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WHAT IS THE PROBABILITY OF INTERSECTING THE SET OF
BROWNIAN DOUBLE POINTS?

BY ROBIN PEMANTLE1 AND YUVAL PERES2

University of Pennsylvania and University of California

We give potential theoretic estimates for the probability that a set A con-
tains a double point of planar Brownian motion run for unit time. Unlike the
probability for A to intersect the range of a Markov process, this cannot be
estimated by a capacity of the set A. Instead, we introduce the notion of a
capacity with respect to two gauge functions simultaneously. We also give a
polar decomposition of A into a set that never intersects the set of Brownian
double points and a set for which intersection with the set of Brownian double
points is the same as intersection with the Brownian path.

1. Introduction. Let A be a compact subset of the 1
3 -unit disk in the plane.

For fifty years it has been known that A intersects the path of a Brownian motion
with positive probability if and only if A has positive Newtonian capacity. In fact,
the Newtonian (logarithmic) capacity gives an estimate, up to a constant factor, the
probability that A is hit by a Brownian motion started, say, from the point (1,0)

and run for a fixed time. The estimate is of course stronger than the dichotomous
result, and moreover, it turns out to be important when examining properties of
intersections with random sets; see, for example, the simple Cantor-type random
fractal shown in Peres [5] to be “intersection-equivalent” to the Brownian motion;
see also the remark after Theorem 2.3.

Similar results are known for much more general Markov processes. Let
G(x,y) denote the Green function for a transient Markov process. The capacity,
CapK(A) of a set A, with respect to a kernel K is defined to be the reciprocal of
the infimum of energies

EK(µ) :=
∫ ∫

K(x,y) dµ(x)dµ(y)

as µ ranges over probability measures supported on A. In a wide variety of cases
it is known that the range of the process intersects A with positive probability if
and only if A has positive capacity with respect to the Green kernel. The same
is true of any of a number of related kernels, and choosing the Martin kernel
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M(x,y) = G(x,y)/G(ρ, y) with respect to any starting point ρ (see, e.g., Ben-
jamini, Pemantle and Peres [1]) leads to the estimate

1
2 CapM(A) ≤ Pρ(the process intersects A) ≤ CapM(A).

We are chiefly interested in the set D of double points of a planar Brownian
motion. We work on a probability space (�, {Ft },P) on which are defined two
independent Brownian motions, Bt and B̃t , both started from the point ρ := (1,0).
The notation Px (or Px,y) will be used when a different starting point (or points)
is required. Let τ∗ = inf{t : |Bt | = 3} be the exit time of Bt from the disk {|x| ≤ 3}.
Formally, then,

D := {x :Br = Bs = x for some 0 < r < s < τ∗}.
The choice to start at ρ, stop at τ∗, and choose sets inside the 1

3 -unit disk are con-
veniences that make the Martin and Green kernel both comparable to | log |x − y||.

The random set D is not the range of any Markov process, but we may still ask
about the probability for the random set D to intersect a fixed set A. A closely
related random set to D is the intersection of two independent Brownian motions,
denoted here by

I := {x :Br = B̃s = x for some 0 < r < τ∗,0 < s < τ̃∗},
where τ̃∗ = inf{t : |B̃t | ≥ 3}. Fitzsimmons and Salisbury [3] showed, for a subset
A of the 1

3 -unit disk, that P(I ∩ A �= ∅) may be estimated up to a constant factor
by CapL(A) where L(x, y) = (log |x − y|)2. In general, they show that taking
intersections of random sets multiplies the kernels in the capacity tests; see also
Salisbury [6] and Peres [5]. The set D may be written as a countable union of the
sets of ε-separated double points (we use a time separation of ε2 so that ε may be
thought of as a small spatial unit):

Dε := {x :Br = Bs = x for some 0 < r < r + ε2 ≤ s < τ∗}.
It is not hard to see that each random set Dε behaves similarly to the set I, but
with an increasingly poor constant. In other words,

cε CapL(A) ≤ P(Dε ∩ A �= ∅) ≤ Cε CapL(A),

but the constant Cε goes to infinity as ε goes to zero. Since the property of having
zero capacity is closed under countable unions, we again have the dichotomous
criterion

P(D ∩ A �= ∅) = 0 ⇔ CapL(A) = 0(1.1)

for L(x, y) = (log |x − y|)2. No estimate follows, however.
An example helps to explain this shortcoming. Fix an α ∈ (1/2,1) and let An be

nested subsets of the line segment A0 := [−1/2,1/2] × {0} such that An is made
of 2n intervals of length 2−2αn

, with each of the 2n intervals of An containing
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exactly two intervals of An+1 situated at the opposite ends of the interval of An.
The intersection, denoted A, is a Cantor set for which, if K(x,y) = | log |x − y||
and L(x, y) = log2 |x − y|, then

CapK(A) > 0 = CapL(A).

For each set An, a Brownian motion that hits the set will immediately after have a
double point in the set. Thus,

P(D ∩ An �= ∅) := pn,

where pn decreases as n → ∞ to a positive number, estimated by CapK(A). On the
other hand, since CapL(A) = 0, we know that D is almost surely disjoint from A.

From this we see that the probability of A intersecting D is not continuous as
A decreases to a given compact set, and therefore, that this probability cannot be
uniformly estimated by CapK for any K , since CapK is a Choquet capacity, and
must be continuous with respect to this kind of limit. On the other hand, since the
probability that An intersects Dε is estimated by the Choquet capacity CapL(An)

which goes to zero as n → ∞, we see that these estimates are indeed getting worse
and worse as n → ∞ for fixed ε, and are only good when ε → 0 as some function
of n.

