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ERGODIC THEORY FOR SDEs WITH EXTRINSIC MEMORY1

BY M. HAIRER AND A. OHASHI

University of Warwick and Universidade Estadual de Campinas

We develop a theory of ergodicity for a class of random dynamical sys-
tems where the driving noise is not white. The two main tools of our analysis
are the strong Feller property and topological irreducibility, introduced in this
work for a class of non-Markovian systems. They allow us to obtain a criteria
for ergodicity which is similar in nature to the Doob–Khas’minskii theorem.

The second part of this article shows how it is possible to apply these
results to the case of stochastic differential equations driven by fractional
Brownian motion. It follows that under a nondegeneracy condition on the
noise, such equations admit a unique adapted stationary solution.

1. Introduction. Ergodic properties of Markovian systems have been inten-
sively studied, especially in the context of stochastic differential equations (hence-
forth abbreviated as SDEs). Many authors have been studying the problem of
ergodicity for Markovian systems induced by finite- and infinite-dimensional sto-
chastic equations driven by a Brownian motion. A good summary of the current
state of research in this area can be found in the monographs [4, 8, 13]. The as-
ymptotic behavior of processes driven by a noise with nontrivial time correlations
seems to be much less well understood, although substantial progress has been
made in the framework of the theory of random dynamical systems [2]. However,
framework takes a rather “deterministic” approach and is mainly suitable for the
study of the random equivalent of the objects from the theory of ordinary dynam-
ical systems. A natural question is whether one can take a more “probabilistic”
approach and obtain statements that are similar in spirit and in scope to the ones
obtained in the Markovian case. This is the program that we start to carry out in
this work. Our main goal is to obtain a criterion for the existence and uniqueness
of an “invariant measure” (in a sense to be made precise) that are comparable in
scope to the existing criteria for Markov processes.

More precisely, we are interested in providing a generalization of the widely
used result attributed to Doob and Khas’minskii which states that a Markov
process which is strong Feller and topologically irreducible can have at most one
invariant measure (see, e.g., [4], Proposition 4.1.1 and Theorem 4.2.1). The obvi-
ous question that arises is how to formulate a useful generalization of the strong
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Feller property in non-Markovian situations. This question will be answered, to
a certain extent, in the framework of “stochastic dynamical systems” (SDS) de-
veloped in [7]. Roughly speaking, an SDS is simply a random dynamical system
which is reformulated in such a way that one sees how new randomness comes
into the system as time evolves. One characteristic of this point-of-view is that it
automatically discards invariant measures that are not measurable with respect to
the past; see [2] for this terminology. Note that this is actually a desirable feature if
one wishes to obtain a natural generalization of the concept of “invariant measure”
from the theory of Markov processes. For example, in the case of a diffusion on the
circle with a nontrivial drift, the theory of Markov processes yields the existence
of a unique invariant measure. The theory of random dynamical systems, on the
other hand, yields two distinct invariant measures, but one of them is measurable
with respect to the future and corresponds to an unstable random fixed point. Even
though such invariant measures correspond to stationary solutions of the corre-
sponding SDE, they are “unphysical” in the sense that they can only be realized
by preparing the initial condition in a state that depends on the whole future of the
driving noise. The main result of this first, “abstract,” part of the present article is
Theorem 3.10 below.

As a test of the relevance of our criteria, we then show that it can be applied
to the case of SDEs driven by fractional Brownian motion (fBm). The choice of
fractional noise as driving noise (rather than, e.g., an Ornstein–Uhlenbeck process)
is motivated by the following arguments:

1. one cannot reduce it to a Markovian situation without adding infinitely many
degrees of freedom;

2. it presents long range correlations and therefore does not reduce to white noise
in the limit of large time rescalings;

3. it is very well studied, so that many a priori estimates are available in the exist-
ing literature;

4. it appears naturally as the only continuous scale-invariant Gaussian process.

This article should be considered as a sequel to the work [7], where SDEs driven
by additive fractional noise were considered. In this situation, a coupling argu-
ment allowed it to be shown that such SDEs possess a unique invariant measure
under quite general conditions. Unfortunately, this argument presented two major
drawbacks. First, it was very difficult to follow and hard to analyze because of
the long-range correlations of the driving noise. Second, the coupling construction
used the additivity of the noise in an essential way, making the argument unsuitable
to the study of equations driven by multiplicative noise.

