

k∈J (j)∩(i0,j)

bk(rk),

where, conditionally on F, the processes bk are independent discrete bridges, bk

has length mk ≤ S◦
k+1 − S◦

k + 2 and rk ∈ {1, . . . ,mk − 1} satisfies the bounds (39)
and (40) with i replaced by j . Arguing as above, but now using the bound (39),
we get

E

[( ∑
k∈J (j)∩(i0,j)

bk(rk)

)4∣∣∣F]

≤ 2K1

(( ∑
k∈J (j)∩(i0,j)

(
S◦

k+1 − min
k+1≤�≤j

S◦
�

))2

+
(
H ◦

j − min
i≤�≤j

H ◦
�

)2
)
.
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The expected value of the second term in the right-hand side is bounded by Lem-
ma 7. As for the first term, we observe that J (j) ∩ (i0, j) = J (j) ∩ (i, j) and
thus ∑

k∈J (j)∩(i0,j)

(
S◦

k+1 − min
k+1≤�≤j

S◦
�

)

= ∑
k∈(i,j)

1{S◦
k≤mink+1≤�≤j S◦

� }
(
S◦

k+1 − min
k+1≤�≤j

S◦
�

)
(d)= Fj−i−1,

where, for every n ≥ 1,

Fn =
n−1∑
k=0

1{S◦
k ≤mink+1≤�≤n S◦

� }
(
S◦

k+1 − min
k+1≤�≤n

S◦
�

)
.

Furthermore, a time reversal argument shows that Fn has the same distribution
as Gn, where

Gn =
n∑

k=1

1{S◦
k ≥max0≤�≤k−1 S◦

� }
(

max
0≤�≤k−1

S◦
� − S◦

k−1

)
.

LEMMA 8. There exists a constant K5 such that, for every integer n ≥ 1,

E[(Gn)
2] ≤ K5n

2/α.

Combining Lemma 8 with the preceding observations, we see that the fourth
moment of the second term in the right-hand side of (38) is bounded above by
K6|j − i|2/α for some constant K6. We easily get the same bound for the third
term by using Lemmas 1 and 6. This completes the proof of Proposition 8, but we
still have to prove Lemmas 6, 7 and 8. �

PROOF OF LEMMA 6. For every integer k ≥ 0, set

Vk = inf{n ≥ 0 :S◦
n = −k}.

Note that Vk is the sum of k independent copies of V1. As a consequence of (15),
n−αVn converges in distribution to the variable T

c−1
0

= inf{t ≥ 0 :Xt < −c−1
0 },

which is stable with index 1/α. By standard results concerning domains of at-
traction of stable distributions (see, e.g., Section XVII.5 of [13]), there exists a
constant K > 0 such that

P(V1 > n) ∼
n→∞Kn−1/α.(41)

Consequently, there is a constant K ′ > 0 such that, for every n ≥ 1,

P(V1 > n) ≥ K ′n−1/α.
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Then, for every x ≥ 1 and n ≥ 1,

P(|Jn| ≥ xn1/α) ≤ P
(
V[xn1/α] ≤ n

)
≤ P(V1 ≤ n)[xn1/α] ≤ (1 − K ′n−1/α)[xn1/α]

≤ exp(−K ′x/2).

It readily follows that all moments of n−1/α|Jn| are uniformly bounded. �

PROOF OF LEMMA 7. For all nonnegative integers k ≤ �, we set Jk,� =
mink≤n≤� S◦

n so that Jk = J0,k . We fix two nonnegative integers i < j and first
look for an expression of mini≤�≤j H ◦

� . To this end, we set

g = max
{
r ∈ {0,1, . . . , i − 1} :S◦

r ≤ Ji,j

}
with the convention that max ∅ = −∞. First, assume that g > −∞ and let k ∈
{i, . . . , j}. We then have

H ◦
k = #

{
� ∈ {0, . . . , k − 1} :S◦

� = J�,k

}
(42)

= #
{
� ∈ {0, . . . , g − 1} :S◦

� = J�,k

} + #
{
� ∈ {g, . . . , k − 1} :S◦

� = J�,k

}
.

From the definition of g, it is easy to verify that J�,k = J�,g for every � ∈
{0, . . . , g − 1}. Thus, the first term in the right-hand side of (42) is equal to H ◦

g

and does not depend on k. We then note that S◦
g = Jg,k , by the definition of g, so

the second term in the right-hand side of (42) equals

1 + #
{
� ∈ {g + 1, . . . , k − 1} :S◦

� = J�,k

}
.

This expression attains its minimal value 1 when k equals min{� ≥ i :S◦
� = Ji,j }.

Thus, we have proved, when g > −∞, that

min
i≤k≤j

H ◦
k = H ◦

g + 1.

When g = −∞, by considering k = min{� ≥ i :S◦
� = Ji,j }, we see that

min
i≤k≤j

H ◦
k = 0.

Using (42) and the preceding observations, we get that, for every k ∈ {i, . . . , j},
H ◦

k − min
i≤�≤j

H ◦
� = #

{
� ∈ {0,1, . . . , k − 1} :� > g and S◦

� = J�,k

}
.(43)

Specializing this formula to k = i, we have

H ◦
i − min

i≤�≤j
H ◦

� ≤ #
{
� ∈ {g+, . . . , i − 1} :S◦

� = J�,i

}
.(44)

We now introduce the time-reversed walk Ŝ
(i)
� = S◦

i − S◦
i−� for 0 ≤ � ≤ i. Note

that (Ŝ
(i)
� ,0 ≤ � ≤ i) has the same distribution as (S◦

� ,0 ≤ � ≤ i). For every integer
m ≥ 0, set

ρ̂(i)
m = min

{
k ∈ {0, . . . , i} : Ŝ(i)

k ≥ m
}
,
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where min ∅ = +∞. For k ∈ {0,1, . . . , i}, we also set

�̂(i)(k) = #
{
� ∈ {1, . . . , k} : Ŝ(i)

� = max
0≤n≤�

Ŝ(i)
n

}
,

which is the number of (weak) records of the time-reversed walk Ŝ(i) before time k.
Finally, let J

(i)
j−i = Ji,j − S◦

i . With these definitions, (44) can be rewritten in the
form

H ◦
i − min

i≤�≤j
H ◦

� ≤ �̂(i)(ρ̂(i)

−J
(i)
j−i

∧ i
)
.(45)

Note that J
(i)
j−i is independent of the time-reversed walk Ŝ(i) and that, conditionally

on {−J
(i)
j−i = m}, the random variable �̂(i)(ρ̂

(i)

−J
(i)
j−i

∧ i) has the same distribution

as �(ρm ∧ i), where, for every integers k,m ≥ 0,

�(k) = #
{
� ∈ {1, . . . , k} :S◦

� = max
0≤n≤�

S◦
n

}
, ρm = inf{k ≥ 0 :S◦

k ≥ m}.
We thus need to estimate the moments of �(ρm). To this end, introduce the weak
record times, which are defined, by induction, by τ0 = 0 and

τn+1 = inf{k > τn :S◦
k ≥ S◦

τn
}, n ≥ 0.

It is well known (see, e.g., [18], Lemma 1.9) that the random variables S◦
τn

−S◦
τn−1

,
n ≥ 1, are i.i.d. with distribution

P(S◦
τ1

= k) = ν(k),

where ν(k) = ν([k,∞)) = μ([k + 1,∞)). From (14), we get that there exists a
positive constant K ′

1 such that, for every m ≥ 1,

P(S◦
τ1

≥ m) ≥ K ′
1m

−α+1.

Consequently, by arguing as in the proof of Lemma 6, we get, for every real y ≥ 1,

P
(
�(ρm) > ymα−1) ≤ P(S◦

τ[ymα−1]
< m) ≤ P(S◦

τ1
< m)[ymα−1]

≤ exp(−K ′
1y/2).

Thus, the moments of �(ρm)/mα−1 are uniformly bounded. From the remarks
following (45), we get

E
[(

�̂(i)(ρ̂(i)

−J
(i)
j−i

∧ i
))2] ≤ K ′

2E
[(−J

(i)
j−i

)2(α−1)] = K ′
2E

[
(−Jj−i )

2(α−1)]
≤ K ′

3|j − i|2(1−1/α),

where we have used Lemma 6 and Jensen’s inequality in the last bound. By (45),
this yields

E
[(

H ◦
i − min

i≤�≤j
H ◦

�

)2]
≤ K ′

3|j − i|2(1−1/α).(46)
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Next, let us take k = j in (43). It follows that

H ◦
j − min

i≤�≤j
H ◦

� = #
{
� ∈ {i, . . . , j − 1} :S◦

� = J�,j

}
.

Using the same notation as above, we can rewrite the previous displayed quantity
as

#
{
� ∈ {1, . . . , j − i} : Ŝ(j)

� = max
0≤n≤�

Ŝ(j)
n

}
(d)= �(j − i).

We claim that, for every integer p ≥ 1, the pth moment of �(n)/n1−1/α is
bounded independently of n ≥ 1. Taking p = 2, we then deduce, from the pre-
vious identity in distribution, that

E
[(

H ◦
j − min

i≤�≤j
H ◦

�

)2]
≤ K ′

4|i − j |2(1−1/α).

The statement of the lemma follows from the last bound and from (46).
It thus remains to verify our claim. We note that, for every real y ≥ 1 and every

n ≥ 1,

P
(
�(n) > yn1−1/α) ≤ P

(
τ[yn1−1/α] < n

)
.

