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THE SURVIVAL OF LARGE DIMENSIONAL THRESHOLD
CONTACT PROCESSES

BY THOMAS MOUNTFORD1 AND ROBERTO H. SCHONMANN2

École Polytechnique Fédérale and University of California at Los Angeles

We study the threshold θ contact process on Z
d with infection parame-

ter λ. We show that the critical point λc, defined as the threshold for survival
starting from every site occupied, vanishes as d → ∞. This implies that the
threshold θ voter model on Z

d has a nondegenerate extremal invariant mea-
sure, when d is large.

1. Introduction and results. In this paper we study the threshold θ con-
tact process on the d-dimensional cubic lattice Z

d . [See, e.g., Liggett (1985) and
Liggett (1999) for background on the area of interacting particle systems, to which
this process belongs.] The threshold θ contact process on Z

d is defined as the
Markov process on {0,1}Z

d
with flip rates at site x ∈ Z

d at time t ≥ 0 given by:

• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ in case there are at least θ nearest neighbors of x in state 1

at time t ; and at rate 0 otherwise.

The parameter λ ≥ 0 is called the infection rate. The state of the process at each
site at each time is called the spin at that site at that time. A spin 0 is interpreted
as a vacant or healthy site, while a spin 1 is interpreted as an occupied or infected
site. It is well known [see, e.g., Chapter I of Liggett (1985)] that such rates define
a unique Markov process. Note that the flip rates above are attractive [see Chap-
ter III of Liggett (1985)], a property that has many consequences, and will be used
extensively in this paper.

When θ = 1, the threshold contact process is easier to analyze, among other
reasons because it has an additive dual process [see Chapter III of Liggett (1985)
for additive duality]. (In this dual process infected sites become healthy at rate 1,
and they infect simultaneously all their neighbors at rate λ.) Also, only when θ = 1
can every site become infected when the process is started from a finite number
of infected sites. The behavior of the process with θ = 1 is therefore not expected
to be qualitatively different from that of the much studied (linear) contact process
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[see Chapter VI of Liggett (1985) and Part I of Liggett (1999)]. In contrast, when
θ ≥ 2, not only is the analysis of the model more challenging, but also the behavior
is expected to be qualitatively distinct from that of the threshold 1 or the linear
contact process. We defer to Section 5, item (2), a discussion of this point, and
we refer the reader to Toom (1974), Durrett and Gray (1990), Bramson and Gray
(1991), Chen (1992, 1994) and Fontes and Schonmann (2008) for background on
threshold contact processes with θ ≥ 2 and related models. Here we will extend to
every value of θ a result that is already available in the case θ = 1.

Threshold contact processes can also be seen as natural generalizations of the
bootstrap percolation processes [see, e.g., Adler and Lev (2003), for a review], with
bootstrap percolation corresponding to the case with λ = ∞ (or in other words,
with the down flips suppressed).

For coupling purposes, it is convenient to construct the process using a system
of Poisson marks. For this purpose, associate to each site in Z

d two independent
Poisson processes: one with rate 1, and one with rate λ. Mark the arrival times of
the former with symbols D (for “down”) and those of the latter with symbols U

(for “up”). Make these Poisson processes independent from site to site. Use the
marks now in the obvious way, to define the process: A spin 1 at site x flips to 0
when it encounters a D mark there; a spin 0 at site x flips to 1 when it encounters
an U mark there and at least θ neighbors of x have spin 1 at that time. The proba-
bility space on which these Poisson processes are defined will be large enough to
accommodate the process started from arbitrary initial configurations. The same
system of Poisson marks will be used to build various comparison processes that
will be introduced through the paper.

We will denote by (η
μ

Zd ,θ,λ;t )t≥0 = (η
μ
t )t≥0 the process started from a random

configuration picked according to law μ at time 0. When μ is concentrated on
a single configuration ζ , we will use the notation (η

ζ
t )t≥0 for the process. When

μ is product measure with density p we will use the notation (η
p
t )t≥0. Similar

shorthand notation will also be used in other places below.
The point mass on the configuration with all sites in state i ∈ {0,1} will be

denoted δi . The distribution δ0 is trivially invariant for the threshold θ contact
process, when θ > 0. By attractivity, η1

t ⇒ ν̄, as t → ∞, where ⇒ denotes con-
vergence in distribution, and ν̄, is called the upper invariant measure.

We say that the process started from the distribution μ dies out when η
μ
t ⇒ δ0,

as t → ∞. When this happens for every μ, we simply say that the process dies
out. Attractivity implies that the process dies out precisely when ν̄ = δ0. When the
process does not die out, we will say that it survives.

Set ρ
μ
t = P(η

μ
t (0) = 1). The critical point for survival is defined as

λc = sup{λ : ν̄ = δ0} = sup{λ :ρ1
t → 0 as t → ∞}.

It is a standard, easy fact that λc > 0, and it is also known that for each d ≥ 2 and
θ ≤ d , λc < ∞. Durrett and Gray (1990) have an explicit proof in the case θ = 2,
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using contour methods. But a well-known argument, that we present in Section 5,
item (5), allows one to use the results of Toom (1974) and Bramson and Gray
(1991) in discrete time to obtain this result in continuous time, for arbitrary θ ≤ d .
Here we will prove the following.

THEOREM 1.1. For any θ , the threshold θ contact process has

lim
d→∞λc = 0.

In case θ = 1 this result is not new. As pointed out in the display in page 191 in
Cox and Durrett (1991), in this case it is known that λc ≤ C/d , for an appropriate
constant C. The argument given there comes from Holley and Liggett (1978), who
used it in the case of the linear contact process.