In this work, we consider equations driven by nondegenerate multiplicative
noise, that is, we study the SDE

dxt = f (xt ) dt + σ(xt ) dBH (t), x(0) = x0 ∈ Rd,(1.1)
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where f : Rd → Rd , σ : Rd → Md×d (where Md×d denotes the space of d × d

matrices) and BH is a d-dimensional fractional Brownian motion with Hurst pa-
rameter H . In other words, it is a centered d-dimensional Gaussian process with
continuous sample paths, BH(0) = 0 and covariance

E
(
Bi

H (t) − Bi
H (s)

)(
B

j
H (t) − B

j
H (s)

) = δij |t − s|2H

for t, s ∈ R and i, j = 1, . . . , d . We will assume throughout this work that H is
strictly greater than 1/2 so that the integral appearing in the right-hand side of (1.1)
may be considered pathwise as a Riemann–Stieltjes integral. We believe that this
restriction could be weakened by considering noise spaces of “rough path” type
(see, e.g., [6, 12]), but this would raise additional difficulties that we do not wish to
address here. A pair (x,BH ) of continuous stochastic processes is called a solution
to (1.1) if BH is a fBm and the integrated form of (1.1) holds almost surely for all
times. We call such a solution adapted if for every t , x(t) and {BH(s)}s≥t are
conditionally independent, given {BH(s)}s≤t .

In order to ensure the global existence of solutions and in order to have some
control over it, we make, for most of this paper, the following assumptions on the
coefficients f and σ .

(H1) Regularity: Both f and σ are C∞. Furthermore, the diffusion coefficient
σ and the derivatives of f and σ are globally bounded:

sup
x∈Rd

(|σ(x)| + |Df (x)| + |Dσ(x)| < ∞)
.(1.2)

(H2) Nondegeneracy: σ(x) ∈ Md×d is invertible and supx∈Rd |σ−1(x)| < ∞.
(H3) Dissipativity: There exists C > 0 such that

〈f (x), x〉 ≤ C(1 − ‖x‖2) ∀x ∈ Rd .

The main result of this paper is the following.

THEOREM 1.1. If the coefficients of the SDE (1.1) satisfy assumptions
(H1)–(H3), then it has exactly one adapted stationary solution.

The remainder of this paper is organized in the following way. After fixing the
notation and recalling some results from [7] in Section 2, we formulate and state
the main abstract result in Section 3. Section 4 is devoted to ensuring that the
abstract framework constructed in Section 2 can be applied to the SDE (1.1). It
also provides the a priori bounds required to ensure the existence of an invariant
measure for such systems. We then spend most of Section 5 proving that the gen-
eralization of the strong Feller property formulated in Section 3 does indeed hold
for (1.1). This allows us to obtain Theorem 1.1 as a simple corollary.
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2. Preliminaries. In this section, we fix the basic notation that we use in
this paper and recall some basic definitions and results from [7]. Given a product
space X × Y, we denote by �X and �Y the projections on X and Y, respec-
tively. Also, given two measurable spaces E and F , a measurable map f :E → F
and a measure µ on E , we define the measure f ∗µ on F in the natural way by
f ∗µ = µ ◦ f −1. We denote by δx the usual delta measure located at x ∈ X. We
also denote by M1(X) and M+(X) the set of probability measures and positive
finite measures on X, respectively. We endow both sets with the topology of weak
convergence. If X is a Polish space, then we denote by C([0, T ],X) the space of
continuous functions f : [0, T ] → X. We endow this space with the usual topology
of uniform convergence.

We first define the structure of the class of noise processes that we are going to
work with.

DEFINITION 2.1. A quadruple (W , {Pt }t≥0,Pω, {θt }t≥0) is called a station-
ary noise process if it satisfies the following:

(i) W is a Polish space;
(ii) Pt is a Feller transition semigroup on W which accepts Pω as its unique

invariant measure;
(iii) the family {θt }t>0 is a semiflow of measurable maps on W satisfying the

property θ∗
t Pt (x, ·) = δx for every x ∈ W and every t > 0.

The following definition is taken from [7] and provides the general framework
in which we are going to address the question of ergodicity.

DEFINITION 2.2. A continuous stochastic dynamical system (SDS) on the
Polish space X over the stationary noise process (W , {Pt }t≥0,Pω, {θt }t≥0) is a
map

� : R+ × X × W → X, (t, x,w) �→ �t(x,w),

with the following properties.