We remark that such behavior is possible only because D is not a closed set.
Indeed, if X is a random closed set and {Yn} are closed sets decreasing to Y , then
the events {X ∩ Yn �= ∅} decrease to the event {X ∩ Y �= ∅}, whence

P(X ∩ Yn �= ∅) ↓ P(X ∩ Y �= ∅).(1.2)

The goal of this note is to provide a useful estimate for P(D ∩ A �= ∅). We
have just seen that it cannot be of the form CapK for some kernel, K . Instead, we
must introduce the notion of a capacity with respect to two different kernels, which
we denote Capf →g . We go about this two different ways. The first approach is to
show that Capf →g gives estimates on probabilities of intersection with Dε which
are uniform in ε and thus allow passage to the limit. This relies on the result of
Fitzsimmons and Salisbury (or Peres), so is less self-contained, but yields as a by-
product the estimates for ε > 0 which may be considered interesting in themselves.
The second is a softer and more elementary argument, which produces a sort of
polar decomposition of the set A but is less useful for computing. Section 2 states
our results, Section 3 contains proofs of the estimates and Section 4 contains the
proof of the decomposition result.

2. Results. Since Brownian motion is isotropic, we will restrict attention to
kernels K(x,y) = f (|x − y|) that depend only on |x − y|. When K has this form,
we write Ef and Capf instead of EK and CapK . Let f and g be functions from
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R
+ to R

+ going to infinity at zero, with f ≤ g. Let hε denote the function on R
+

defined by

hε(x) =



f (x), if x ≥ ε,

g(x) · f (ε)

g(ε)
, if x < ε.

Let Capε denote Caphε
. The following result defines the hybrid capacity Capf →g

as a limit and also characterizes it as “Capf measured only at places where Capg

is positive.”

PROPOSITION 2.1. The limit limε→0 Capε(A) exists. Denoting this limit by
Capf →g(A), we have

Capf →g(A) = [inf{Ef (µ) :Eg(µ) < ∞ and µ(A) = 1}]−1.(2.1)

PROOF. If Capg(A) = 0, then both sides of (2.1) are clearly zero, so assume
that Capg(A) > 0. For each ε, let µε be a probability measure on A that mini-
mizes Ehε , so that Caphε

(A) = Ehε (µε). Since f ≤ hε for all ε, we have

Ehε(µε) ≥ Ef (µε).

Observe that each µε has finite g-energy and take the infimum on the left-hand
side and the supremum on the right-hand side, then invert, to see that

sup
ε

Capε(A) ≤ [inf{Ef (µ) :Eg(µ) < ∞ and µ(A) = 1}]−1.

On the other hand, if µ is any measure of finite g-energy, then by choice of µε ,
we know that

Ehε(µε) ≤ Ehε(µ).

As ε → 0, dominated convergence shows that the right-hand side of this converges
to Ef (µ), and hence, that

lim inf
ε→0

Capε(A) ≥ [inf{Ef (µ) :Eg(µ) < ∞ and µ(A) = 1}]−1,

which finishes the proof. �

REMARK. The infimum in (2.1) need not be achieved. For example, if A is a
small disk, f (x) = | logx|, and g(x) = x−α for any α ∈ [1,2), then the infimum
of logarithmic energies of probability measures on A is equal to the log-energy of
normalized one-dimensional Lebesgue measure on the boundary of the disk, and
is strictly less than the logarithmic energy of any measure of finite g-energy.
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This proposition is our only general result on hybrid capacities. For the remain-
der of the paper, f will always be | log ε| and g will always be log2 ε, so the nota-
tion hε will be unambiguous. [We have also found the notation easier to read if we
use log |x − y|/ log ε rather that | log |x − y||/| log ε| or log(1/|x − y|)/ log(1/ε)

whenever the signs cancel.] Our main interest in Capε is that it gives the estimate
on the probability of an intersection with Dε .

THEOREM 2.2 (Estimates for intersecting Dε). Let f (x) = | logx| and
g(x) = log2 x. There are constants c and C such that, for any ε > 0 and any
closed subset A of disk {x : |x| ≤ 1/3},

c Capε(A) ≤ P(Dε ∩ A �= ∅) ≤ C Capε(A).

Since Capε ↑ Capf →g and D = ⋃
Dε , our first main result follows as an im-

mediate corollary.

THEOREM 2.3 (Two-gauge capacity estimate). For the same constants c

and C, and the same f and g,

c Capf →g(A) ≤ P(D ∩ A �= ∅) ≤ C Capf →g(A).

REMARK. Suppose the set A is a bi-Hölder image of some set S for which the
intersection probabilities with D are known. Since the logarithm of the distance
between two points in a small disk changes by a bounded factor under such a
map, the Newtonian and log2 capacities change only by a bounded factor, so the
probability of A intersecting D is estimated by the probability of S intersecting D .
This is more than can be concluded from the dichotomy (1.1).

The characterization of Capf →g in Proposition 2.1 suggests an explanation for
the two-gauge capacity result. The probability of intersection with D is estimated
by Caplog “at places of finite log2-energy,” so perhaps the operative mechanism
is that one must eliminate certain “thin” places that can never contain Brownian
double points, leaving a “core set,” such that if and when Brownian motion hits the
core set, immediately there will be a Brownian double point in the core set. This
turns out to be true.