From the analysis of a mean-field version of the threshold θ contact process, in
Fontes and Schonmann (2008), it is natural to conjecture that for each θ there is a
constant 	θ ∈ (0,∞) such that dλc → 	θ , as d → ∞. Our methods unfortunately
are not sharp enough to prove this strengthening of Theorem 1.1, or even to obtain
good estimates on how fast λc vanishes, as d → ∞.

Theorem 1.1 has an implication for the threshold θ voter model on Z
d , defined

by the following rates. At x ∈ Z
d at time t ≥ 0:

• 1 flips to 0 at rate 1 in case there are at least θ nearest neighbors of x in state 0
at time t ; and at rate 0 otherwise.

• 0 flips to 1 at rate λ in case there are at least θ nearest neighbors of x in state 1
at time t ; and at rate 0 otherwise.

When θ ≥ 1, the threshold θ voter model obviously has δ0 and δ1 as two of its
extremal invariant measures. In case θ ≥ 2, it is also easy to find infinitely many
other extremal invariant measures concentrated on a single configuration that is a
trap for the process. On the other hand, from the work of Cox and Durrett (1991),
restated as Proposition 2.11 in Part II of Liggett (1999), we know that a suffi-
cient condition for this process to have a nondegenerate (i.e., not concentrated on
a single configuration) extremal invariant measure is that the threshold θ contact
process survives when λ = 1. In combination with Theorem 1.1 above, we obtain

THEOREM 1.2. For any θ , the threshold θ voter model on Z
d has a nonde-

generate extremal invariant measure when d is large.

In the case θ = 1 a much more detailed result is available, from Liggett (1994):
the threshold θ = 1 voter model on Z

d has a nondegenerate extremal invariant
measure if an only if d ≥ 2.

The proof of Theorem 1.1 will be split into Sections 2, 3 and 4. The proof will
be presented in the case θ = 2, for notational simplicity, and so that the reader
can more easily visualize the arguments. In Section 5 we will explain why the
proof applies to the other values of θ . Section 5 will also contain other results and
comments related to Theorem 1.1 and its proof.
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2. Approach to the proof of Theorem 1.1. As mentioned in the Introduction,
in this section and the following two, we suppose that θ = 2.

We will compare the threshold 2 contact process on Z
d with the same processes

on subsets of Z
d , with free boundary conditions. For this purpose we will use the

following notation. For each x ∈ Z
d , let Nx be the set of its 2d nearest neighbors,

and given R ⊂ Z
d , set NR,x = Nx ∩ R. Given R ⊂ R̄ ⊂ Z

d , and ζ ∈ {0,1}R̄ ,
we will denote by η

ζ
R;t the threshold 2 contact process on R, started from the

configuration ζ restricted to R. In this process, at site x ∈ R, at time t ≥ 0:

• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ in case there are at least 2 sites in NR,x in state 1 at time t ;

and at rate 0 otherwise.

Define G = Z
2 × {0,1}d−2. We will denote by λc(G) the threshold for survival

(started from all sites occupied) for the threshold 2 contact process on G. We will
prove

PROPOSITION 2.1.

lim
d→∞λc(G) = 0.

By attractivity, λc(Z
d) ≤ λc(G), so this result implies the case θ = 2 of Theo-

rem 1.1. In this section we will explain how the proof of Proposition 2.1 will be
reduced to the proof of two lemmas.

Fix a value of λ > 0. We want to prove that for d large enough, the process
(η1

G;t )t≥0 survives. For this purpose, we will partition Z
2 × {0,1}d−2 into copies

of the hypercube H = {0,1}d , indexed by the elements of Z
2. The elements of this

partition will be denoted by

Hi = {2i1,2i1 + 1} × {2i2,2i2 + 1} × {0,1}d−2, i = (i1, i2) ∈ Z
2.

We will observe the process (η1
G;t )t≥0 at times that are multiples of d2. At each one

of these times, we will decide whether each hypercube Hi , i ∈ Z
2, is in a good con-

figuration or not according to a technical definition provided later in this section.
(For large d , the completely empty configuration will not be a good configuration,
while the completely full configuration will be a good configuration.) This will be
done in a way that will allow us to use a classic result of Toom (1974), to show that
the hypercube H = H0 will be in a good configuration at arbitrarily large times,
implying therefore that (η1

G;t )t≥0 survives.
We recall now the result from Toom (1974), that will be used. Let Xi,n,

i ∈ Z
2, n ∈ Z, be a collection of i.i.d. random variables, with P(Xi,n = 0) = ε,

P(Xi,n = 1) = 1 − ε, where ε ∈ [0,1] is a noise parameter. Define now the
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following family of random transformations, Tε;n, on {0,1}Z
2
, indexed by n ∈

{0,1,2,3, . . .}. Tε;0 is the identity and recursively, for n = 1,2, . . . ,

(Tε;n�)i =
⎧⎨⎩

Xi,n, if (Tε;n−1�)i = 1, or
(Tε;n−1�)i+(0,1) = (Tε;n−1�)i+(1,0) = 1,

0, otherwise,

for � ∈ {0,1}Z
2
, i ∈ Z

2. Denote by 1 the element of {0,1}Z
2

identically 1. Toom
(1974) proved the following result [see also Bramson and Gray (1991), for an
alternative proof]: There exists εc > 0 such that

for ε < εc, lim inf
n→∞ P

(
(Tε;n1)0 = 1

)
> 0.(2.1)

Returning to the threshold 2 contact process on G, we now explain how good
configurations are defined. For this purpose, consider the threshold 2 contact
process on H , started from ζ ∈ {0,1}G. We want to compare this process with
the system of independent spins on H , that starts from the same configuration, and
uses the same system of up and down marks, for its flips. (So that flips down occur
at rate 1 and flips up occur at rate λ, independently of the state of the other spins.)
Call this independent flip process (π

ζ
H ;t )t≥0. Clearly, η

ζ
H ;t ≤ π

ζ
H ;t , for all t ≥ 0.