Since τn = ∑n
k=1(τk − τk−1) and the random variables τk − τk−1, k ≥ 1 are i.i.d.,

the same argument as in the proof of Lemma 6 shows that our claim will follow
from the bound

P(τ1 ≥ n) ≥ K ′
5n

(1/α)−1(47)

for some positive constant K ′
5. From formulas P5(b), page 181 and (3), page 187

of [29], IV.17, the generating function of τ1 is given by the formula

1 − E[sτ1] = 1 − s

1 − rs
,(48)

where, for 0 < s < 1, rs is the unique real solution in (0,1) of equation rs/s =
φμ(rs), with φμ(s) = ∑∞

k=0 skμ(k). From a standard Abelian theorem, the as-
ymptotic formula (14) implies that φμ(s) = s + K(μ)(1 − s)α + o((1 − s)α) as
s → 1, with some positive constant K(μ) depending on μ. From the equation
rs/s = φμ(rs), one then gets that the ratio K(μ)(1 − rs)

α/(1 − s) tends to 1 as
s → 1. From this and (48), it follows that

1 − E[sτ1] = K
1/α
(μ) (1 − s)1−1/α + o

(
(1 − s)1−1/α)

as s → 1. The desired estimate (47) then follows using Karamata’s Tauberian the-
orem for power series. �

REMARK. The previous proof may be compared with that of the analogous
statement in the continuous-time setting [12], Lemma 1.4.6.
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PROOF OF LEMMA 8. To simplify notation, we set

Mn = max
0≤k≤n

S◦
k

for every n ≥ 0. We then have

Gn =
n−1∑
k=0

1{S◦
k+1≥Mk}(Mk − S◦

k ).(49)

By time reversal, Mk − S◦
k has the same distribution as −Jk . We start by deriving

some information about the distribution of Jk . From (14), there exists a constant
K ′

6 such that, for every � ≥ 1,

ν(�) ≤ K ′
6�

−α.(50)

We use this to verify that, for every k ≥ 1 and � ≥ 1,

P(Jk > −�) ≤ K ′
7

�

k1/α
(51)

with some constant K ′
7. Clearly, we may assume that � < k1/α/10. Recall the no-

tation Vk introduced in the proof of Lemma 6. As we already noted in the proof of
this lemma, k−1V[k1/α] converges in distribution to a stable variable with index 1/α

as k → ∞. This implies that there exists a constant c∗ such that, for every k ≥ 1,

P
(
V[k1/α] > k

) ≤ c∗ < 1.

Let U1,U2, . . . be independent random variables distributed as V�. Then,

P
(
V[k1/α] > k

) ≥ P
(
U1 + U2 + · · · + U[�−1[k1/α]] > k

)
≥ 1 − P(Ui ≤ k,∀i = 1, . . . , [�−1[k1/α]])
= 1 − (

1 − P(V� > k)
)[�−1[k1/α]]

.

Combining the last two displays, we get(
1 − P(V� > k)

)[�−1[k1/α]] ≥ 1 − c∗

and, consequently,

P(V� > k) ≤ 1 − (1 − c∗)1/[�−1[k1/α]].

The bound (51) follows since P(Jk > −�) = P(V� > k). Using the bound (51), we
easily get that there exists a constant K ′

8 such that, for every k ≥ 1,

E[|Jk|1−α ∧ 1] ≤ K ′
8k

(1/α)−1.(52)
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Let us now bound E[(Gn)
2]. From (49), we have

Gn =
n−1∑
k=0

ν(Mk − S◦
k )(Mk − S◦

k ) +
n−1∑
k=0

(
1{S◦

k+1≥Mk} − ν(Mk − S◦
k )

)
(Mk − S◦

k )

=: G′
n + G′′

n.

We first bound E[(G′′
n)

2]. Using the Markov property for the random walk S◦ and,
more precisely, the fact that P(S◦

k+1 ≥ Mk|S◦
0 , . . . , S◦

k ) = ν(Mk − S◦
k ), we get

E[(G′′
n)

2] = E

[
n−1∑
k=1

(
1{S◦

k+1≥Mk} − ν(Mk − S◦
k )

)2
(Mk − S◦

k )2

]

= E

[
n−1∑
k=1

(Mk − S◦
k )2ν(Mk − S◦

k )
(
1 − ν(Mk − S◦

k )
)]

≤ E

[
n−1∑
k=1

(Mk − S◦
k )2ν(Mk − S◦

k )

]
.

Using the estimate (50), the fact that Mk −S◦
k has the same distribution as |Jk| and

then Lemma 6 together with Jensen’s inequality, we get

E[(G′′
n)

2] ≤ K ′
6

n−1∑
k=1

E[|Jk|2−α] ≤ K ′
6(K2)

(2−α)/2
n−1∑
k=1

k2/α−1 ≤ K ′
9n

2/α.

We then turn to E[(G′
n)

2]. We have

E[(G′
n)

2] = E

[
n−1∑
k=0

ν(Mk − S◦
k )2(Mk − S◦

k )2

]

+ 2E

[ ∑
0≤k<j≤n−1

ν(Mk − S◦
k )(Mk − S◦

k )ν(Mj − S◦
j )(Mj − S◦

j )

]
.

Since ν(Mk − S◦
k ) ≤ 1, the first term in the right-hand side is bounded above by

K ′
9n

2/α , as in the preceding calculation. Using (50), the second term is bounded
above by

2(K ′
6)

2E

[ ∑
0≤k<j≤n−1

(
(Mk − S◦

k )1−α ∧ 1
)(

(Mj − S◦
j )1−α ∧ 1

)]
.

To bound this quantity, we note that, for fixed k and j such that 0 ≤ k < j , the
distribution of Mj − S◦

j , given the past of S◦ up to time k, dominates the (un-

conditional) distribution of Mj−k − S◦
j−k . Since the function x → x1−α ∧ 1 is
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nonincreasing over R+, it follows that the quantity in the last display is bounded
above by

2(K ′
6)

2
∑

0≤k<j≤n−1

E[(Mk − S◦
k )1−α ∧ 1]E[(Mj−k − S◦

j−k)
1−α ∧ 1]

≤ 2(K ′
6)

2

(
n−1∑
k=0

E[(Mk − S◦
k )1−α ∧ 1]

)2

= 2(K ′
6)

2

(
n−1∑
k=0

E[|Jk|1−α ∧ 1]
)2

≤ 2(K ′
6)

2(K ′
8)

2

(
1 +

n−1∑
k=1

k(1/α)−1

)2

≤ K ′
10n

2/α.

In the penultimate line of the calculation, we have used the bound (52). We con-
clude that E[(G′

n)
2] ≤ (K ′

9 + K ′
10)n

2/α , which completes the proof of Lemma 8.
�

6. Contour processes and conditioned trees.

6.1. Contour processes. In view of our applications to random planar maps,
it will be important to reformulate Theorem 1 in terms of contour processes as-
sociated with our forest of mobiles. We consider the same general setting as in
the previous section. In particular, u0, u1, . . . are the white vertices of the forest F,
listed one tree after another and in lexicographical order for every tree. Recall that
H ◦

n = 1
2 |un|. We also denote by x0, x1, . . . the sequence obtained by concatenat-

ing the white contour sequences of θ1, θ2, . . . . Notice that some of the vertices
u0, u1, . . . appear more than once in the sequence x0, x1, . . . . More precisely, the
number of occurrences of a given white vertex of F is equal to 1 plus the number
of its black children. We set C◦

n = 1
2 |xn| and denote by �n the label of xn.

In order to study the scaling limit of (C◦
n)n≥0, we define, for every n ≥ 0,

Rn = inf{j ≥ 0 :xj = un}.
Clearly,

C◦
Rn

= 1
2 |xRn | = 1

2 |un| = H ◦
n .

LEMMA 9. We have

lim
n→∞

Rn

n
= 1

β
a.s.
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PROOF. For every j = 0,1, . . . , let B(j) denote the number of black chil-
dren of uj . Notice that the random variables B(0),B(1), . . . are independent and
distributed according to μ0. We first observe that

Rn ≤
n−1∑
j=0

(
B(j) + 1

)
.(53)

This bound comes from the fact that any vertex that is visited by the contour se-
quence x0, x1, . . . before the first visit of un must be smaller than un in lexico-
graphical order. Hence, Rn has to be smaller than the total number of visits by the
contour sequence of all vertices that are smaller than un in lexicographical order.
The bound (53) follows.

Since the mean of μ0 is m0 = Zqfq(Zq) = 1
β

− 1, the law of large numbers
gives

lim sup
n→∞

Rn

n
≤ 1

β
a.s.

We would like to derive the reverse inequality. To this end, note that if a vertex uj

with j < n is not an ancestor of un, then all of its visits by the contour sequence
will occur before the first visit of un. Thus,

Rn ≥ n +
n−1∑
j=0

B(j)1{uj is not an ancestor of un}

or, equivalently,
n−1∑
j=0

(
B(j) + 1

) − Rn ≤
n−1∑
j=0

B(j)1{uj is an ancestor of un}
(54)

≤ H ◦
n × sup

0≤j≤n−1
B(j).

A crude estimate gives, for every ε > 0,

lim
n→∞

1

nε
sup

0≤j≤n−1
B(j) = 0 a.s.

On the other hand, by a special case of Lemma 7, we know that E[(H ◦
n )2] ≤

K3n
2(1−1/α). Using the Markov inequality and then the Borel–Cantelli lemma, we

can find ε > 0 such that

lim
n→∞

1

n1−ε
H ◦

n = 0 a.s.(55)

and we conclude that

lim
n→∞

1

n
H ◦

n × sup
0≤j≤n−1

B(j) = 0 a.s.