THEOREM 2.4 (Polar decomposition). Any compact subset A of the plane not
containing (1,0) may be written as a union A = A1 ∪ A2, such that (1) the set A1

is almost surely disjoint from D , and (2), on the event that the hitting time τ2 of A2

is finite, then for any ε > 0, with probability 1, Brownian motion stopped at time
τ2 + ε has a double point in A2.
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It follows from this that

P(D ∩ A �= ∅) = P(Brownian motion hits A2),

which is estimated up to a constant factor by Caplog(A2), and, in fact, is equal
to the Martin capacity of A2. Thus, this decomposition is in some ways stronger
than Theorem 2.3; it is, in principle, less useful for computation because A2 must
first be computed, though, in practice, usually A2 = A or is empty. We remark that
Caplog(A2) is a different estimate from Caplog→log2(A), if harmonic measure on

A2 has infinite log2-energy.

3. Proof of estimates for intersecting D. Fix ε ∈ (0,1/3) and any δ < ε/2.
Let x and y be points in the quarter unit disk with |x − y| > 3δ and denote by Dx

and Dy the balls of radius δ centered at x and y, respectively. The key estimates for
applying potential theoretic methods are the first and second moment estimates, as
given in the following lemma. The notation 
 denotes equivalence up to a constant
multiple.

LEMMA 3.1. Let H(A) = H(A,ε) denote the event {Dε ∩ A �= ∅}:
P(H(Dx)) 
 | log ε|

log2 δ
.(3.1)

Letting Pξ denote probabilities with respect to a Brownian motion started at the
point ξ /∈ Dx , we have, in general,

Pξ (H(Dx)) 
 log ε log |ξ − x|
log2 δ

.(3.2)

The probabilities for double points simultaneously occurring in two balls are given
as follows. When |x − y| ≥ ε,

P
(
H(Dx) ∩ H(Dy)

) 
 | log |x − y|| · log2 ε

log4 δ
.(3.3)

When |x − y| < ε,

P
(
H(Dx) ∩ H(Dy)

) 
 | log ε| · log2 |x − y|
log4 δ

.(3.4)

PROOF. Let τ be the hitting time on Dx . For H(Dx) to occur, it is necessary
that τ < ∞ and that the Brownian motion hit Dx after time τ + ε2. Denoting this
event by G, use the Markov property at time τ and τ + ε2 and average over the
position at time τ + ε2 to see that

P(G) 
 1

| log δ|
log ε

log δ
.
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On the other hand, conditioning on the position at time τ and at the return time
to Dx , it is easy to bound P(H(Dx) | G) away from zero, since this is the proba-
bility that a Brownian path and a Brownian bridge, each started on the boundary
of a ball of radius δ and run for time greater than δ2, intersect inside the ball. This
establishes (3.1). When starting at a point ξ near x instead of at the point (1,0), the
probability of the event {τ < ∞} is log |ξ − x|/ log δ rather than 1/| log δ|, which
gives the estimate in (3.2).

To establish the other two estimates, we consider possible sequences of visits,
two to each ball, with the correct time separations. Let H1(x, y) denote the event
that there exist times 0 < r < r + ε2 ≤ s < t < t + ε2 ≤ u < τ∗ such that Br ∈ Dx ,
Bs ∈ Dx , Bt ∈ Dy and Bu ∈ Dy . Let H2(x, y) denote the event that there exist
times 0 < r < s < t < u < τ∗ such that r + ε2 ≤ t, s + ε2 ≤ u, Br ∈ Dx , Bs ∈ Dy ,
Bt ∈ Dx and Bu ∈ Dy . Let H3(x, y) denote the event that there exist times 0 < r <

s < s + ε2 ≤ t < u < τ∗ such that Br ∈ Dx , Bs ∈ Dy , Bt ∈ Dy and Bu ∈ Dx . The
estimate

P
(
H(Dx) ∩ H(Dy)

) 
 P(H1(x, y)) + P(H2(x, y)) + P(H3(x, y))(3.5)

follows from the same considerations: that for j = 1,2,3, P(H(Dx) ∩ H(Dy) |
Hj(x, y)) is bounded away from zero; that the same holds when x and y are
switched; that P(Hj (x, y)) 
 P(Hj (y, x)); and that H(Dx)∩H(Dy) entails either
Hj(x, y) or Hj(y, x) for some j . The estimates (3.3) and (3.4) will then follow
from

P(H1(x, y)) 
 | log |x − y|| · log2 ε

log4 δ
,(3.6)

P(H3(x, y)) 
 log2 |x − y| · | log ε|
log4 δ

,(3.7)

P(H2(x, y)) = O
(
P(H1(x, y)) + P(H3(x, y))

)
.(3.8)

The Markov property gives a direct estimate of P(H1(x, y)). In particular, we
may take r to be the hitting time of Dx , s to be the next time after r + ε2 that Dx is
hit, and so forth. The probability of hitting Dx is 
 1/| log δ|. Given that Br ∈ Dx ,
the probability that Bs ∈ Dx for some s ≥ r + ε2 is 
 | log ε|/| log δ|. Given that,
the probability of subsequently hitting Dy is 
 | log |x−y||/| log δ|, and given such
a hit at time t , the probability of Bu ∈ Dy for some u ≥ t + ε2 is 
 | log ε|/| log δ|.
Multiplying these together produces the estimate (3.6). Similarly, P(H3(x, y)) is
the product of four factors, respectively comparable to 1/| log δ|, log |x −y|/ log δ,
log ε/ log δ and log |x − y|/ log δ, proving (3.7).