Roughly speaking, a good configuration ζ on H , is one for which the processes
(η

ζ
H ;t )0≤t≤d2 and (π

ζ
H ;t )0≤t≤d2 are likely to be close to each other. The technical

notion of closeness that will be used is defined next.

DEFINITION (Thin sets). Given R,S ⊂ Z
d , and L > 0, say that S is L-thin in

R, if

|S ∩ NR,x | ≤ L,

for all x ∈ R.

DEFINITION (Good configurations). Given R ⊂ R̄ ⊂ Z
d , and ζ ∈ {0,1}R̄ , we

define the discrepancy sets by



ζ
R;t = {x ∈ R :ηζ

R;t (x) 
= π
ζ
R;t (x)}

= {x ∈ R :ηζ
R;t (x) = 0, π

ζ
R;t (x) = 1}, t ≥ 0,



ζ
R = ⋃

t∈[0,d2]



ζ
R;t .

And given also L > 0, and δ ∈ [0,1], we say that the configuration ζ is (L, δ)-good
on R, if

P(

ζ
R is L-thin on R) ≥ 1 − δ.
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The next lemma will be the key to providing us with good configurations. First
we need one more technical definition.

DEFINITION (Almost product distributions). Given R ⊂ Z
d , M > 0 and α ∈

[0,1], say that a probability distribution ν over {0,1}R is an M-almost α-product
distribution, if it can be constructed as follows. There is a probability space on
which there is a random configuration ξ ∈ {0,1}R , with law given by an α-product
distribution (i.e., each site of R is independently occupied in ξ , with probabil-
ity α). On this probability space there is also a random set S ⊂ R that is almost
surely M-thin on R. The law ν can then be obtained as the law of the random
configuration defined as being identical to ξ on R \S and identically 0 on S. (Note
that in this definition, the set S does not need to be independent of ξ .)

CONVENTION ON NOTATION AND TERMINOLOGY. In the three definitions
above, when R = H , we may omit it. For instance, “ζ is good” has the same
meaning as “ζ is good on H ,” 
ζ = 


ζ
H , etc.

LEMMA 2.1 (Almost product distributions concentrate on good configurations).
For any λ > 0 and any α ∈ (0,1] there is L = L(λ,α) = L(λ/(1 + λ) ∧ α) such
that for any M > 0, δ > 0, and ε > 0, there is a finite d0 such that if ν has an
M-almost α-product distribution over {0,1}H , then

ν
({ζ : ζ is (L, δ)-good}) ≥ 1 − ε if d ≥ d0.

The quantity λ/(1 + λ), that appears in the statement of Lemma 2.1, is the
equilibrium density of the independent flip process. We will use the notation

L̄(λ) = L
(
λ/(1 + λ)

) = L(λ,α) for α ≥ λ/(1 + λ).

Note that in particular, for L = L̄(λ) and arbitrary δ > 0, the configuration with all
sites occupied in H is (L, δ)-good, if d is large.

The proof of Lemma 2.1 will be given in Section 3. The next lemma, whose
proof builds on Lemma 2.1, and will be postponed to Section 4, will allow us to
use (2.1) to prove Proposition 2.1. Given L and δ, define the rescaling operator
RL,δ : {0,1}G → {0,1}Z

2
as follows:

(RL,δ(ζ ))i =
{

1, if ζ is (L, δ)-good on Hi ,
0, otherwise,

i ∈ Z
2. Below � means stochastically larger than.

LEMMA 2.2 (Rescaling). For any λ > 0 and ε > 0 there is δ > 0 and finite d0
such that for L = L̄(λ), d ≥ d0, and any ζ ∈ {0,1}G,

RL,δ(η
ζ

G;d2) � Tε;1RL,δ(ζ ).
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Iterating this lemma [using the Markov property of (η
ζ
G;t )t≥0], and referring to

the remark after Lemma 2.1, we learn that for any ε > 0 there is δ > 0 such that
for large enough d ,

RL,δ(η
1
G;nd2) � Tε;n1, n = 1,2,3, . . . .(2.2)

Taking ε < εc in (2.2) and combining this estimate with (2.1), proves that for any
λ > 0, when d is large enough, the process (η1

G;t )t≥0 is (L, δ)-good on H at ar-

bitrarily large times (multiples of d2), provided that L and δ have been properly
chosen. Since the empty configuration on H is clearly not (L, δ)-good, when d is
large enough, we conclude then that (η1

G;t )t≥0 survives. This shows that Proposi-
tion 2.1 will have been proved once we prove Lemmas 2.1 and 2.2.

3. Almost product distributions concentrate on good configurations (proof
of Lemma 2.1). In order to prove Lemma 2.1, we introduce the following defini-
tion. A site x ∈ H is said to be (ζ,K)-dangerous if in the independent flip process
(π

ζ
H ;t )t≥0 there is some t ∈ [0, d2] when x has fewer than K occupied neighbors.

Define now

D
ζ
K = {x ∈ H :x is (ζ,K)-dangerous}.

Note that the definition of D
ζ
K refers only to the independent flip process

(π
ζ
H ;t )t≥0, and not to the threshold 2 contact process (η

ζ
H ;t )t≥0. The next lemma

makes nevertheless the connection with that latter process.

LEMMA 3.1 (Only dangerous sites can cause trouble). For any ζ ∈ {0,1}H ,
any L > 0, and any K ≥ L+2, on the event that D

ζ
K is L-thin, we have 
ζ ⊂ D

ζ
K .

In particular, if D
ζ
K is L-thin, then also 
ζ is L-thin.