The desired result then follows from (54) and the law of large numbers. �
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REMARK. Since the sequence (Rn)n≥0 is monotone increasing, we also have,
for every A > 0,

lim
n→∞

1

n
sup

0≤k≤An

∣∣∣∣Rk − k

β

∣∣∣∣ = 0 a.s.(56)

The next proposition is an analog of Theorem 1 for contour processes.

PROPOSITION 9. We have(
n−(1−1/α)C◦[nt], n−1/2α�[nt]

)
t≥0

(d)−→
n→∞

(
c−1

0 Hβt ,
√

2c0Dβt

)
t≥0,

where the convergence holds in the sense of weak convergence of the laws in the
Skorokhod space D(R2).

PROOF. Fix an integer A > 0. The statement of the proposition will be an
immediate consequence of Theorem 1 once we have verified that

n−(1−1/α) sup
0≤k≤An

∣∣C◦
k − H ◦[βk]

∣∣ −→
n→∞ 0 in probability(57)

and

n−1/2α sup
0≤k≤An

∣∣�k − L◦[βk]
∣∣ −→
n→∞ 0 in probability.(58)

Let us start with the proof of (57). It is elementary to check that for every integer
n ≥ 0,

sup
Rn≤j≤Rn+1

|C◦
j − C◦

Rn
| ≤ |H ◦

n+1 − H ◦
n | + 1.(59)

Then, note that if k ∈ {0,1, . . . ,An} and � is chosen so that R� ≤ k < R�+1, we
have ∣∣C◦

k − H ◦[βk]
∣∣ ≤ |C◦

k − C◦
R�

| + ∣∣H ◦
� − H ◦[βk]

∣∣
since C◦

R�
= H ◦

� . By (59) and the fact that the limiting process H in (28) is contin-
uous, we have

n−(1−1/α) sup
0≤�≤An

sup
R�≤k<R�+1

|C◦
k − C◦

R�
| −→
n→∞ 0 in probability.(60)

On the other hand, for every fixed ε > 0, it follows from (56) that, with a probabil-
ity close to 1 when n is large, we have, for every � = 0,1, . . . ,An,

� − εn ≤ βR� ≤ βR�+1 ≤ � + εn

and thus

n−(1−1/α) sup
0≤�≤An

sup
R�≤k<R�+1

∣∣H ◦
� − H ◦[βk]

∣∣
≤ n−(1−1/α) sup

r,s∈[0,A+ε],|r−s|≤ε

∣∣H ◦[nr] − H ◦[ns]
∣∣.
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The right-hand side will be small in probability when n is large, again by (28),
provided that ε has been chosen small enough. This completes the proof of (57).

Let us now prove (58). Notice that L◦
n = �Rn for every n ≥ 0. We can therefore

argue in a way similar to the proof of (57), using Theorem 1 in place of (28),
provided that we establish the analog of (60),

n−1/2α sup
0≤�≤An

sup
R�≤k<R�+1

|�k − �R�
| −→
n→∞ 0 in probability.(61)

So, let us verify that (61) holds. From the distribution of labels, it is easy to check
that, for every fixed n ≥ 0, conditionally on the forest F, the sequence(

�(Rn+j)∧Rn+1 − �Rn

)
j≥0

is a martingale (in fact, the increments of this sequence are both independent and
centered, conditionally given F). By Doob’s inequality, there are constants K and
K ′ such that, for every � ≥ 0,

E
[

sup
R�≤k<R�+1

(�k − �R�
)4∣∣F]

≤ KE[(�R�+1 − �R�
)4|F]

and

E
[

sup
R�≤k<R�+1

(�k − �R�
)4

]
≤ KE[(�R�+1 − �R�

)4] ≤ K ′,

using Proposition 8 with i = � and j = � + 1. Finally, if ε > 0 is small enough so
that 2

α
− 4ε − 1 > 0, we have

P
[

sup
0≤�≤An

sup
R�≤k<R�+1

|�k − �R�
| ≥ n(1/2α)−ε

]
≤ (An + 1)K ′(n(1/2α)−ε)−4

,

which tends to 0 as n → ∞. This completes the proof of (61) and of the proposi-
tion. �

6.2. Conditioning a mobile to have more than n white vertices. The def-
inition of the continuous-time height process (Ht)t≥0 also makes sense under
the excursion measure N, or under N(·|σ = 1) (see Chapter 1 of [12]). Further-
more, the law of the pair (Ht ,Dt)t≥0 under N(·|σ > 1) coincides with the law of
(H(g(1)+t)∧d(1),D(g(1)+t)∧d(1))t≥0 under P, where (g(1), d(1)) is the first excursion
interval of X − I with length greater than 1. This follows from a minor extension
of the arguments of Section 4.3.

For every integer n ≥ 1, we set Q̃(n) = Q(·|#T ◦ ≥ n).

THEOREM 2. The law of 1
n

#T ◦ under Q̃(n) converges, as n → ∞, to the law
of σ under N(·|σ > 1). Moreover, the law of the process(

n−(1−1/α)Hθ[nt], n−1/2αLθ[nt]
)
t≥0
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under Q̃(n)(dθ) converges, as n → ∞, to the law of the process(
c−1

0 Ht,
√

2c0Dt

)
t≥0

under N(·|σ > 1). Similarly, the law of the process(
n−(1−1/α)Cθ[nt], n−1/2α�θ[nt]

)
t≥0

under Q̃(n)(dθ) converges, as n → ∞, to the law of(
c−1

0 Hβt ,
√

2c0Dβt

)
t≥0

under N(·|σ > 1).

PROOF. Thanks to Theorem 1 and the Skorokhod representation theorem, we
can construct, for every integer n ≥ 1, a random labeled forest F(n) having the
same distribution as F, in such a way that(

n−1/αS
(n)
[nt], n

−(1−1/α)H
(n)
[nt], n

−1/2αL
(n)
[nt]

)
t≥0

(62)
a.s.−→

n→∞
(
c0Xt, c

−1
0 Ht,

√
2c0Dt

)
t≥0,

where we have used the notation of the proof of Proposition 7. Let θ̃ (n) be the
first mobile in the forest F(n) with at least n white vertices and note that θ̃ (n) is
distributed according to Q̃(n). Let [gn, dn] be the first excursion interval of H(n)

away from 0 with length greater than or equal to n. Then, writing H̃ (n) and L̃(n)

for the height process and the label process of θ̃ (n), respectively, we have, for every
k ≥ 0,

H̃
(n)
k = H

(n)
(gn+k)∧dn

, L̃
(n)
k = L

(n)
(gn+k)∧dn

.

This is the case because the interval [gn, dn) corresponds exactly to those integers
j such that the (j + 1)st vertex of F(n) (in lexicographical order) belongs to θ̃ (n).

One can then deduce from (62) that

1

n
gn

a.s.−→
n→∞g(1),

1

n
dn

a.s.−→
n→∞d(1).(63)

We omit the details of the derivation of (63); see the proof of Proposition 2.5.2 in
[12] or the proof of Corollary 1.13 in [18] for a very similar argument.

The first assertion of the theorem readily follows from (63) since the number of
white vertices of θ̃ (n) is dn − gn and the law of d(1) − g(1) is precisely the law of
σ under N(·|σ > 1).

We then have(
n−(1−1/α)H̃

(n)
[nt], n

−1/2αL̃
(n)
[nt]

)
= (

n−(1−1/α)H
(n)
[n((gn/n+t)∧dn/n)], n

−1/2αL
(n)
[n((gn/n+t)∧dn/n)]

)
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and thus (62) and (63) give(
n−(1−1/α)H̃

(n)
[nt], n

−1/2αL̃
(n)
[nt]

)
t≥0

a.s.−→
n→∞

(
c−1

0 H(g(1)+t)∧d(1)
,
√

2c0D(g(1)+t)∧d(1)

)
t≥0.

The first convergence stated in the theorem follows since we know that the limiting
process has the desired distribution.

Let us turn to the proof of the second convergence of the theorem. From (57)
and (58), we know that, for every integer A > 0,

n−(1−1/α) sup
k≤An

∣∣C(n)
k − H

(n)
[βk]

∣∣ −→
n→∞ 0 in probability

and

n−1/2α sup
k≤An

∣∣�(n)
k − L

(n)
[βk]

∣∣ −→
n→∞ 0 in probability.

Write C̃(n) and �̃(n) for the contour process and the contour label process, respec-
tively, of θ̃ (n). We have for every t ≥ 0,

C̃
(n)
[nt] = C

(n)
(Rgn+[nt])∧Rdn

.

Writing

(Rgn + [nt]) ∧ Rdn = n

((
Rgn

n
+ [nt]

n

)
∧ Rdn

n

)
and using Lemma 9 together with (63), we get

n−(1−1/α) sup
t≥0

∣∣C̃(n)
[nt] − H

(n)
[n((g(1)+βt)∧d(1))]

∣∣ −→
n→∞ 0 in probability.

Similarly, we have

n−1/2α sup
t≥0

∣∣�̃(n)
[nt] − L

(n)
[n((g(1)+βt)∧d(1))]

∣∣ −→
n→∞ 0 in probability.