In the case |x−y| ≥ ε, the bound P(H2(x, y)) = O(
log3 |x−y|

log4 δ
) is good enough to

imply (3.8) and follows in the same manner from the Markov property at the hitting
time of Dx , the next hit of Dy , the next hit of Dx and the next hit on Dy . In the



PROBABILITY OF INTERSECTING BROWNIAN DOUBLE POINTS 2051

case |x − y| ≤ ε, define an event H ′
2 ⊆ H2 by additionally requiring t ≥ s + ε2/2.

Let H ′′
2 = H2 \ H ′

2. The Markov property gives

P(H ′
2) = O

(
1

| log δ|
log |x − y|

log δ

log ε

log δ

log |x − y|
log δ

)

 P(H3).(3.9)

Finally, to estimate P(H ′′
2 ), observe that H ′′

2 entails both s ≥ r + ε2/2 and u ≥
t + ε2/2. The Markov property then gives

P(H ′′
2 ) = O

(
1

| log δ|
log ε

log δ

log |x − y|
log δ

log ε

log δ

)

 P(H1)(3.10)

and adding (3.9) to (3.10) establishes (3.8) and the lemma. �

3.1. Proof of the first inequality of Theorem 2.2. The first inequality follows
from Lemma 3.1 by standard methods. We give the details, since it is a little un-
usual to discretize space in only part of the argument (composing the set A of lat-
tice squares, but not discretizing the double point process itself). For the remainder
of the argument, ε and A are fixed.

Let µ be any probability measure on A; we need to show that P(H(A)) ≥
cEhε (µ)−1. The closed set A may be written as a decreasing intersection over
finer and finer grids of finite unions of lattice squares. According to (1.2), we may
therefore assume that A is a finite union of lattice squares of width δ < ε. Index the
rows and columns of the grid, and let B denote the subcollection of squares where
both coordinates are even. Let B ′ denote the collection of inscribed disks of B.
Then some translation B ′′ of B ′ has µ-measure at least 1/8 (since space may be
covered by 8 translates of the set of disks centered at points with both coordinates
even). Define a random variable

X := ∑
S∈B′′

log2 δ

| log ε|µ(S)1H(S).

By the first estimate in Lemma 3.1, the expectation of each (log2 δ/| log ε|)1H(S)

is bounded above and below by some constants c1 and c2. Thus, c1/8 ≤ EX ≤ c2.
The second moment of X is computed as

EX2 = log4 δ

log2 ε

∑
S,T ∈B′′

µ(S)µ(T )E1H(S)∩H(T ).(3.11)

By estimates (3.3) and (3.4) of Lemma 3.1, when S �= T ,

E
log4 δ

log2 ε
1H(S)∩H(T )(3.12)

is bounded between constant multiples of hε(|x − y|), where x and y are the
centers of S and T . Since S and T are separated by δ, this is bounded between
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c3hε(|x − y|) and c4hε(|x − y|) for any x ∈ S and y ∈ T . Thus, letting U denote
the union of B ′′, the sum of the off-diagonal terms of (3.11) is estimated by

c3

∫
hε(x, y)1|x−y|>δ dµ(x) dµ(y) ≤ log4 δ

log2 ε

∑
S,T ∈B′′

µ(S)µ(T )1H(S)∩H(T )1S �=T

≤ c4

∫
hε(x, y)1|x−y|>δ dµ(x) dµ(y).

The diagonal terms sum to exactly EX, so we see that

EX2 ≤ EX + c4Ehε (µ).

The second moment inequality P(X > 0) ≥ (EX)2/EX2 now implies that

P(X > 0) ≥ c2
1

64(c2 + c4Ehε (µ))
.

Since X > 0 implies the existence of an ε-separated double point in A, we have
proved the first inequality with c = c3

1/(64(8c2 + c1c4)).

3.2. Proof of the second inequality of Theorem 2.2. The following two propo-
sitions represent most of the work in finishing the proof of Theorem 2.2.

PROPOSITION 3.2. If A has diameter at most ε, then

P(Dε ∩ A �= ∅) 
 | log ε|P(I ∩ A �= ∅).

PROPOSITION 3.3 (Capacity criterion for I). For any A in the 1
3 -unit disk,

P(I ∩ A �= ∅) 
 Caplog2(A).

The second of these two propositions is proved in Peres [5] but also follows from
the methods of Fitzsimmons and Salisbury [3] if one upgrades to a quantitative
estimate by observing that the Green kernel is comparable to the Martin kernel
(see Benjamini, Pemantle and Peres [1]).

The ≥-half of Proposition 3.2 follows from Proposition 3.3 and the first in-
equality in Theorem 2.2. Specifically, on a set of diameter at most ε, we have
hε(x, y) = log2 |x − y|/| log ε|, and therefore,

P(Dε ∩ A �= ∅) ≥ c Capε(A) (first half of Theorem 2.2)

= c| log ε|Caplog2(A)


 | log ε|P(I ∩ A �= ∅) (Proposition 3.3).

Among the two propositions, what is left to prove is the ≤-half of Proposition 3.2,
namely,

P(Dε ∩ A �= ∅) ≤ c| log ε|P(I ∩ A �= ∅).(3.13)

To prove this, the following corollary of Proposition 3.3 will be useful.