PROOF. We argue by contradiction. (Informally: we consider the first viola-
tion of the claim, and show that it cannot be a violation of the claim.) Consider

s = inf{t ∈ [0, d2] :
ζ
t 
⊂ D

ζ
K}

(inf ∅ = ∞). If the lemma were false, we would have s < d2 and there would be
some x ∈ H \ D

ζ
K with the following properties. At (x, s) there would be an up

mark at which there would be a flip from 0 to 1 in the process (π
ζ
H ;t ), while in

the process (η
ζ
H ;t ) the spin at x would be 0 immediately before and immediately

after time s. This implies that immediately before s the site x had fewer than 2
neighbors that were occupied in the process (η

ζ
H ;t ). But, by the definition of s, for

t < s, any site y that has η
ζ
H ;t (y) 
= π

ζ
H ;t (y) must be (ζ,K)-dangerous. Therefore,

if we are on the event that D
ζ
K is L-thin, we learn that immediately before s the site

x had at most L neighbors where π
ζ
H ;t differed from η

ζ
H ;t , and hence had fewer
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than L + 2 neighbors that were occupied in the process (π
ζ
H ;t ). This implies that

x ∈ D
ζ
K ; a contradiction. �

Note that the next lemma refers only to the independent flip process (π
ζ
H ;t )t≥0,

and does not mention the threshold 2 contact process (η
ζ
H ;t )t≥0. The arguments

used to prove this lemma have some affinities with ideas of Balogh, Bollobas and
Morris (2007).

LEMMA 3.2 (Controlling dangerous sites). For any λ > 0 and any α ∈ (0,1],
there is L = L(λ,α) > 0, such that for every M > 0, K > 0 and ε > 0, there is a
finite d ′

0 = d ′
0(λ,α,M,K,ε) such that if ν is an M-almost α-product distribution

over {0,1}H , then∫
dν(ζ )P(D

ζ
K is L-thin) ≥ 1 − ε if d ≥ d ′

0.

PROOF. We will use the following notation for sites in H = {0,1}d . For each
A ⊂ {1, . . . , d}, eA will denote the indicator of the set A, that is, the element of H

that is 1 on A and 0 on {1, . . . , d} \ A. Note that the neighborhood of the origin in
H is NH,0 = {e{1}, . . . , e{d}}.

By the symmetries of H , with no loss in generality,∫
dν(ζ )P(D

ζ
K is not L-thin) ≤ 2d

∫
dν(ζ )P(|Dζ

K ∩ NH,0| ≥ L)

(3.1)
≤ 2ddL

∫
dν(ζ )P

(
e{1}, . . . , e{L} ∈ D

ζ
K

)
.

Since ν is an M-almost α-product distribution,∫
dν(ζ )P

(
e{1}, . . . , e{L} ∈ D

ζ
K

) ≤
∫

dμα(ξ)P
(
e{1}, . . . , e{L} ∈ D

ξ
K+M

)
,(3.2)

where μα is a product distribution over {0,1}H with density α.
For i = 1, . . . ,L, consider now the set Ni = {e{i,j} : j = L+1, . . . , d}. Note that

these L sets are disjoint from each other, that they have cardinality d − L and that
for each i, Ni ⊂ NH,e{i} . Let

T
ξ,K+M
i = inf

{
t ∈ [0, d2] :

d∑
j=L+1

π
ξ
H ;t

(
e{i,j}

)
< K + M

}
,
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i = 1, . . . ,L. Since the event {e{i} ∈ D
ξ
K+M} is included in the event {T ξ,K+M

i ≤
d2}, and the sets Ni are disjoint from each other,∫

dμα(ξ)P
(
e{1}, . . . , e{L} ∈ D

ξ
K+M

) ≤
∫

dμα(ξ)P

(
L⋂

i=1

{T ξ,K+M
i ≤ d2}

)
(3.3)

=
L∏

i=1

∫
dμα(ξ)P

(
T

ξ,K+M
i ≤ d2)

.

We want to estimate from above the probability that T
ξ,K+M
i ≤ d2. Set W

ξ
i =

{t ∈ [0, d2 + 1] :
∑d

j=L+1 π
ξ
H ;t (e{i,j}) < K + M}, and let |Wξ

i | be the Lebesgue
measure of this set. Define also T ′

i as the instant of the first up mark in Ni after

T
ξ,K+M
i . Note that T ′

i − T
ξ,K+M
i is exponentially distributed with rate (d − L)λ,

and is independent of T
ξ,K+M
i . Therefore, for d ≥ 1/λ, using Markov’s inequality,

E(|Wξ
i |) ≥ 1

λd
P(T

ξ,K+M
i ≤ d2)P

(
T ′

i − T
ξ,K+M
i >

1

λd

)
= 1

λd
P(T

ξ,K+M
i ≤ d2) exp

(
−(d − L)λ

dλ

)
≥ 1

eλd
P(T

ξ,K+M
i ≤ d2).

Hence, using Fubini’s theorem,∫
dμα(ξ)P(T

ξ,K+M
i ≤ d2)

≤ eλd

∫
dμα(ξ)E(|Wξ

i |)(3.4)

≤ eλd(d2 + 1)P

(
Bin

(
d − L,α ∧ λ

1 + λ

)
< K + M

)
,

where Bin(n,p) stands for a binomial random variable corresponding to n inde-
pendent attempts, each with probability p of success. And we used the fact that
in the independent flip process (π

ξ
H ;t ), each site is independently occupied at time

t with a probability that varies monotonically in t , starting from α at t = 0, and
converging to the equilibrium value λ/(1+λ) as t → ∞ (as well as the fact that bi-
nomial random variables are stochastically monotone increasing in the probability
of success).