(i) Regularity of paths: For every T > 0, x ∈ X and w ∈ W , the map
�T (x,w) : [0, T ] → X defined by

�T (x,w)(t) = �t(x, θT −tw)

belongs to C([0, T ],X).
(ii) Continuous dependence: The map (x,w) �→ �T (x,w) is continuous from

X × W to C([0, T ],X) for every T > 0.
(iii) Cocycle property: The family of maps �t satisfies

�0(x,w) = x,
(2.1)

�s+t (x,w) = �s(�t(x, θsw),w),

for all s, t > 0, all x ∈ X and all w ∈ W .
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Given an SDS as in Definition 2.2 and an initial condition x0 ∈ X, we now
show how to use it to construct in a natural way an X-valued stochastic process
with initial condition x0. First, given t ≥ 0 and (x,w) ∈ X × W , we construct a
probability measure Qt (x,w; ·) on X × W by

Qt (x,w;A × B) =
∫
B

δ�t (x,w′)(A)Pt (w, dw′),(2.2)

where δx denotes the delta measure located at x, A is a measurable subset of X and
B is a measurable subset of W . One can show [7], Lemma 2.12, that the family of
measures Qt (x,w; ·) actually forms a Feller transition semigroup on X × W and
if a probability measure µ on X × W satisfies �∗

Wµ = Pω, then �∗
WQtµ = Pω

for all t > 0. This suggests the following definition.

DEFINITION 2.3. Let � be an SDS as above. Then a probability measure µ

on X×W is called a generalized initial condition for � if �∗
Wµ = Pω. We denote

by M� the space of generalized initial conditions endowed with the topology of
weak convergence. Elements of M� of the form µ = δx × Pω for some x ∈ X will
be called initial conditions.

Given a generalized initial condition µ, we construct a stochastic process
(xt ,wt ) on X × W by drawing its initial condition according to µ and then evolv-
ing it according to the transition semigroup Qt . The marginal xt of this process on
X will be called the process generated by � for µ. We will denote by Q̄µ the law
of this process [i.e., Q̄µ is a measure on C(R+,X)].

DEFINITION 2.4. Two generalized initial conditions µ and ν of an SDS �

are equivalent if the processes generated by µ and ν are equal in law. In short,
µ ∼ ν ⇔ Q̄µ = Q̄ν.

We say that a generalized initial condition µ is invariant for the SDS � if it is
invariant for the Markov transition semigroup Qt generated by �. Similarly, we
call it ergodic if it is ergodic for Qt , that is, if the law of the stationary Markov
process on X × W with transition probabilities Qt and fixed-time marginal µ is
ergodic for the shift map.

The following remark turns out to be very useful for the approach taken in this
work.

LEMMA 2.5. The map Q̄ preserves ergodicity in the sense that if µ ∈ M�

is an ergodic invariant measure for the SDS �, then Q̄µ is an ergodic invariant
measure for the shift map on C(R+,X).

PROOF. This is an immediate consequence of the general fact that if T and T̃

are two measurable transformations on measure spaces E and Ẽ and there exists a
measurable map f :E → Ẽ such that f ◦T = T̃ ◦f , then if a measure µ is ergodic
for T , f ∗µ is ergodic for T̃ . �
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REMARK 2.6. As a consequence of the above result, if µ,ν ∈ M� are two
ergodic invariant measures for the semigroup Qt , then either Q̄µ = Q̄ν or Q̄µ and
Q̄ν are mutually singular.

3. An abstract ergodicity result. The main motivation of this section is pro-
vided by the following well-known facts from the theory of Markov processes.
Recall that a Markov process on a Polish space X with transition probabilities P̄t

is called topologically irreducible at time t if P̄t (x,A) > 0 for every x ∈ X and
every open set A ⊂ X. We call it simply topologically irreducible if there exists
such a time.

It is called strong Feller at time t if P̄tψ is continuous for every bounded mea-
surable function ψ :X → R. Here, we abused notation and again used the symbol
P̄t to denote the corresponding semigroup acting on observables. It is immedi-
ate that the strong Feller property is equivalent to the continuity of the function
x �→ P̄t (x, ·) if the space of probability measures on X is equipped with the
topology of strong convergence. A standard result often attributed to Doob and
Khas’minskii states the following.

THEOREM 3.1 (Doob–Khas’minskii). If a Markov process on a Polish space
X with transition probabilities P̄t is topologically irreducible and strong Feller,
then it can have at most one invariant probability measure.