The desired result now follows from (62). �

6.3. Conditioning a mobile to have exactly n white vertices. We now set
Q(n) = Q(·|#T ◦ = n). Note that this makes sense (the conditioning event has pos-
itive probability) for all sufficiently large n. From now on, we consider only such
values of n. Our goal is to derive an analog of Theorem 2 when Q̃(n) is replaced
by Q(n). The proof is more delicate and will require a few preliminary lemmas.

Let θ = (T , (�(v))v∈T ◦) be a mobile. Recall that w0(θ), . . . ,w#T ◦−1(θ) are
the white vertices of θ listed in lexicographical order. By convention, we put
wl(θ) = ∅ when l ≥ #T ◦. For every k ≥ 1, we then define another mobile
θ [k] = (T[k], (�[k](v))v∈T ◦[k]) in the following way. First, T[k] consists of the vertices
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w0(θ), . . . ,wk−1(θ), together with all of the (black) children and all of the (white)
grandchildren of these vertices in T . Then, �[k](v) = �(v) for every v ∈ T ◦[k]. By
convention, we also define θ [0] as the trivial mobile with just one vertex.

For every k ≥ 0, we let Gk be the σ -field on 
 generated by the mapping
θ → θ [k]. It is easily checked that the processes Hθ

k and Lθ
k are adapted to the

filtration (Gk)k≥0.
Recall that, by definition of the Lukasiewicz path Sθ , for j ∈ {1, . . . ,#T ◦}, Sθ

j −
Sθ

j−1 + 1 is the number of (white) grandchildren of wj−1(θ). It follows that, for

every k ≥ 0, Sθ
k is Gk-measurable. Furthermore, under the probability measure Q,

the process (Sθ
k )k≥0 is Markovian with respect to the filtration (Gk)k≥0 and its

transition kernels are those of the random walk with jump distribution ν stopped
at its first hitting time of −1. The preceding properties can be derived by a minor
modification of the arguments found in Section 1 of [18]. We leave the details to
the reader.

Recall our notation (Sk)k≥0 for a random walk with jump distribution ν. We
assume that S0 = j under the probability measure Pj for every j ∈ Z. We set
V = inf{k ≥ 0 :Sk = −1}.

LEMMA 10. Let k ∈ {1,2, . . . , n− 1}. The Radon–Nikodym derivative of Q(n)

with respect to Q̃(n) on the σ -field Gk is equal to �(k,n,Sθ
k ), where, for every

integer j ≥ 0,

�(k,n, j) = ψn−k(j)/ψn(0)

ϕn−k(j)/ϕn(0)

and, for every integer p ≥ 0,

ψp(j) = Pj (V = p),

ϕp(j) = Pj (V ≥ p).

REMARK. If k ≤ #T ◦, then the number of white vertices of θ [k] is k + 1 +Sθ
k .

If γ has (strictly) more than n white vertices, then Q(n)(θ [k] = γ ) = 0. This is
consistent with the fact that ψn−k(j) = 0 if j > n − k − 1.

PROOF OF LEMMA 10. Let γ be a mobile with strictly more than k white
vertices and such that γ [k] = γ (these are the necessary and sufficient conditions
for γ to be of the form θ [k] for some θ ∈ 
 with at least n white vertices). Then,

Q(n)(θ [k] = γ
) = Q({θ [k] = γ } ∩ {#T ◦ = n})

Q(#T ◦ = n)
.

On one hand,

Q(#T ◦ = n) = P0(V = n) = ψn(0).
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On the other hand, by the remarks preceding the statement of the lemma,

Q
({

θ [k] = γ
} ∩ {#T ◦ = n}) = Q

({
θ [k] = γ

} ∩ {
inf{p ≥ 0 :Sθ

p = −1} = n
})

= Q
(
1{θ [k]=γ }PSθ

k
(V = n − k)

)
= Q

(
1{θ [k]=γ }ψn−k(S

θ
k )

)
.

We thus have

Q(n)(θ [k] = γ
) = Q

(
1{θ [k]=γ }

ψn−k(S
θ
k )

ψn(0)

)
.

Similar arguments give

Q̃(n)(θ [k] = γ
) = Q

(
1{θ [k]=γ }

ϕn−k(S
θ
k )

ϕn(0)

)
.

The desired result follows. �

LEMMA 11. Let a ∈ (0,1). There exist an integer n0 and a constant K such
that, for every n ≥ n0 and every j ≥ 0,

�([an], n, j) ≤ K.

PROOF. By Kemperman’s formula (see, e.g., [27], page 122), for every j ≥ 0
and n ≥ 1,

Pj (V = n) = j + 1

n
P0(Sn = −j − 1).(64)

On the other hand, Gnedenko’s local limit theorem (see [15], Theorem 4.2.1)
shows that

lim
n→∞ sup

k∈Z

∣∣∣∣n1/αP0(Sn = k) − g

(
k

n1/α

)∣∣∣∣ = 0,(65)

where the function g is continuous and (strictly) positive over R. Taking k = −1,
we get that there exist positive constants K1 and K2 such that, for n large,

ψn(0) = 1

n
P0(Sn = −1) ≥ K1n

−1−1/α

and

ϕn(0) =
∞∑

m=n

1

m
P0(Sm = −1) ≤ K2n

−1/α

[the latter bound can also be derived from (41)].
So, in order to get the desired statement, we need to verify that the quantity

nψn−[an](j)

ϕn−[an](j)
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is bounded when n is large, uniformly in j .
First, consider the case when j ≤ n1/α . From (64) and (65), we obtain that there

exist positive constants K3 and K4 such that, for n large,

ψn−[an](j) = j + 1

n
P0

(
Sn−[an] = −j − 1

) ≤ K3(j + 1)n−1−1/α

and

ϕn−[an](j) = (j + 1)

∞∑
m=n−[an]

1

m
P0(Sm = −j − 1)

≥ K4(j + 1)n−1/α.

The desired bound follows.
Suppose, then, that j ≥ n1/α . It easily follows from (15) that there exists a pos-

itive constant K5 such that

ϕn−[an](j) ≥ K5 > 0.

On the other hand, we have already noted that the law of V under P0 is in the
domain of attraction of a stable distribution with index 1/α. Another application
of Gnedenko’s local limit theorem shows that

lim
k→∞ sup

n≥1

∣∣∣∣kαPk(V = n) − g̃

(
n

kα

)∣∣∣∣ = 0,

where the function g is continuous and bounded over (0,∞). Hence, there exists
a constant K6 such that, for all integers n ≥ 1 and k ≥ n1/α ,

nPk(V = n) ≤ kαPk(V = n) ≤ K6.(66)

It immediately follows that

nψn−[an](j) = n

n − [an](n − [an])Pj (V = n − [an]) ≤ K6

1 − a
,

giving the desired bound when j ≥ n1/α . This completes the proof. �

PROPOSITION 10. The law of the process(
n−1/αSθ[nt], n−(1−1/α)Hθ[nt]

)
t≥0

under Q(n)(dθ) converges, as n → ∞, to the law of the process

(c0Xt, c
−1
0 Ht)t≥0

under N(·|σ = 1).
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This follows from Theorem 3.1 in [11]. This theorem gives the convergence in
distribution of the rescaled height process (n−(1−1/α)Hθ[nt])t≥0, under more gen-
eral assumptions. A close look at the proof (see, in particular, formula (130) in
[11]) shows that the joint convergence stated in the proposition is indeed a direct
consequence of the arguments in [11].

LEMMA 12. The finite-dimensional marginal distributions of the process(
n−1/2αLθ[nt]

)
0≤t≤1

under Q(n)(dθ) converge, as n → ∞, to the finite-dimensional marginal distribu-
tions of the process (

√
2c0Dt)0≤t≤1 under N(·|σ = 1). Moreover, this convergence

holds jointly with that of Proposition 10.

PROOF. This can be derived from the convergence of the rescaled process
(n−1/αSθ[nt])0≤t≤1 in Proposition 10, in the same way as Proposition 7 was de-
rived from the convergence (15). The only delicate point is to verify that a suit-
able analog of Lemma 5 holds. To this end, we may argue as follows. Sup-
pose that we are interested in the finite-dimensional marginal distribution at times
0 ≤ t1 < t2 < · · · < tp < 1. It then suffices to prove that an analog of Lemma 5
holds for the vertices w0(θ),w1(θ), . . . ,w[ntp]−1(θ), which are the first [ntp] white
vertices of θ in lexicographical order. However, the desired property then involves
an event that is measurable with respect to the σ -field G[ntp] and so we may use
Lemmas 10 and 11 to see that it is enough to argue under the probability measure
Q̃(n), rather than under Q(n). The same trick that we used in the proof of Theo-
rem 2 then leads to the desired estimate. The remaining part of the argument is
straightforward and we leave the details to the reader. �

Before stating and proving the main theorem of this section, we need to establish
an analog of Lemma 9. If θ is a mobile, then we still denote (with a slight abuse of
notation) by Rk = Rk(θ) the time of the first visit of wk(θ) by the contour sequence
of θ , for every k ∈ {0,1, . . . ,#T ◦ − 1}.

LEMMA 13. For every ε > 0,

lim
n→∞ Q(n)

(
1

n
sup

0≤k≤n−1

∣∣∣∣Rk − k

β

∣∣∣∣ > ε

)
= 0(67)

and

lim
n→∞Q(n)

(∣∣∣∣1

n
#T − 1

β

∣∣∣∣ > ε

)
= 0.