PROBABILITY OF INTERSECTING BROWNIAN DOUBLE POINTS 2053

COROLLARY 3.4. Let A be a subset of the disk of radius ε/2 centered at the
origin. Let σ and σ̃ denote the respective hitting times of Bt and B̃t on the circle
{|x| = 2ε}. Let z denote the point (ε,0) and let

p = Pz,z(A ∩ B[0, σ ] ∩ B̃[0, σ̃ ] �= ∅),

p′ = Pz,z(A ∩ B[0, τ∗] ∩ B̃[0, τ̃∗] �= ∅)

be the probabilities of two independent Brownian motions starting at (ε,0) inter-
secting in A when stopped at {|x| = 2ε} or {|x| = 3} respectively. Then

p′ 
 (p · log2 ε) ∧ 1

and, consequently,

P(I ∩ A �= ∅) 
 p ∧ 1

log2 ε
.

PROOF. If |x|, |y| ≤ ε/2, then the Green function for Brownian motion
stopped when it exits the disk of radius R satisfying

GR(x, y) 
 log
R

|x − y|(3.14)

uniformly in R for R ≥ 2ε. This follows, for instance, from GR(0, y) = log(R/|y|)
by applying a bi-Lipshitz map. Applying (3.14) to R = 2ε gives

M2ε(x, y) = G2ε(x, y)

G2ε(z, y)

 log(2ε/|x − y|)

log(2ε/|z − y|) 
 log
2ε

|x − y| .

Applying (3.14) to R = 3 then gives

M3(x, y) 
 log(3/|x − y|)
log(3/|z − y|)


 log(2ε/|x − y|) + log(3/(2ε))

log(3/ε)


 1 + M2(x, y)

| log ε| .

It follows that CapM2
3


 1 ∧ (log2 ε · CapM2
2ε

). The first assertion of the corollary
follows from this, and the second from the first and conditioning both Brownian
motions to hit D2ε . �

PROOF OF THE ≤-HALF OF PROPOSITION 3.2. For z = (ε,0), we will show
that

Pz(Dε ∩ A �= ∅) ≤ cp log2 ε ∧ 1.(3.15)
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This suffices, since, by the Markov property,

P(Dε ∩ A �= ∅) 
 1

| log ε|Pz(Dε ∩ A �= ∅)

≤ (cp| log ε|) ∧ 1

| log ε| [consequence of (3.15)]


 c| log ε|P(I ∩ A �= ∅) (by Corollary 3.4),

establishing (3.13) and the proposition.
To prove (3.15), let σ1 < τ1 < σ2 < τ2 · · · be the alternating sequence of hitting

times of ∂Dε and ∂D2ε:

σn+1 = inf{t > τn : |Bt | = ε}
and

τn+1 = inf{t > σn+1 : |Bt | = 2ε}.
We call the path segments {Bs :σj ≤ s ≤ τj } sojourns. The left-hand side of (3.15)
is bounded above by the sum∑

i,j≥1

P(σi ≤ τ∗, σj ≤ τ∗,B[σi, τi] ∩ B[σj , τj ] ∩ A �= ∅)(3.16)

of probabilities that sojourns i and j exist and intersect inside A. Since

P(τ∗ < σn+1 | Fτn) = log 2

log(3/ε)

 1

| log ε| ,

the Markov property shows that the number of sojourns is geometrically distrib-
uted with mean log(3/ε)/ log 2 
 1/| log ε|. For distinct sojourns, the Harnack
principle again implies that the probability of their intersecting in A is at most
a constant multiple of p, and this is still true when conditioned on the number of
sojourns. The expected number of pairs of sojourns is estimated by log2 ε, hence,
we have a contribution of O(p · log2 ε) to the right-hand side of (3.16) from terms
with i �= j .

To finish, we need to estimate the probability of an ε-separated intersection in
A within a single sojourn. For 0 ≤ i ≤ j − 2, let Gij denote the event

{Br = Bs ∈ S ∩A for some r ∈ [iε2/2, (i +1)ε2/2] and s ∈ [jε2/2, (j +1)ε2/2]}.
Let tj = (j − 1

2) ε2

2 and let σ be the hitting time of {|x| = 2ε}. We apply the Markov
property at time σn to estimate the summand in (3.16) with i = j = n, then sum
over n. This bounds the contributions to (3.16) from off-diagonal terms by∑

n

Pz(σn < τ∗)
∑
i<j

PB(σn)(Gij , tj < σ).
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The sum over n is O(| log ε|) and the sum over 0 ≤ i < j of PB(σn)(tj < σ) is
O(1) (e.g., this is at most the sum of j times the probability that {|x| = 2ε} is not
hit by time jε2/2, which is at most the expected square of the time for a Brownian
motion to reach {|x| = 4}). We will be done, therefore, when we have shown that

sup
0≤i≤j−2,|z|=ε

Pz(Gij | Ftj ) ≤ cp(3.17)

on the event {tj < σ } (actually, an upper bound of cp| log ε| would suffice).
This is more or less obvious from the Markov property, but we go ahead

and spell out the details. Let ωi denote the ith sub-sojourn defined by ωi(s) =
ω(s + iε2/2) for 0 ≤ s ≤ ε2/2. Let µij denote the conditional law of ωi under Pz

given Ftj and µ denote the Pz-law of ω on the interval [ε2/2, ε2]. The quantity
p is estimated by the probability of two independent draws from µ intersecting
inside A; conditioning on Ftj makes ωi and ωj independent, so (3.17) follows if
we can show that

dµij

dµ
≤ C1tj<σ(3.18)

when 0 ≤ i ≤ j − 2 or i = j . For i = j , µjj and µ are Wiener measure from
starting points with comparable densities. For 1 ≤ i ≤ j − 2, we use the Markov
property to write