In order to choose L(λ,α), we recall the standard large deviation estimate

P

(
Bin

(
d

2
, α ∧ λ

1 + λ

)
≤ d

4

(
α ∧ λ

1 + λ

))
≤ exp(−γ d),(3.5)
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where γ = γ (α ∧ λ
1+λ

) > 0. For a reason that soon will become clear, we take
L = L(λ,α) = L(λ/(1 + λ) ∧ α) sufficiently large so that

exp
(−γL

)
< 1

2 .(3.6)

From (3.1)–(3.5) above,∫
dν(ζ )P(D

ζ
K is not L-thin)

≤ 2ddL

[
eλd(d2 + 1)

× P

(
Bin

(
d − L,α ∧ λ

1 + λ

)
< K + M

)]L

≤ 2ddL

[
eλd(d2 + 1)(3.7)

× P

(
Bin

(
d

2
, α ∧ λ

1 + λ

)
≤ d

4

(
α ∧ λ

1 + λ

))]L

≤ 2ddL[eλd(d2 + 1) exp(−γ d)]L
= (

eλd2(d2 + 1)
)L(

2 exp(−γL)
)d

,

where in the second inequality, we suppose that d ≥ d1, for some large enough
d1 = d1(L(λ,α),K + M).

Given ε > 0, it is clear that (3.6) and (3.7) imply the existence of a finite d ′
0 =

d ′
0(λ,α,M,K,ε) (larger than d1 and 1/λ), so that the claim stated in the lemma

holds. �

PROOF OF LEMMA 2.1. Take L = L(λ,α) from Lemma 3.2, and apply
Lemma 3.2 with K = L + 2 and ε replaced by εδ, to obtain the existence of
d0 = d0(λ,α,M, δ, ε) such that∫

dν(ζ )P(D
ζ
K is not L-thin) ≤ εδ,

for d ≥ d0. From Lemma 3.1, we have for every ζ ∈ {0,1}H ,

P(
ζ is not L-thin) ≤ P(D
ζ
K is not L-thin).

On the set {ζ : ζ is not (L, δ)-good}, the probability on the left-hand side of the last
display is larger than δ, by the definition of (L, δ)-good configurations. Therefore,
integrating that inequality over ν, and using the previous one, we obtain

δν
({ζ : ζ is not (L, δ)-good}) ≤

∫
dν(ζ )P(
ζ is not L-thin) ≤ εδ.

Canceling δ, we obtain the desired claim. �
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4. Rescaling (proof of Lemma 2.2). Set

Ĥ = H ∪ H(0,1) ∪ H(1,0).

The main step in the proof of Lemma 2.2 will be the following lemma.

LEMMA 4.1 (Local rescaling estimate). For any λ > 0 and ε > 0 there is δ > 0
and finite d0 such that for d ≥ d0 the following holds. If ζ ∈ {0,1}Ĥ , satisfies one
of the following two conditions:

(a) ζ is (L̄(λ), δ)-good on H ,

or

(b) ζ is (L̄(λ), δ)-good on H(0,1) and on H(1,0),

then

P
(
η

ζ

Ĥ ;d2 is (L̄(λ), δ)-good on H
) ≥ 1 − ε.

Lemmas 4.3 and 4.4 below will contain the basic ingredients in the proof of
Lemma 4.1.

LEMMA 4.2 (Goodness is monotone). If ζ ′ ≤ ζ ′′ are two configurations in
{0,1}H , then 
ζ ′′ ⊂ 
ζ ′

. In particular, if for some L > 0 and δ > 0, ζ ′ is
(L, δ)-good, then also ζ ′′ is (L, δ)-good.

PROOF. If x ∈ 
ζ ′′
, then there is some up mark at x at some time s ≤ d2,

with the following properties. At (x, s) there is a flip from 0 to 1 in the process

(π
ζ ′′
H ;t ), while in the process (η

ζ ′′
H ;t ) the spin at x is 0 immediately before and im-

mediately after time s. This implies that immediately before s the site x had fewer

than 2 neighbors that were occupied in the process (η
ζ ′′
H ;t ). Since, by attractivity,

η
ζ ′
H ;t ≤ η

ζ ′′
H ;t , for all t ≥ 0, it follows that also in the process (η

ζ ′
H ;t ) immediately

before s the site x was vacant and had fewer than 2 neighbors that were occupied.

Therefore, x will still be vacant in the process (η
ζ ′
H ;t ), immediately after s, while

in the process (π
ζ ′
H ;t ) it will be occupied. This implies that x ∈ 
ζ ′

. �

LEMMA 4.3 (Goodness is likely to be preserved). For any λ > 0, M > 0, and
δ > 0, for each ζ ∈ {0,1}H that is (M, δ)-good and t ∈ [d2/4, d2], we have:

(i) The total variation distance between the law of η
ζ
H ;t and a certain

M-almost λ/(1 + λ)-product distribution is bounded above by 2δ, for large d .
(ii) For any δ′ > 0,

P
(
η

ζ
H ;t is (L̄(λ), δ′)-good

) ≥ 1 − 4δ for large d.
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PROOF. Let ξ be a random configuration in {0,1}H , corresponding to a prod-
uct distribution with density λ/(1 + λ). This is the equilibrium distribution for the
independent flip process (πH,t ), so that ξt = π

ξ
H,t has the same λ/(1 + λ)-product

distribution for each t ≥ 0. Define now

ξ
M,ζ
t (x) =

{
ξt (x), if x ∈ H \ 


ζ
t or 


ζ
t is not M-thin,

0, if x ∈ 

ζ
t and 


ζ
t is M-thin.

Note that, for arbitrary t ≥ 0, ξ
M,ζ
t has an M-almost λ/(1 + λ)-product distribu-

tion.
The event A that there is at least one Poisson mark, either up or down, at each

site x ∈ H during the time interval [0, d2/4] has

P(Ac) ≤ 2d exp(−d2/4) ≤ δ,

for large d . And on A, π
ζ
H ;t = ξt , for t ≥ d2/4.

Let B denote the event that 
ζ is M-thin. From the assumption on ζ , we have

P(Bc) ≤ δ.