PROOF. This follows by a minor modification of the proof of Lemma 9.
Starting from a forest F = (θ1, θ2, . . .), as previously, we note that Q(n)(dθ) is
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the distribution of θ1 under the conditioned measure P(·|#T ◦
1 = n). Notice that

P(#T ◦
1 = n) = Q(#T ◦ = n) = ψn(0) is of order n−1−1/α when n is large, by (64)

and (65). Thus, we can use standard large deviations estimates for sums of inde-
pendent random variables to verify that, for every ε > 0,

lim
n→∞ P

(
1

n
sup

1≤k≤n

∣∣∣∣∣
k−1∑
j=0

(
B(j) + 1

) − k

β

∣∣∣∣∣ > ε
∣∣∣#T ◦

1 = n

)
= 0.(68)

Similarly,

lim
n→∞ P

(
sup

0≤j≤n−1
B(j) > nε

∣∣#T ◦
1 = n

)
= 0.

Furthermore, an analog of (55) follows from Proposition 10, which implies that,
for every ε > 0, we have

P
(

sup
0≤k≤n−1

H ◦
k ≥ n1−1/α+ε

∣∣#T ◦
1 = n

)
−→
n→∞ 0.

The first assertion of the lemma follows from these remarks by the same arguments
as in the proof of Lemma 9. The second assertion is a consequence of (68) since
#T1 = ∑n−1

j=0(B(j) + 1), P-a.s., on {#T ◦
1 = n}. �

THEOREM 3. The law of the process(
n−(1−1/α)Hθ[nt], n−1/2αLθ[nt]

)
t≥0

under Q(n)(dθ) converges, as n → ∞, to the law of the process(
c−1

0 Ht,
√

2c0Dt

)
t≥0

under N(·|σ = 1). Similarly, the law of the process(
n−(1−1/α)Cθ[nt], n−1/2α�θ[nt]

)
t≥0

under Q(n)(dθ) converges, as n → ∞, to the law of(
c−1

0 Hβt ,
√

2c0Dβt

)
t≥0

under N(·|σ = 1).

PROOF. Fix a real a ∈ (1
2 ,1). Recall that a sequence of laws of càdlàg

processes is C-tight if it is tight and any sequential limit is supported on the
space of continuous functions. We first observe that the sequence of the laws of
the processes (

n−(1−1/α)Hθ[nt], n−1/2αLθ[nt]
)
0≤t≤a(69)

under Q(n)(dθ) is C-tight. Indeed, by Lemmas 10 and 11, the law under Q(n) of the
process in (69) is absolutely continuous with respect to the law of the same process
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under Q̃(n), with a Radon–Nikodym density that is bounded uniformly in n. The
desired tightness then follows from Theorem 2.

Next, from Lemma 13 and the very same arguments as in the derivation of (57)
and (58), we have, for every ε > 0, that

Q(n)
(
n−(1−1/α) sup

0≤k≤an/β

∣∣Cθ
k − Hθ[βk]

∣∣ > ε
)

−→
n→∞ 0(70)

and

Q(n)
(
n−1/2α sup

0≤k≤an/β

∣∣�θ
k − Lθ[βk]

∣∣ > ε
)

−→
n→∞ 0.(71)

Note that we must restrict the supremum to k ≤ a
β
n because we need the C-

tightness of the processes in (69).
From (70) and (71), together with Lemma 12, we obtain that the finite-

dimensional marginal distributions of the process(
n−(1−1/α)Cθ[nt], n−1/2α�θ[nt]

)
0≤t≤a/β(72)

under Q(n) converge to those of (c−1
0 Hβt ,

√
2c0Dβt)0≤t≤a/β under N(·|σ = 1).

Moreover, the sequence of the laws of the processes in (72) is C-tight, by (70),
(71) and the tightness of the laws of the processes in (69).

This gives the second convergence stated in the theorem, but only over the
time interval [0, a/β]. To remove this restriction, we may argue as follows. From
Lemma 13, we have, for every ε > 0,

Q(n)

(∣∣∣∣1

n
#T − 1

β

∣∣∣∣ > ε

)
−→
n→∞ 0.

On the other hand, we know that Cθ
k = �θ

k = 0 for every k ≥ #T −1. Furthermore,
a simple argument shows that the processes

(Cθ
k ,�θ

k)k≥0 and
(
Cθ

(#T −1−k)+,−�θ
(#T −1−k)+

)
k≥0

have the same distribution under Q(n)(dθ). It is an easy matter to combine these
remarks in order to remove the restriction t ≤ a/β in the convergence of the
processes in (72).

The first convergence of the theorem then follows from the second one, using
the identities Hθ

k = Cθ
Rk

and Lθ
k = Cθ

Rk
, together with Lemma 13. �

7. Asymptotics for large planar maps. In this section, we apply the results
of the preceding sections to properties of planar maps distributed according to
Pq and conditioned to be large in some sense. We recall our notation v∗ for the
distinguished vertex of a rooted and pointed bipartite planar map m and e− for the
origin of the root edge of m. The radius of the planar map m is defined by

R(m) = max
v∈V (m)

dgr(v∗, v).
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The profile of distances in m is the point measure ρm on Z+ defined by

ρm(k) = #{v ∈ V (m) :dgr(v∗, v) = k}, k ∈ Z+.

Finally, we also set �(m) = dgr(e−, v∗).
In the following theorem, we consider the distance process (Dt)t≥0 under

N(·|σ = 1) and under N(·|σ > 1). In both cases, we use the notation

D = max
t≥0

Dt, D = min
t≥0

Dt.

THEOREM 4. Let Mn be distributed according to Pq(·|#V (m) = n), [resp.,
Pq(·|#V (m) ≥ n)]. Then:

(i) n−1/2αR(Mn)
(d)−→

n→∞
√

2c0(D − D);

(ii) if ρ
(n)
Mn

denotes the rescaled profile of distances in Mn defined by∫
ρ

(n)
Mn

(dx)ϕ(x) = n−1
∑

k∈Z+
ρMn(k)ϕ(n−1/2αk),

then ρ
(n)
Mn

converges in distribution to the measure ρ(∞) defined by∫
ρ(∞)(dx)ϕ(x) =

∫ σ

0
dtϕ

(√
2c0(Dt − D)

);
(iii) n−1/2α�(Mn)

(d)−→
n→∞

√
2c0 D.

In (i)–(iii), the limiting distributions are to be understood under the probability
measure N(·|σ = 1) [resp., N(·|σ > 1)].

PROOF. Let Mn be distributed according to Pq(·|#V (m) = n) and let θn be
the random mobile associated with Mn by the BDG bijection. By Proposition 4,
θn is distributed according to Q(n−1). From Proposition 3,

R(Mn) = �n − �n + 1,

where �n (resp., �n) denotes the maximal (resp., minimal) label in θn. It is now
clear that

�n − �n = max
k≥0

�
θn

k − min
k≥0

�
θn

k

and so (i) follows from the second assertion of Theorem 3.
Then, let ϕ be a bounded continuous function on R+. We have∫

ρ
(n)
Mn

(dx)ϕ(x) = n−1
∑

v∈V (Mn)

ϕ(n−1/2αdgr(v∗, v))

= n−1
n−2∑
i=0

ϕ
(
n−1/2α(

�n(wi) − �n + 1
))

+ n−1ϕ(0),
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where w0 = w0(θn), . . . ,wn−2 = wn−2(θn) denote the white vertices of θn listed in
lexicographical order and �n(w0), . . . , �n(wn−2) are their respective labels. Then,

n−1
n−2∑
i=0

ϕ
(
n−1/2α(

�n(wi) − �n + 1
))

= n−1
n−2∑
i=0

ϕ
(
n−1/2α

(
L

θn

i − min
j=0,...,n−2

L
θn

j + 1
))

=
∫ 1−n−1

0
dt ϕ

(
n−1/2α

(
L

θn[nt] − min
s∈[0,1]L

θn[ns] + 1
))

.

The convergence in (ii) is thus a consequence of the first assertion of Theorem 3.
Finally, we have

�(Mn) = 1 − �n,

except if v∗ = e−, in which case �(Mn) = 0 = −�n. Thus, the same argument as
for (i) shows that n−1/2α�(Mn) converges in distribution to −√

2c0D, which has
the same law as

√
2c0 D, by symmetry.

The case where Mn is distributed according to Pq(·|#V (m) ≥ n) is treated by
similar arguments, using Theorem 2 instead of Theorem 3. �

Recall from [5] the notion of the Gromov–Hausdorff distance between two com-
pact metric spaces. The space K of all isometry classes of compact metric spaces,
equipped with the Gromov–Hausdorff distance, is a Polish space. If M is a random
planar map, then the set V (M) equipped with the metric dgr is a random variable
with values in K.

THEOREM 5. For every n ≥ 1, let Mn be distributed according to Pq(·|
#V (m) = n) [resp., Pq(·|#V (m) ≥ n)]. From every strictly increasing sequence
of integers, one can extract a subsequence along which

(V (Mn),n
−1/2αdgr)

(d)−→
n→∞(M∞, δ∞),

where (M∞, δ∞) is a random compact metric space and the convergence holds in
distribution, in the Gromov–Hausdorff sense. Furthermore, the Hausdorff dimen-
sion of (M∞, δ∞) is a.s. equal to 2α.