µij =
∫

µ
xy

ε2/21H dπij (x, y),

µ =
∫

µ
xy

ε2/2 dπ(x, y),

where µ
xy
t is the law of a Brownian bridge from x to y in time t , H is the event that

the path remains inside the ball of radius 2ε, and πij and π are mixing measures.
By Bayes’ rule and the Markov property,

πi,j (x, y)

π(x, y)
= 1

Z
µx,y(H)µzx

iε2/2(H)µ
y,B(tj )

(tj−i−1)ε2/2(H),

where Z is the normalizing constant gotten by integrating the product of the three
probabilities on the right-hand side against π(x, y). The probabilities are all at
most 1, so all we need is that Z is at least c > 0. By Brownian scaling, we see that
the three probabilities are at least a constant when |x|, |y| < ε and, since π gives
positive measure to this set, the verification for 1 ≤ i ≤ j − 2 is complete. Finally,
for i = 0, we compare to µ′ instead of µ, where µ′ is the Pz-law of ω on [0, ε2/2].
This establishes (3.17) and, hence, (3.15) and the remainder of Proposition 3.2.

�

PROOF OF THE SECOND INEQUALITY IN THEOREM 2.2. Let

τ = τε = inf{t :Bt ∈ A and Bs = Bt for some s ≤ t − ε2}
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be the first time that a point of A is hit by the Brownian motion and has previously
been hit at a time at least ε2 in the past; thus, P(τ ≤ τ∗) = P(Dε ∩ A �= ∅). The
second inequality in Theorem 2.2 is equivalent to the existence of a measure ν

on A whose mass is equal to P(τ < τ∗) and whose energy is at most a constant
multiple of this [normalizing ν to be a probability measure gives an energy of
CP(Dε ∩ A �= ∅)−1, thereby witnessing the inequality].

To construct ν, partition the plane into a grid of squares of side ε/3. For each
square S in the grid, let νS be a probability measure of minimal log2-energy on
S ∩ A. By Proposition 3.3,

Ehε (νS) = 1

| log ε|Elog2(νS) ≤ CP(I ∩ S ∩ A �= ∅)−1

and so by Proposition 3.2, for a different constant,

Ehε (νS) ≤ CP(Dε ∩ S ∩ A �= ∅)−1.(3.19)

Let

ν := ∑
S

P(Bτ ∈ S, τ < τ∗)νS.

Clearly, we have constructed ν so that ‖ν‖ = P(τ < τ∗). It remains to show that
Ehε (ν) ≤ cP(τ < τ∗). We will tally separately the contributions to the energy from
pairs (x, y) at distances at least ε and at most ε, showing∫

hε(x, y)1|x−y|≥ε dν(x) dν(y) ≤ C‖ν‖(3.20)

and ∫
hε(x, y)1|x−y|≤ε dν(x) dν(y) ≤ C‖ν‖.(3.21)

For the bound (3.20) on the first piece, observe that points separated by ε are
in nonadjacent squares S and S′, and that the value of h at any x ∈ S and y ∈ S′
is estimated by the | log |x∗ − y∗|| for any x∗ ∈ S, y∗ ∈ S′. Therefore, on the event
{Bτ ∈ S}, we may replace x ∈ S by Bτ to obtain∫

hε(x, y)1|x−y|≥ε dν(x) dν(y)

≤ C
∑
S′

P(Bτ ∈ S′, τ < τ∗)

×
∫

dνS′(y)

[ ∑
S not adjacent to S′

E(1Bτ ∈S,τ<τ∗ | log |Bτ − y||)
]

≤ ‖ν‖ sup
y

V (y),
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where

V (y) = E(| log |Bτ − y||1G)

is the logarithmic potential at y of the subprobability law of Bτ restricted to the
event G := {τ < τ∗, |Bτ − y| ≥ ε)}.

To see that V (y) is bounded, fix y and observe that the probability that Dε

intersects the δ-ball Dy is at least equal to the probability that it does so after
time τ has been reached. Throwing away those paths where Bτ is within ε of y,
we have, by the Markov property and (3.2),

P(Dε ∩ Dy �= ∅) ≥ cE
log ε log |X − y|

log2 δ
1G.

On the other hand, by (3.1),

P(Dε ∩ Dy �= ∅) 
 | log ε|
log2 δ

.

It follows that E| log |X − y||1G ≤ c−1, which is the desired bound on the first
piece.

For the bound (3.21) on the second piece, begin with the well known trick of
reducing to the diagonal:∫

hε(x, y)1|x−y|≤ε dν(x) dν(y) ≤ C
∑
S

P(Bτ ∈ S, τ < τ∗)2Ehε (νS).(3.22)

One way to see this is to observe that, while |x − y| ≤ ε and x ∈ S does not force
y ∈ S, it does force y to be in one of 49 nearby squares. The function log2 |x −
y|/| log ε| is positive definite, so one may use the Cauchy–Schwarz inequality to
conclude (3.22). In fact, (3.22) holds when hε is not positive definite but only
assumed to be monotone; see Pemantle and Peres [4], equation 11 for details.

Finally, since P(Bτ ∈ S, τ < τ∗) ≤ P(Dε ∩ S ∩A �= ∅), we see from (3.19) that

P(Bτ ∈ S, τ < τ∗)2Ehε (νS) ≤ CP(Bτ ∈ S, τ < τ∗).