On AB we have

ξ
M,ζ
t (x) =

{
ξt (x) = π

ζ
H ;t (x) = η

ζ
H ;t (x), if x ∈ H \ 


ζ
t

0 = η
ζ
H ;t (x), if x ∈ 


ζ
t

}
= η

ζ
H ;t (x).

This means that η
ζ
H ;t = ξ

M,ζ
t , on the event AB , which has P((AB)c) ≤ 2δ, when

d is large, completing the proof of (i).
The claim (ii) follows from (i) and Lemma 2.1, by possibly taking d larger. �

LEMMA 4.4 (Infecting with goodness). For any λ > 0, M > 0, and β > 0, if
ψ is a random configuration on {0,1}Ĥ that has restrictions to H(0,1) and H(1,0)

that are independent and each has an M-almost β-product distribution, then we
have:

(i) η
ψ

Ĥ ;1 has a restriction to H that is stochastically larger than an 8M-almost
α-product distribution, where α = α(λ,β) > 0.

(ii) For any ε > 0 and δ > 0,

P
(
η

ψ

Ĥ ;1 is (L(λ,α), δ)-good on H
) ≥ 1 − ε for large d.

PROOF. For each i = (i1, i2) ∈ Z
2, partition Hi into the sets

Hi,y = {2i1,2i1 + 1} × {2i2,2i2 + 1} × {y}, y ∈ {0,1}d−2.

From the hypothesis, we have, for i = (0,1) and i = (1,0), a set Si ⊂ Hi that is
M-thin in Hi , and such that the restriction of ψ to Hi is identical on Hi \ Si to a
random configuration ξ on H(0,1) ∪ H(1,0) that has a β-product distribution.



THRESHOLD CONTACT PROCESSES 1495

Define

I = {
y ∈ {0,1}d−2 :H(0,1),y ∩ S(0,1) 
= ∅ or H(1,0),y ∩ S(1,0) 
= ∅

}
,

so that for y ∈ {0,1}d−2 \ I , ψ is identical to ξ on H(0,1),y ∪ H(1,0),y .
For y = (y3, . . . , yd) ∈ {0,1}d−2, consider the following event Ay : ξ(x) = 1 for

x ∈ H(0,1),y ∪ H(1,0),y , between times 0 and 1, there is no down mark in H(0,0),y ∪
H(0,1),y ∪H(1,0),y and between times 0 and 1 there is an up mark at each one of the
sites (1,1, y3, . . . , yd), (1,0, y3, . . . , yd), (0,1, y3, . . . , yd) and (0,0, y3, . . . , yd),
in that order, or in the order (1,1, y3, . . . , yd), (0,1, y3, . . . , yd), (1,0, y3, . . . , yd),
(0,0, y3, . . . , yd). Then the events Ay , y ∈ {0,1}d−2, are i.i.d., with

P(Ay) ≥ β8e−12(1 − e−λ/4)4 = α′(λ,β) > 0.

Define also a random configuration φ on H , by setting

φ(x) =
{

1, if x ∈ H(0,0),y for some y for which Ay occurs,
0, otherwise.

Set

S = ⋃
y∈I

H(0,0),y .

We have now the following estimate, which is central to our argument, and follows
immediately from the definitions above, and the way (η

ψ

Ĥ ;t ) is constructed from the
Poisson marks:

η
ψ

Ĥ ;1(x) ≥ φ(x) if x ∈ H \ S.

Claim (i) in the lemma will therefore follow, once we argue that the law of φ is
stochastically larger than a product distribution with some density α > 0, and that
S is 8M-thin.

For the first of these tasks, it is enough to take α = α(λ,β) = α′((λ,β)/4. In-
deed, a product distribution over H with density α gives, for each y ∈ {0,1}d−2,
probability (1 − α′/4)4 ≥ 1 − α′ to the event that all 4 sites in H(0,0),y are va-
cant. And this is enough, since in φ, when H(0,0),y is not fully vacant, it is fully
occupied.

We now argue that S is an 8M-thin subset of H . For this, let S′
(0,1) and S′

(1,0)

be, respectively, the translates of S(0,1) and S(1,0) to H . Then S′ = S′
(0,1) ∪ S′

(1,0)

is 2M-thin. To obtain S from S′, we introduce the mappings σk :H → H , k =
(k1, k2) ∈ {0,1}2, given by

(σk(x))j =
{

1 − xj , if j ∈ {1,2} and kj = 1,
xj , if j ∈ {3, . . . , d} or kj = 0.

These 4 mappings are automorphisms of H (as a graph), and

S = ⋃
k∈{0,1}2

σk(S
′).
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So S is the union of 4 sets that are 2M-thin, and hence it is 8M-thin.
This completes the proof of claim (i).
Claim (ii) is now a consequence of (i) and Lemmas 2.1 and 4.2. �

PROOF OF LEMMA 4.1. In case condition (a) holds, the claim in the lemma is
immediate from (ii) in Lemma 4.3 [with M = L̄(λ), δ′ = δ], provided that we take
δ ≤ ε/4.

In case condition (b) holds, we will show next that the claim in the lemma
holds, provided that we take δ ≤ ε/12. For this purpose, we will compare the
process (η

ζ

Ĥ ;t )t∈[0,d2], with the process (η̌
ζ

Ĥ ;t )t∈[0,d2] in which interaction is only
allowed among the hypercubes H , H(0,1) and H(1,0) during the time interval
[d2/2 − 1, d2/2].