PROOF. We consider only the case where Mn is distributed according to
Pq(·|#V (m) = n). The first assertion could be established by using compactness
criteria in the space K in order to derive the tightness of the distributions of the
spaces (V (Mn),n

−1/2αdgr). We will use a different approach, which is inspired
by [19], Section 3. This approach provides additional information about the lim-
iting space (M∞, δ∞), which will be useful when proving the second assertion of
the theorem.
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As in the previous proof, let θn be the random mobile associated with Mn by the
BDG bijection and write vn

0 , vn
1 , . . . , vn

rn
for the white contour sequence of θn. Re-

call that the BDG bijection allows us to identify the white vertices of θn with cor-
responding vertices of the map Mn. We can thus set, for every i, j ∈ {0,1, . . . , rn},

dn(i, j) = dgr(v
n
i , vn

j ),

where dgr refers to the graph distance in the map Mn. By convention, we put
vn
k = vn

rn
= ∅ for every k ≥ rn so that the definition of dn(i, j) makes sense for

all nonnegative integers i and j . We can use linear interpolation to extend the
definition of dn to real values of the parameters, by setting, for every s, t ≥ 0,

dn(s, t) = (s − [s])(t − [t])dn([s] + 1, [t] + 1)

+ (s − [s])([t] + 1 − t)dn([s] + 1, [t])
+ ([s] + 1 − s)(t − [t])dn([s], [t] + 1)

+ ([s] + 1 − s)([t] + 1 − t)dn([s], [t]).
By [19], Lemma 3.1, we have, for all integers i, j ≥ 0,

dn(i, j) ≤ d0
n(i, j),(73)

where

d0
n(i, j) = �

θn

i + �
θn

j − 2 min
i∧j≤k≤i∨j

�
θn

k + 2.

(To be precise, [19] uses a slightly different version of the BDG bijection, with
nonnegative labels, but is straightforward to verify that the argument of the proof
of Lemma 3.1 in [19] goes through without change in our setting.) In the same way
as for dn, we extend the definition of d0

n to real values of the parameters by linear
interpolation. The bound dn(s, t) ≤ d0

n(s, t) still holds for real s and t .
Let (H

(1)
t ,D

(1)
t )t≥0 be a random process which has the distribution of (Ht ,

Dt)t≥0 under N(·|σ = 1). From Theorem 3,

(n−1/2αd0
n(ns, nt))s,t≥0

(d)−→
n→∞

(√
2c0d

0∞(βs,βt)
)
s,t≥0,(74)

where, for every s, t ≥ 0,

d0∞(s, t) = D(1)
s + D

(1)
t − 2 min

s∧t≤r≤s∨t
D(1)

r .

In (74), the convergence holds, in the sense of weak convergence of the laws in the
space of continuous functions on R2+.

We then observe that, for every s, t, s′, t ′ ≥ 0,

|dn(s, t) − dn(s
′, t ′)| ≤ dn(s, s

′) + dn(t, t
′) ≤ d0

n(s, s′) + d0
n(t, t ′).(75)
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By the convergence (74), we have, for every η, ε > 0,

lim sup
n→∞

P
(

sup
|s−s′|≤η

n−1/2αd0
n(ns, ns ′) ≥ ε

)
≤ P

(
sup

|s−s′|≤η

d0∞(βs,βs′) ≥ ε√
2c0

)
.

If ε > 0 is fixed, then the right-hand side can be made arbitrarily small by choosing
η > 0 to be small enough. Thanks to this remark and to the bound (75), one easily
gets that the sequence of the laws of the processes

(n−1/2αdn(ns, nt))s,t≥0

is tight (see the proof of Proposition 3.2 in [19] for more details).
Also using Theorem 3, we obtain that, from any strictly increasing sequence of

positive integers, we can extract a subsequence (nk)k≥1 along which we have the
joint convergence(

n−(1−1/α)C
θn[nt], n

−1/2α�
θn[nt], n

−1/2αdn(ns, nt)
)
s,t≥0

(76)
(d)−→

n→∞
(
c−1

0 H
(1)
βt ,

√
2c0D

(1)
βt ,

√
2c0d∞(βs,βt)

)
s,t≥0,

where (d∞(s, t))s,t≥0 is a continuous random process indexed by R2+ and taking
nonnegative values. From now on, we restrict our attention to values of n belonging
to the sequence (nk).

By the Skorokhod representation theorem, we may, and will, assume that the
convergence (76) holds almost surely. Note that the bound dn ≤ d0

n immedi-
ately gives d∞ ≤ d0∞. From the convergence (76), one also gets that the function
(s, t) → d∞(s, t) is symmetric and satisfies the triangle inequality. Furthermore,
the bound d∞ ≤ d0∞ implies that d∞(s, t) = 0 if s ≥ 1 and t ≥ 1. We define an
equivalence relation on [0,1] by setting

s ≈ t if and only if d∞(s, t) = 0.

We let M∞ be the quotient space [0,1]/ ≈ and equip M∞ with the metric δ∞ =√
2c0d∞. The continuity of d∞ ensures that the canonical projection from [0,1]

(equipped with the usual metric) onto M∞ is continuous, so M∞ is compact.
We claim that the convergence of the theorem holds almost surely [along the

sequence (nk)] with this choice of the space (M∞, δ∞). To see this, define a cor-
respondence Cn between (V (Mn) \ {v∗}, n−1/2αdgr) and (M∞, δ∞) by declaring
that a vertex v of V (Mn) \ {v∗} is in correspondence with x ∈ M∞ if and only if
there exists a representative s of x in [0,1] such that v = vn[ns/β]. The desired con-
vergence will follow if we can verify that the distortion of Cn tends to 0 as n → ∞.
To this end, let s, s′ ∈ [0,1] and set k = [ns/β] and k′ = [ns′/β]. If v = vn

k and
v′ = vn

k′ , and if x and x′ are the respective equivalence classes of s and s′ in the
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quotient [0,1]/ ≈, then we have∣∣n−1/2αdgr(v, v′) − √
2c0d∞(x, x′)

∣∣
= ∣∣n−1/2αdn(k, k′) − √

2c0d∞(s, s′)
∣∣

=
∣∣∣∣n−1/2αdn

([
ns

β

]
,

[
ns′

β

])
− √

2c0d∞(s, s′)
∣∣∣∣

≤ sup
t,t ′≥0

∣∣n−1/2αdn([nt], [nt ′]) − √
2c0d∞(βt, βt ′)

∣∣,
which tends to 0 as n → ∞, by the (almost sure) convergence (76). This completes
the proof of the first assertion of the theorem.

Let us now turn to the Hausdorff dimension of (M∞, δ∞). From the bound
d∞ ≤ d0∞ and the Hölder continuity properties of the distance process, we get that
for every ε ∈ (0,1/2α), there is an almost surely finite random constant K(ε) such
that, for every s, t ∈ [0,1],

d∞(s, t) ≤ K(ε)|t − s|(1/2α)−ε.

Hence, the projection mapping from [0,1] onto M∞ is a.s. Hölder continuous with
exponent (1/2α) − ε. The almost sure bound dim(M∞, δ∞) ≤ 2α immediately
follows.

The proof of the lower bound dim(M∞, δ∞) ≥ 2α is more delicate. We start
with a useful lower bound on d∞.

LEMMA 14. Almost surely, for every 0 < s < t < 1 and r ∈ (s, t) such that
H

(1)
u > H

(1)
r for every u ∈ [s, r), we have

d∞(s, t) ≥ D(1)
s − D(1)

r .

Similarly, almost surely for every 0 < t < s < 1 and r ∈ (t, s) such that H
(1)
u >

H
(1)
r for every u ∈ (r, s], we have

d∞(s, t) ≥ D(1)
s − D(1)

r .

PROOF. We establish only the first assertion since the proof of the second
one is very similar. So, let s, t, r be as in the first part of the lemma. Let (kn)

and (k′
n) be two sequences of positive integers such that n−1kn −→ β−1s and

n−1k′
n −→ β−1t as n → ∞ (both sequences are indexed by the set of values of

n that we are considering). Thanks to the convergence (76) and our assumption
H

(1)
u > H

(1)
r for every u ∈ [s, r), we can find another sequence (mn) of positive

integers such that n−1mn −→ β−1r and, for n large enough,

C
θn

j > Cθn
mn

> min
i∈{kn,...,k′

n}C
θn

i ∀j ∈ {kn, . . . ,mn − 1}.
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Recall our notation vn
0 , vn

1 , . . . for the white contour sequence of θn. The preceding
inequalities imply that vn

mn
is an ancestor of vn

kn
, but not an ancestor of vn

k′
n
. Let

γn = (γn(i),0 ≤ i ≤ dgr(v
n
kn

, vn
k′
n
)) be a geodesic from vn

kn
to vn

k′
n

in the planar map
Mn and let in be the largest integer i ∈ {0,1, . . . , dgr(v

n
kn

, vn
k′
n
)} such that γn(i) is

a descendant of vn
mn

. By the preceding remarks, we have 0 ≤ in < dgr(v
n
kn

, vn
k′
n
).

Furthermore, the contour sequence of θn must visit vn
mn

between any time at which
it visits the point γn(in) and any other time at which it visits γn(in + 1). Using
the construction of edges in the BDG bijection, the existence of an edge of Mn

between γn(in) and γn(in + 1) implies that

�n(v
n
mn

) ≥ �n(γn(in)).

It follows that

dn(kn, k
′
n) = dgr(v

n
kn

, vn
k′
n
) ≥ dgr(v

n
kn

, γn(in))

≥ dgr(v∗, vn
kn

) − dgr(v∗, γn(in))

= �n(v
n
kn

) − �n(γn(in))

≥ �n(v
n
kn

) − �n(v
n
mn

)

= �
θn

kn
− �θn

mn
.