Summing over S bounds the right-hand side of (3.22) by P(τ < τ∗) = ‖ν‖, estab-
lishing (3.21) and finishing the proof of Theorem 2.2. �

4. Proof of Theorem 2.4. There are two obvious choices for the set A2. The
first is the set P of points x such that a Brownian motion started at x and run
for any positive time almost surely has a double point in A. Call such a point an
immediate point. The second choice would be the set R of regular points of A
with respect to the potential of the least-energy measure for the kernel K(x,y) =
log2 |x − y|. [A regular point x for the potential

∫
K(x,y) dν(y) of a measure ν is

one where the potential reaches its maximum value.] If P = R, then Theorem 2.4
has a very short proof:
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Let A2 = P = R. It is well known (see Proposition 4.3 below) that the nonregular
points A1 := A\R must have zero K-capacity, and thus, using the intersection criterion
from Fitzsimmons and Salisbury [3], cannot intersect D . This is property (1) required
by the theorem. But property (2) in the Theorem is satisfied by definition of P , noting
that by what we just proved, having a double point in A is the same as having a double
point in A2.

Embarrassingly, we do not know whether R = P . We can, however, establish
something close, namely, Lemma 4.1, which will be enough to prove the theorem.
The apparent obstacle to proving the equality of P and R is their different nature:
P is defined probabilistically and the definition is inherently local, while R is
defined analytically and its definition is at first glance nonlocal. Accordingly, we
define an analytic version of P and a localized version of R as follows.

Fix the closed set A and let ξ be a point of A. Let f be any decreasing continu-
ous function from R

+ to R
+ going to infinity at 0, and let Mξ denote the f -Martin

kernel at ξ :

Mξ(x, y) := f (|x − y|)
f (|ξ − y|) .

We say that A has nonvanishing local Martin capacity (NLMC) at ξ if and only if

lim
ε→0

CapMξ
(A ∩ {y : |y − ξ | < ε}) > 0.

Let P ′ denote the set of points with NLMC. The relation to P will be clarified
shortly.

Call a point ξ ∈ A strongly regular if and only if the f -capacity of A ∩ {y :
|y − ξ | < ε} is nonzero for every ε, and ξ is a regular point for the potential of the
least f -energy measure on each such set. Let R′ denote the set of strongly regular
points.

LEMMA 4.1 (Strongly regular implies NLMC for any gauge). For any A and
f as above, the inclusion R′ ⊆ P ′ holds.

PROOF. Fix ξ ∈ R′. Given any ball D containing ξ , let νD denote the measure
minimizing the f -energy and let 
D denote its potential:


D(x) =
∫

f (|x − y|) dνD(y).

By assumption, 
D(ξ) is equal to the maximum value of 
D . It is well known
that the maximum value is attained on a set of full measure; standard references
such as Carleson [2] state unnecessary assumptions on f , so we include the proof
(Proposition 4.3 below). It follows that

Ef (νD) = 
D(ξ).
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Define a new measure ρD , which is a probability measure, by

dρD

dνD

(y) = f (|ξ − y|)

D(ξ)

.

The potential of this new measure with respect to the Martin kernel Mξ at a point x

is computed to be

1


D(ξ)

∫
Mξ(x, y)f (|ξ − y|) dνD(y) = 1


D(ξ)

∫
f (|x − y|) dνD(y) = 
D(x)


D(ξ)
.

Since ξ is regular for 
D , this is at most 1. Since the Martin potential is bounded
by 1, the Martin energy EMξ (νD) of the probability measure νD is also at most 1,
and we see that each ball D has Martin capacity at least 1. �

LEMMA 4.2 (NLMC points are immediate). Let the closed set A have nonva-
nishing local Martin capacity at ξ for the log2 Martin gauge

Mξ(x, y) := log2 |x − y|/ log2 |ξ − y|.
Then ξ is an immediate point.

REMARK. We first remark that if � is the range of a transient Markov process
with Green function G and Mξ is the Martin kernel for the process started at ξ ,
then the implication holds in both directions: the set A has nonvanishing local
Mξ -capacity near ξ if and only if the process started from ξ almost surely inter-
sects A in any positive time interval. This follows from the methods of Benjamini,
Pemantle and Peres [1].

The set of double points is not the range of a Markov process, which makes
proving a reverse implication tricky, but the direction in the lemma may still be
obtained by applying the method of second moments. Recall that H(�,ε) denotes
the event that there is a double point in the set � with an ε2 time separation.

PROOF OF LEMMA 4.2. Begin by observing it is enough to show

Pξ (D ∩ A �= ∅) ≥ c CapMξ
(A).(4.1)

For, under the hypothesis of NLMC, this implies that

inf
ε>0

Pξ [H(A ∩ {y : |y − ξ | < ε}, ε)] > 0.

By Fatou’s lemma,

Pξ

[
lim sup

ε→0
H(A ∩ {y : |y − ξ | < ε}, ε)

]
> 0,

whence, with positive probability, D intersects A in a set with ξ as a limit point.
Since

Pξ (|Bt − ξ | < ε for some t > s) → 0
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as ε → 0 for any fixed s, it follows that a Brownian motion run from ξ for an arbi-
trarily short time has a double point in A with probability bounded away from zero.
By Blumenthal’s zero–one law, this probability must be 1, so ξ is an immediate
point.

We will prove something slightly stronger than (4.1), replacing D in (4.1) by a
subset akin to Dε but where the value of ε depends on the distance to the point ξ :

D∗ = {x :Bs = Bt for some s, t < τ with |x − ξ |2 ≤ t − s ≤ |x − ξ |}.
(Recall we stop at the time τ that the Brownian motion exits a disk of radius 3.)
Let H∗(S) denote the event that D∗ has nonempty intersection with S, and let Sx

denote the disk of radius δ|x − ξ | centered at x. The relevant two-point correlation
estimate we will prove is, for |x − ξ | ≤ |y − ξ |,

Pξ [H∗(Sx) ∩ H∗(Sy)]
Pξ (H∗(Sx))Pξ (H∗(Sy))

≤ CMξ(x, y).(4.2)

Assuming this, the proof is finished in the same manner as the proof of the lower
bound in Theorem 2.2, as follows.