The random configuration η̌
ζ

Ĥ ;d2/2−1
has restrictions to H , H(0,1) and H(1,0) that

are independent. From (i) in Lemma 4.3 [in its translated versions for H(0,1) and
H(1,0), with M = L̄(λ)], we learn that, for large d , this random configuration has
restrictions to H(0,1) and H(1,0) each with a law that is at total variation distance at
most 2δ from a L̄(λ)-almost λ/(1 +λ)-product distribution. Therefore the random
configuration η̌

ζ

Ĥ ;d2/2−1
has a law that is at total variation distance at most 4δ from

a random configuration ψ on Ĥ that satisfies the conditions of Lemma 4.4, with
M = L̄(λ) and β = λ/(1 + λ). [See, e.g., Lemma (6.2), Section 2.6, page 139 of
Durrett (1996), for the fact that the total variation distance is added when measures
are multiplied.]

Using now the Markov property of (η̌
ζ

Ĥ ;t )t∈[0,d2] (applied at time d2/2−1), and

(ii) in Lemma 4.4 (with the time interval [0,1] translated to [d2/2 − 1, d2/2]), we
learn that for an appropriate α > 0,

P
(
η̌

ζ

Ĥ ;d2/2
is (L(λ,α), δ)-good on H

)
≥ P

(
η

ψ

Ĥ ;1 is (L(λ,α), δ)-good on H
) − 4δ ≥ 1 − ε/3 − 4δ,

for large enough d .
Using once more the Markov property of (η̌

ζ

Ĥ ;t )t∈[0,d2] (this time applied at
time d2/2), and using (ii) in Lemma 4.3 [this time with M = L(λ,α), t = d2/2
and δ′ = δ], we learn now that

P
(
η̌

ζ

Ĥ ;d2 is not (L̄(λ), δ)-good on H
)

≤ P
(
η̌

ζ

Ĥ ;d2/2
is not (L(λ,α), δ)-good on H

)
+ P

(
η̌

ζ

Ĥ ;d2 is not (L̄(λ), δ)-good on H
∣∣η̌ζ

Ĥ ;d2/2
is (L(λ,α), δ)-good on H

)
≤ ε/3 + 4δ + 4δ ≤ ε,
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for large enough d . The claim in the lemma now follows by using attractiv-
ity and Lemma 4.2, when comparing the process (η

ζ

Ĥ ;t )t∈[0,d2] with the process

(η̌
ζ

Ĥ ;t )t∈[0,d2]. �

PROOF OF LEMMA 2.2. We will combine Lemma 4.1, with Theorem 0.0(i) of
Liggett, Schonmann and Stacey (1997). For this purpose, for i ∈ Z

2, set

Ĥi = Hi ∪ Hi+(0,1) ∪ Hi+(1,0)

and define the random variables X̃
ζ
i , i ∈ Z

2, by setting X̃
ζ
i = 1 in case

(RL,δ(η
ζ

Ĥi;d2))i = 1, or (RL,δ(ζ ))i = (RL,δ(ζ ))i+(0,1)(RL,δ(ζ ))i+(1,0) = 0;

and X̃
ζ
i = 0, otherwise. Then (X̃

ζ
i )i∈Z2 has a finite range of dependence.

Therefore, Theorem 0.0(i) of Liggett, Schonmann and Stacey (1997) assures us
that given ε > 0, there exists ε̃ > 0 such that if

inf
i∈Z2

P(X̃
ζ
i = 1) ≥ 1 − ε̃,(4.1)

then there is an i.i.d. random field (Xi)i∈Z2 , with P(Xi = 0) = ε, P(Xi = 1) =
1 − ε, that lies stochastically below (X̃

ζ
i )i∈Z2 .

On the other hand, Lemma 4.1 (with ε̃ in place of the ε there), assures us that
(4.1) is indeed satisfied, provided that we take δ > 0 properly, and d large enough.

Define the following random transformation, T̃ , on {0,1}Z
2
:

(T̃ �)i =
{

X̃
ζ
i , if �i = 1 or �i+(0,1) = �i+(1,0) = 1,

0, otherwise,

for � ∈ {0,1}Z
2
, i ∈ Z

2. Under the conditions above on δ and d , we have now,

RL,δ(η
ζ

G;d2) � T̃ RL,δ(ζ ) � Tε;1RL,δ(ζ ).

This completes the proof. �

5. Extensions, related results, notes. We will use the following standard
notation, for the elements of the canonical base of Z

d : e1 = (1,0,0, . . . ,0,0),
e2 = (0,1,0, . . . ,0,0), . . . , ed = (0,0,0, . . . ,0,1). For x ∈ Z

d , we say that its
nearest neighbors y and z are colinear with x if {y, z} = {x − ej , x + ej } for some
j ∈ {1, . . . , d}.

We will be considering other processes on Z
d which can be constructed with the

same system of Poisson marks used for the threshold contact processes. As usual,
we say that model A dominates model B, if when they are both constructed in this
way and are started from the same configuration, model A is at any time above
model B.
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(1) First we explain how the proof of Theorem 1.1 should be modified for
arbitrary θ . One uses the following generalization of (2.1). Let Xi,n, i ∈ Z

d , n ∈ Z,
be a collection of i.i.d. random variables, with P(Xi,n = 0) = ε, P(Xi,n = 1) =
1 − ε, where ε ∈ [0,1] is a noise parameter. Define now the following family of
random transformations, Tε;n, on {0,1}Z

d
, indexed by n ∈ {0,1,2,3, . . .}. Tε;0 is

the identity and recursively, for n = 1,2, . . . ,

(Tε;n�)i =
{

Xi,n, if (Tε;n−1�)i = 1, or (Tε;n−1�)i+ej
= 1, j = 1, . . . , d,

0, otherwise,

for � ∈ {0,1}Z
d
, i ∈ Z

d . Denote by 1 the element of {0,1}Z
d

identically 1. Toom
(1974) proved the following result [see also Bramson and Gray (1991), for an
alternative proof]: There exists εc > 0 such that

for ε < εc, lim inf
n→∞ P

(
(Tε;n1)0 = 1

)
> 0.(5.1)

For our purposes, we set

G = Z
θ × {0,1}d−θ = ⋃

i∈Zθ

Hi,

where

Hi = {2i1,2i1 + 1} × · · · × {2iθ ,2iθ + 1} × {0,1}d−θ , i = (i1, . . . , iθ ) ∈ Z
θ .