The bound of the lemma follows by passing to the limit n → ∞ using (76). �

The next lemma will be used in combination with Lemma 14 to estimate the
size of balls for the metric δ∞. For technical reasons, we prove this lemma under
the excursion measure N and we will then use a scaling argument to get a similar
result under N(·|σ = 1). For every u > 0, λu(ds) denotes Lebesgue measure on
(0, u).

LEMMA 15. For every s ∈ (0, σ ), set

I(s) = {r ∈ [s, σ ] :Hu > Hr for every u ∈ [s, r)}
and for every ε > 0, set

τ s
ε = inf{t ∈ I(s) :Dt ≤ Ds − ε},

where inf ∅ = ∞. Then, for every a ∈ (0,2α),

lim
ε↓0

ε−a(τ s
ε − s) = 0, λσ (ds) a.e., N a.e.

PROOF. For s ∈ (0, σ ) and r ∈ [0,Hs), set

γ s
r = inf{t ≥ s :Ht < Hs − r}.
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By convention, we put γ s
r = σ if r ≥ Hs . For our purposes, it will be important

to have information on the sample path behavior of the function r −→ Dγ s
r
. This

is the goal of the next lemma, which relies heavily on results from [12], to which
we refer for additional details. We first need to introduce some notation. For every
s ∈ (0, σ ), we define two positive finite measures on (0,∞) by setting

ρs = ∑
0≤u≤s

(I u
s − Xu−)1{Xu−<Iu

s }δHu,

ηs = ∑
0≤u≤s

(Xu − Iu
s )1{Xu−<Iu

s }δHu.

(It is not immediately obvious that ηs is a finite measure; see Chapter 3 of [12].)
One can prove that, N a.e., for every s > 0, the topological support of ρs is [0,Hs]
and ρs([0,Hs]) = Xs (see Chapter 1 of [12]). Furthermore, the quantities Hu cor-
responding to the values of u that give nonzero terms in the definition of ρs are all
distinct.

We denote by N (dr dz dx) a Poisson point measure on [0,∞)3 with intensity

dr π(dz)1[0,z](x) dx,

where π denotes the Lévy measure of X. We can enumerate atoms of N in a
measurable way and write

N = ∑
j∈J

δ(rj ,zj ,xj ).

LEMMA 16. (i) Let � be a nonnegative measurable function on R+ ×
Mf (R+)2. Then,

N
(∫ σ

0
ds �(Hs,ρs, ηs)

)
=

∫ ∞
0

duE

[
�

(
u,

∑
0≤rj≤u

xj δrj ,
∑

0≤rj≤u

(zj − xj )δrj

)]
.

(ii) Let F be a nonnegative measurable function on D(R). Then,

N
(∫ σ

0
ds F

(
(Ds − Dγ s

r
)r≥0

)) =
∫ ∞

0
duE[F((Zr∧u)r≥0)],

where (Zr)r≥0 is a symmetric stable process with index 2(α − 1).

PROOF. Part (i) is a special case of Proposition 3.1.3 of [12]. Part (ii) is es-
sentially a consequence of (i) and our construction of the distance process. Let us
explain this in greater detail. We fix s > 0, r > 0 and argue on the event {s < σ }.
As in Section 4, we assign a Brownian bridge bu with length �Xu to each jump
time u of X, in such a way that

Ds = ∑
u≤s

bu(I
u
s − Xu−)1{Xu−<Iu

s }.
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We then also have, N a.e.,

Dγ s
r

= ∑
u≤s

bu(I
u
s − Xu−)1{Xu−<Iu

s }1{Hu<Hs−r}.

To see this, note that the identity

γ s
r = inf{t ≥ s :Xt < Xs − ρs([Hs − r,Hs])}(77)

is a consequence of formula (20) in [12]. Moreover, by the same formula, ργ s
r

is exactly the restriction of ρs to the interval [0,Hs − r) (or the zero measure
if r ≥ Hs ). Hence, the values u ≤ γ s

r that give a nonzero contribution to the sum
defining Dγ s

r
are exactly those u ≤ s such that Xu− < Iu

s and Hu < Hs −r , leading
to the stated formula for Dγ s

r
.

It follows that

Ds − Dγ s
r

= ∑
u≤s

bu(I
u
s − Xu−)1{Xu−<Iu

s }1{Hs−r≤Hu≤Hs}(78)

and we can use part (i) to compute the Fourier transform of this quantity. Note that,
for every jump time u ≤ s with the property Xu− < Iu

s , the duration of the bridge
bu is the sum of the masses assigned by ρs and ηs , respectively, to the point Hu.

Suppose that, conditionally given N , we are given a collection (b
(zj )

j )j∈J of
independent Brownian bridges, with respective durations (zj )j∈J . It then follows
from (i), formula (78) and the preceding discussion that, for every λ ∈ R,

N
(∫ σ

0
ds exp

(
iλ(Ds − Dγ s

r
)
))

=
∫ ∞

0
duE

[
exp

(
iλ

∑
u−r≤rj≤u

b
(zj )

j (xj )

)]

=
∫ ∞

0
duE

[
exp

(
−λ2

2

∑
u−r≤rj≤u

xj (zj − xj )

zj

)]

=
∫ ∞

0
duE

[
exp

(
−

∫ u

(u−r)+
dv

∫
π(dz)

×
∫ z

0
dx

(
1 − exp

(
−λ2

2

x(z − x)

z

)))]
=

∫ ∞
0

du exp
(−Kα(u ∧ r)|λ|2(α−1)),

by an easy calculation, using the fact that π(dz) = K ′
αz−1−α dz.

It follows that the formula of (ii) holds in the case where F is of the form
F(ω) = f (ω(r)) for a fixed r > 0. A slight extension of the previous calculation
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gives the case where F depends only on a finite number of coordinates. This is
enough to conclude since the process (Ds − Dγ s

r
)r≥0 has right-continuous paths.

�

We now complete the proof of Lemma 15. We fix a ∈ (0,2α). We can then
choose b ∈ ((2α − 2)−1,∞), b′ ∈ (0, (α − 1)−1) and b′′ ∈ (0, α) such that

b′b′′

b
> a.

By standard path properties of stable processes (see, e.g., [2], Theorem VIII.6), we
have

lim
r↓0

r−b
(

sup
0≤x≤r

Zx

)
= ∞ a.s.

It then follows from Lemma 16(ii) that we also have

lim
r↓0

r−b
(

sup
0≤x≤r

(Ds − Dγ s
x
)
)

= ∞, λσ (ds) a.s., N a.e.

Notice that γ s
x ∈ I(s) provided that x is a continuity point of the mapping r → γ s

r

and thus for all but countably many values of x. Therefore, the previous display
also implies that

τ s
ε ≤ γ s

ε1/b(79)

for all sufficiently small ε > 0, λσ (ds) a.e., N a.e.
The next step is to investigate the behavior of γ s

x as x ↓ 0. We first observe that

lim
x↓0

x−b′
ρs([Hs − x,Hs]) = 0, λσ (ds) a.s., N a.e.(80)

This is a consequence of Lemma 16(i): note that, for every u > 0, the process

Yx = ∑
u−x≤rj≤u

xj , 0 ≤ x ≤ u,

is a stable subordinator with index α−1 and apply path properties of subordinators
(see, e.g., [2], Theorem VIII.5). Furthermore, by applying the Markov property
under N and again using [2], Theorem VIII.6, we get that

lim
r↓0

r−1/b′′
sup

0≤x≤r

(Xs − Xs+x) = ∞,

N a.e. on s < σ , for every fixed s > 0. It readily follows that

inf{x ≥ 0 :Xs+x < Xs − r} ≤ rb′′
(81)

for all sufficiently small r > 0, λσ (ds) a.e., N a.e. Now, recall (77) and use (80)
and (81) to obtain

γ s
r ≤ s + rb′b′′

(82)
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for all sufficiently small r > 0, λσ (ds) a.e., N a.e. We get the statement of the
lemma by combining (79) and (82), recalling that b′b′′/b > a. �

We now complete the proof of Theorem 5. We again fix a ∈ (0,2α). For every
s ∈ (0,1), we set

Ĩ(s) = {
r ∈ [s,1] :H(1)

u > H(1)
r for every u ∈ [s, r)}

and for every ε > 0, we set

τ̃ s
ε = inf

{
t ∈ Ĩ(s) :D(1)

t ≤ D(1)
s − ε

}
.

From Lemma 15 and an easy scaling argument, we get

lim
ε↓0

ε−a(τ̃ s
ε − s) = 0, λ1(ds) a.e., a.s.

However, if τ̃ s
ε ≤ t < 1, the first part of Lemma 14 implies that d∞(s, t) ≥ ε.

Thus, ∫ 1

s
dt 1{d∞(s,t)<ε} ≤ τ̃ s

ε − s

and

lim
ε↓0

ε−a
∫ 1

s
dt 1{d∞(s,t)<ε} = 0, λ1(ds) a.e., a.s.

We can use a symmetric argument to handle the analogous integral where t varies
between 0 and s: use the second part of Lemma 14 and note that the distribution
of the pair (H

(1)
t ,D

(1)
t )0≤t≤1 is invariant under the change of parameter t → 1 − t .

We thus conclude that

lim
ε↓0

ε−a
∫ 1

0
dt 1{d∞(s,t)<ε} = 0, λ1(ds) a.e., a.s.