Let µ be any probability measure on A. Fix 1/4 > δ > 0, which will later be
sent to zero. According to (1.2), we may assume A to be a finite disjoint union of
squares of a lattice which has been subdivided so that squares at distance r from ξ

have sides between δr and 3δr ; the Whitney decomposition of the complement of
ξ forms such a subdivision. This contains the union of disks {Sx :x ∈ B} and, as
before, we may choose B so no two disks are closer to each other than the radius
of the smaller disk, while the union of the disks still has measure at least cµ(A).
Define

X := ∑
x∈B

1

P(H∗(Sx))
µ(Sx)1H∗(Sx).

Then EX ≥ c and by (4.2),

EX2 ≤ 2C
∑

Sx,Sy

µ(Sx)µ(Sy)Mξ(x, y).

Here, instead of counting each pair twice, we have summed over (x, y) for which
|x − ξ | ≤ |y − ξ | and then doubled. As in (3.12), for x′ ∈ Sx and y′ ∈ Sy , we have
Mξ(x

′, y′) 
 Mξ(x, y), so we may apply the second moment method to obtain

P(H∗(A)) ≥ (EX)2

EX2 ≥ c2(
c + 2E(µ)

)−1
.

This is uniform in δ, so sending δ to zero proves (4.1). It remains to prove (4.2).
Given x and y and δ ≤ 1/4, observe that when |x −ξ | < |y −ξ |2, then Pξ makes

H∗(Sx) and H∗(Sy) independent up to a constant factor which is independent of δ.
To see this, compute the probabilities of hitting in various orders to find that the
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dominant term comes from hitting Sx twice before the Brownian motion reaches a
disk of radius |y − ξ |/2; after this, the conditional probability of H∗(Sy) is only a
constant multiple of the unconditional probability. Independence up to a constant
factor means a two-point correlation function bounded by a constant, whence (4.2)
is satisfied.

In the complementary case, the ratio of log |x − ξ | to log |y − ξ | is bounded,
so we may again compute the two-point correlation function as in the proof of
Theorem 2.2. Recall from (3.2) of Lemma 3.1 that using Pξ instead of P boosts
the individual probabilities of H(Dx) by a factor of | log |x − ξ ||. The same holds
for H∗(Sx). Thus,

Pξ (H∗(Sx)) 
 log2 |x − ξ |
log2(δ|x − ξ |) .

The probability of H∗(Sx) ∩ H∗(Sy) is again computed by summing the probabil-
ities of various scenarios, the likeliest of which (up to a constant factor) is a hit
on Sx , then on Sy , then a time separation of at least |x − ξ |2, then another hit on
Sx and then on Sy . Multiplying this out gives

log |x − ξ |
log(δ|x − ξ |) · log |x − y|

log(δ|y − ξ |) · log |x − ξ |
log(δ|x − ξ |) · log |x − y|

log(δ|y − ξ |) ,
which results in the estimate (4.2). �

For completeness’ sake, as mentioned above, we repeat here the standard argu-
ment to show that the complement of the strongly regular points is a set of zero
capacity.

PROPOSITION 4.3 (Rc has zero capacity in any gauge). The set Rc of non-
regular points of a set A for the minimizing measure with respect to any continuous
gauge f has zero f -capacity (and, in particular, has zero minimizing measure). It
follows from countable additivity that Capf (R′)c = 0 as well.

PROOF. Assume to the contrary that A \ R has positive capacity. Let ν be
a minimizing probability measure on A for Ef . Then for some δ, the set {y ∈
A :
ν(y) < (1 − δ)E(ν)} has positive capacity, where 
ν(y) := ∫

f (x, y) dν(x)

is the f -potential of ν at y. Fix such a δ and let µ be a probability measure
supported on this set with Ef (µ) < ∞. For ε ∈ (0,1), consider the measure
ρε := (1 − ε)ν + εµ. Its energy is given by

(1 − ε)2Ef (ν) + ε2Ef (µ) + 2ε(1 − ε)

∫ ∫
f (x, y) dµ(x)dν(y).

The double integral is equal to
∫


ν(x) dµ(x) and since this is at most (1 −
δ)Ef (ν) on the support of µ, the energy of ρε is bounded above by

[(1 − ε)2 + 2ε(1 − ε)(1 − δ)]Ef (ν) + ε2Ef (µ).
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Write this as Ef (ν)(1 − 2εδ + ε2Q), where Q = Ef (µ)/Ef (ν)+ 2δ − 1 < ∞, and
take the derivative at ε = 0 to see that Ef (ρε) < Ef (ν) for small positive ε. This
contradicts the minimality of Ef (ν) and proves the proposition. �

Finally, we complete the proof of the decomposition as follows. Let A2 be the
set of strongly regular points of A. We have just seen that A1 := A \ A2 has zero
capacity in the gauge log2 |x − y|. By Fitzsimmons and Salisbury [3], this implies
that A1 is almost surely disjoint from the set of Brownian double points, which is
property (1).

On the other hand, by Lemma 4.1, A has NLMC at each point of A2, and by
Lemma 4.2, all such points are immediate for A. Using the fact that A1 has no
double points again, we conclude that property (2) in the statement of Theorem 2.4
is satisfied.
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