One then proves the analogue of Proposition 2.1, exactly in the same way as that
proposition was proved, except for obvious changes [e.g., (5.1) is used in its θ -
dimensional version, in Lemma 3.1 the condition reads K ≥ L + θ , Ĥ = H ∪
(
⋃

j=1,...,θ Hej
), in (i) in Lemma 4.4, the quantity 8M becomes θ2θM , etc.].

(2) Even when the threshold θ contact process survives started from all sites
occupied, it may happen that for small p > 0, η

p
t ⇒ δ0, as t → ∞. By attractivity,

if this happens for some value of p, it will also happen for smaller values of p.
This leads to the following definitions:

pc(λ) = sup{p ∈ [0,1] :ηp
t ⇒ δ0, as t → ∞}

= sup{p ∈ [0,1] :ρp
t → 0 as t → ∞},

λ̄ = inf{λ :pc(λ) = 0} = inf
{
λ : for all p > 0, inf

t≥0
ρ

p
t > 0

}
.

In case θ = 1, one can use duality to easily show that whenever the process
survives, it survives starting from any product distribution with positive density. In
particular, λc = λ̄.

Chen (1994) proved a result that implies that if θ = 2, d ≥ 3, then

λ̄ < ∞.(5.2)

Specifically, Chen (1994) studied a spin flip model on Z
d that he referred to as the

system with symmetric sexual reproduction. That model is the θ = 2 case of the
model that we call the modified threshold θ contact process, and is defined by the
following rates. At x ∈ Z

d , at time t ≥ 0:
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• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ in case there are at least θ nearest neighbors of x, no two of

which are colinear with x, in state 1 at time t ; and at rate 0 otherwise.

Theorem 4 of Chen (1994) shows that when d ≥ 3, the modified threshold 2 con-
tact process on Z

d , with a large enough λ, survives for any initial density p > 0.
By domination, the same therefore holds for the threshold 2 contact process on Z

d ,
that is, (5.2) holds.

In Chen (1992) the following result, that contrasts with (5.2), was proved. In
d = 2 the modified threshold 2 contact process with arbitrarily large λ, started
from a product measure with small enough density p > 0 (how small depends
on λ) dies out. This means that for this model λ̄ = ∞. Presumably the same holds
for the threshold 2 contact process in dimension 2.

Interestingly enough, the qualitative behavior of the threshold 2 contact process
in high dimensions is distinct from the behavior of the associated mean-field
model, analyzed in Fontes and Schonmann (2008). In that mean-field model,
pc(λ) > 0 for all λ > 0, with limλ→∞ pc(λ) = 0. In particular, λ̄ = ∞. Also the
behavior of the threshold 2 contact process on a homogeneous tree is distinct from
that of both the process on Z

d with large d and the mean-field model. For the mod-
els on the homogeneous trees with θ ≥ 2, Fontes and Schonmann (2008) observed
that even limλ→∞ pc(λ) > 0.

In connection with the facts reviewed above it seems very interesting to decide
whether, for θ = 2, in d ≥ 3 the critical points λc and λ̄ are distinct from each
other.

(3) It is worth pointing out that Theorem 1.1 extends also to the modified
threshold θ contact process, as defined in (2) above. This is so simply because
the modified threshold θ contact process dominates the threshold 2θ − 1 contact
process.

(4) The following strengthening of Theorem 1.1 can be proved with very little
additional work.

THEOREM 5.1. For any θ , and any λ > 0,

lim
d→∞pc(λ) = 0.

To prove this theorem, first we prove that for arbitrary p > 0, ε′ > 0 and δ′ > 0,
for L = L̄(λ),

RL,δ′(ηp

G;d2) � Tε′;11(5.3)

for large d . This claim is a direct consequence of Lemma 2.1 [with α = p, M ir-
relevant, ε = ε′/2, L = L(λ,p) and δ = ε′/8], combined with (ii) in Lemma 4.3
[with M = L(λ,p), δ = ε′/8 and t = d2], and with the fact that the right-hand side
of (5.3) has a product distribution with density ε′.
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Combining (5.3) with n − 1 iterates of Lemma 2.2 [using the Markov property
of (η

p
G;t )t≥0], we learn that for any ε > 0 there is δ > 0 such that for L = L̄(λ) and

large enough d ,

RL,δ(η
p

G;nd2) � Tε;n1, n = 1,2,3, . . . .(5.4)

Theorem 5.1 now follows from (5.4) in the same way as Theorem 1.1 followed
from (2.2).

(5) We end this section with a proof that must be well known, but does not
seem to be in print. We observe how (5.1) can be used to prove that for every
d ≥ 2, the asymmetric model defined by the rates below has λc < ∞. At x ∈ Z

d ,
at time t ≥ 0:

• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ in case x + ej , j = 1, . . . , d , are all in state 1 at time t ; and

at rate 0 otherwise.

We will use (�ηt )t≥0 to denote this process. Define the random variables Xi,n, i ∈
Z

d , n = 1,2, . . . , by Xi,n = 1 if at i, during the time interval [(n − 1)/
√

λ,n/
√

λ]
there is no down mark and there is an up mark; Xi,n = 0, otherwise. Then the Xi,n

are i.i.d., and ε = P(Xi,n = 0) can be made arbitrarily small, by taking λ large. It
is also clear that

�η1
n/

√
λ

� Tε;n1, n = 1,2,3, . . . .

Therefore (5.1) implies survival of (�ηt )t≥0 when λ is large enough. By domination,
we learn also that for the threshold contact processes on Z

d , with θ ≤ d , λc < ∞,
as mentioned in the Introduction.
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