Finally, if κ denotes the probability measure on M∞ which is the image of
Lebesgue measure on (0,1) under the canonical projection, then we see that

lim
ε↓0

κ(B∞(x, ε))

εa
= 0, κ(dx) a.e., a.s.,

where B∞(x, ε) = {y ∈ M∞ : δ∞(x, y) < ε}.
The lower bound dim(M∞, δ∞) ≥ 2α now follows from standard density theo-

rems for Hausdorff measures. �

REMARK. As we already noted in Section 1, the results of this section carry
over to Boltzmann distributions on nonpointed rooted planar maps. More precisely,
denote by W̃q the Boltzmann distribution defined as in (1), but now viewed as a
measure on the set of all rooted planar maps. Let M̃n be a random rooted planar
map distributed according to the (suitably normalized) restriction of W̃q to maps
with n vertices. Then, Theorem 4 gives information about the distances in M̃n from
a vertex chosen uniformly at random and both assertions of Theorem 5 remain
valid if Mn is replaced by M̃n.
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8. Some motivation from physics. In this section, we describe a motivation
for the models discussed in this article that comes from the physics literature. In
this discussion, we rely on a number of nonrigorous predictions and our only goal
is to isolate some possible directions for future work. A useful reference is Appen-
dix B in the survey by Duplantier [9] and the references therein.

As a starting point, we observe that models of random maps that are very sim-
ilar to ours appear when studying annealed statistical physics models on random
maps. These models are similar to more familiar models on regular lattices, such
as percolation and Ising or Potts models, but they are defined on a random map
that is chosen at the same time as the configuration of the model. To illustrate this,
we will first deal with the so-called O(N) model on a random planar quadrangula-
tion. Let q be a rooted quadrangulation. A loop configuration on q is a collection
L = {c1, . . . , ck}, where c1, . . . , ck are cycles, that is, paths on q starting and end-
ing at the same point and never visiting the same vertex twice. It is further required
that the paths ci do not intersect. We set

#L = k and lg(L) =
k∑

i=1

lg(ci),

where lg(ci) is the number of edges in the path ci ; see Figure 3 for an example.
Let N ≥ 0 be fixed. The annealed O(N) measure is the σ -finite measure over

the set of all pairs (q, L), where q is a rooted quadrangulation and L is a loop
configuration on q, defined by

WO(N)(q, L) = e−β#F(q)xlg(L)N#L,

FIG. 3. An O(N) configuration on a rooted quadrangulation, with 4 cycles of total length 30, and
the external gasket associated with this configuration, with shaded holes of degrees 6 and 14.
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where β and x are positive parameters. When the total mass ZO(N)(β, x) of WO(N)

is finite, we say that the pair (β, x) is admissible and we can consider the proba-
bility measure PO(N) = ZO(N)(β, x)−1WO(N).

Consider a configuration (q, L). A cycle c ∈ L splits the sphere into two com-
ponents. The one that contains the face located to the left of the root edge of q is
called the exterior of c. The other component is called the interior of c. The ex-
ternal gasket E (q, L) is the rooted planar map obtained from q by deleting all the
edges and vertices strictly contained in the interior of some c ∈ L; see Figure 3.

More precisely, m is defined as a rooted planar map with two different types of
faces:

• faces that came from the exterior of cycles of L, which have degree 4—we
denote by Q(m) the set of all these faces;

• faces of arbitrary even degree, called the holes of m, which came from the dele-
tion of the interior of a cycle of L—we denote by H(m) the set of all holes of
m (note that certain holes may have degree 4).

Furthermore, the boundaries of the holes of m are disjoint cycles. In particular,
every edge of the boundary of a hole is adjacent to a face of Q(m).

One can verify that the range of the external gasket mapping (q, L) → E (q, L)

is the set of all rooted planar maps (with faces of two types) satisfying the preced-
ing conditions. It is then an easy exercise to check that the push-forward of WO(N)

under the external gasket mapping is

WO(N)

({E (q, L) = m}) = e−β#Q(m)
∏

f ∈H(m)

qdegf/2,(83)

where

qk = x2kZ∂
O(N),k(β, x)

and Z∂
O(N),k(β, x) is the partition function for the O(N)-model with a boundary of

length 2k. This partition function is defined in an analogous way as ZO(N)(β, x),
but configurations (q, L) now consist of rooted quadrangulations q with a bound-
ary of length 2k, together with a collection L of disjoint cycles that do not intersect
the boundary and such that the boundary face lies on the left of the root edge. From
formula (83), we see that the external gasket of a PO(N)-distributed random map
has a Boltzmann distribution of a similar kind as those studied in the present work,
except that the maps that appear here have two distinct types of faces and extra
topological constraints.

Ignoring these extra constraints, one can conjecture that for appropriate values
of β and x, the scaling limits of these random gasket configurations will be closely
related to those depicted in Section 7, provided that the weights qk satisfy similar
asymptotics as in Section 2.2. At this stage, some predictions from theoretical
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physics provide insight into these questions. For fixed β and x, we introduce the
generating function

Z∂
O(N)(z) = ∑

k≥1

zkZ∂
O(N),k(β, x).

According to singularity analysis, for a ∈ (3/2,2) ∪ (2,5/2), a behavior

Z∂
O(N)(z) ≈

z↑zc

(zc − z)a−1,

meaning that the singular part of Z∂
O(N) near its first positive singularity zc is of

order (zc − z)a−1, leads to asymptotics of the form Z∂
O(N),k(β, x) ∼ Ck−a for

some finite C > 0; see, for instance, [14], Corollary VI.1. Of course, this requires
additional hypotheses on Z∂

O(N)(z), which we ignore in this informal discussion.
We now summarize, and attempt to translate into a language more familiar

to mathematicians, the discussion that can be found in [9], Appendix B (see, in
particular, equations B.48, B.64 and B.78, and the discussion at the end of Sec-
tion B.1.1 in [9]). Assume that N ∈ (0,2) is written in the form N = 2 cos(πθ),
where θ ∈ (0,1/2). One conjectures that there exists a function xc(β) > 0 and a
critical value βc > 0 such that:

• for fixed β > βc and x = xc(β),

Z∂
O(N)(z) ≈

z↑zc

(zc − z)1−θ ;

• for β = βc and x = xc(βc),

Z∂
O(N)(z) ≈

z↑zc

(zc − z)1+θ .

These two different behaviors, called the dense and the dilute phase, respectively,
hint at the asymptotics

Z∂
O(N),k(β, x) ∼

k→∞Ck−a,

with a = 2−θ and a = 2+θ , respectively. Recalling Section 2.2 and the preceding
formula for qk , we see that the scaling limits of the distribution WO(N) in (83)
should be related to the model studied in the previous sections, with the particular
value α = a − 1/2 ∈ {3/2 − θ,3/2 + θ}. Note that the case N = 2 appears as a
limiting critical situation where the dense and dilute phases should coincide.

A similar description applies to other familiar statistical physics models such as
percolation or the Ising model on faces of a random quadrangulation. In the latter
setting, a configuration is a pair (q, σ ), where q is a rooted quadrangulation and

σ = (
σf ,f ∈ F(q)

) ∈ {−1,+1}F(q).
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FIG. 4. An Ising (or percolation) configuration and the associated exterior gasket.

In the (annealed) Ising model, one chooses the configuration with probability pro-
portional to

WI(q, σ ) = e−β#F(q) exp
(
J

∑
f ∼f ′

σf σf ′
)
,

where J is a real parameter and the last sum is over all pairs of adjacent faces f,f ′
in q. For J = 0, one gets the percolation model, where conditionally on the quad-
rangulation q, all σ ∈ {−1,+1}#F(q) are equally likely to occur. One then defines
the exterior gasket in a way that should be clear from Figure 4. This gasket again
has a Boltzmann-type distribution when (q, σ ) is distributed according to WI . As
previously, the relevant Boltzmann weights correspond to partition functions for
the Ising model on a quadrangulation with a boundary. On the other hand, the
topological constraints on the gaskets are now different: the boundaries of holes
need not be cycles and do not have to be disjoint (however, an edge can be incident
to at most one hole and is incident only once to this hole); see Figure 4.

Kazakov [17] identifies the value Jc = ln 2 as critical. One conjectures that,
respectively, for J = Jc and 0 ≤ J < Jc (and with the appropriate values of β),
the Ising model has the same scaling limit as the dilute and dense phases of the
O(N = 1) model, corresponding to θ = 1/3 and α ∈ {11/6,7/6}. This is con-
firmed (for J = Jc) by predictions for the partition function of the Ising model
with a boundary; see, for example, Section 3.3 of [6].

Note that a discussion parallel to the present one appears in Sheffield [28], Sec-
tion 2.3, in the case of regular hexagonal lattices, where it is conjectured that the
external gasket of O(N) models should converge to the so-called conformal loop
ensembles, which are a conformally invariant family of random curves related
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to the Schramm-Loewner evolutions. Such parallel discussions might open some
paths in the mathematical understanding of the so-called KPZ formula, which
links scaling exponents for models on random and on regular lattices. This ap-
proach would still be different from the one developed recently by Duplantier and
Sheffield [10] as we are focusing more on the metric aspects of planar maps, rather
than on the conformal invariance properties that are intrinsic to [10].

At a rigorous level, it seems plausible that the topological constraints that ap-
pear in the random maps considered above can be handled using bijective methods,
in the spirit of Section 3.1. Establishing rigorous grounds for the conjectured be-
havior of Z∂

O(N) is another, probably much more challenging, problem that would
require a better understanding of the combinatorial aspects of the O(N) model on
maps.
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