In this section we introduce the strong Feller property and irreducibility in the
abstract framework of SDS as laid out in the previous section. As already pointed
out in [9], the strong Feller property as stated above is actually not easily amenable
to generalization, mainly because the topology of strong convergence of measures
is not metrizable. Instead of generalizing the notion of continuity of the transition
probabilities in the topology of strong convergence, we will thus follow the ap-
proach laid out in [9] and provide a generalization of the notion of continuity in
the total variation topology.

In this section, we consider, as before, a general SDS � on a Polish space
X with stationary noise process (W , {Pt }t≥0,Pω, {θt }t≥0). Remember that we
introduced a linear map Q̄ from M1(X × W) into M1(C(R+,X)) constructed
as the law of the process on X with a given initial condition. Denoting by
Rt :C(R+,X) → C([t,∞),X) the natural restriction map, we define the sets

N t
W = {

(w, w̃) ∈ W2|R∗
t Q̄δ(x,w) ∼ R∗

t Q̄δ(x,w̃) ∀x ∈ X
}
,

N t
X = {

(x, y,w) ∈ X2 × W |R∗
t Q̄δ(x,w) �⊥ R∗

t Q̄δ(y,w)

}
,

N t = {(x, y,w, w̃) ∈ X2 × W2|(w, w̃) ∈ N t
W and (x, y,w) ∈ N t

X}.
Here and in the sequel, we write µ ∼ ν to denote that two measures µ and ν

are mutually absolutely continuous and µ ⊥ ν to denote that they are mutually
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singular. We will also use the notation µ ≤ ν as a shorthand for “µ(A) ≤ ν(A) for
every measurable set A.”

Note that, beside the symmetries obvious from the definitions, the set N t has
the property

(x, y,w, w̃) ∈ N t → (x, y, w̃,w) ∈ N t .

Note, also, that in the Markovian case, Q̄δ(x,w) is independent of w, so N t
W = W2

and N t can be considered as a subset of X2 for every t > 0.
Recall that a coupling between two measures µ and ν on a space X is a measure

π on X2 such that π(A×X) = µ(A) and π(X×A) = ν(A) for every measurable
set A ⊂ X. In the same spirit, we will say that π is a subcoupling for µ and ν if
π(A × X) ≤ µ(A) and π(X × A) ≤ ν(A).

Consider the map

�̂t :X2 × W2 → X2 × W2,

defined as �̂t (x, y,ω, ω̃) = (�t(x,ω),�t(y, ω̃),ω, ω̃) for (x, y) ∈ X2 and
(ω, ω̃) ∈ W2. We will abuse notation by also writing �̂(x, y) for the map from
W2 to X2 × W2 obtained by fixing the first two arguments.

With this notation in place, the abstract result laying the foundation for the
present work is the following.

THEOREM 3.2. Let �̂ be as above and assume that there exists a time t > 0
and a jointly measurable map

(x, y,w) �→ P
x,y
t (w, ·) ∈ M+(W2)

with the following properties:

1. the measure P
x,y
t (w, ·) is a subcoupling for Pt (w, ·) and Pt (w, ·) for every

(x, y,w) ∈ X2 × W ;
2. there exists s > 0 such that

(�̂t (x, y)∗P x,y
t (w, ·))(N s) > 0(3.1)

for every (x, y,w) ∈ X2 × W .

Then � can have at most one invariant measure (up to the equivalence relation of
Definition 2.4).

PROOF. Assume, by contradiction, that µ and ν are two distinct ergodic in-
variant measures for the SDS � such that Q̄µ �= Q̄ν. We claim that there exist
nonzero positive measures µ̃, ν̃ and ν̄ on W × X such that

R∗
s Q̄µ ≥ R∗

s Q̄µ̃ �⊥ R∗
s Q̄ν̄ ∼ R∗

s Q̄ν̃ ≤ R∗
s Q̄ν.

If we are able to construct such measures, it follows immediately that R∗
s Q̄µ and

R∗
s Q̄ν are not mutually singular, thus leading to a contradiction, by Lemma 2.5.
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Let us consider the finite measure �̂t (x, y)∗P x,y
t (w, ·) on W1 × W2 × X1 × X2,

where (W1,W2) and (X1,X2) denote two copies of W and X, respectively. By
assumption, there exist times s > 0 and t > 0 such that

(�̂t (x, y)∗P x,y
t (w, ·))(N s) > 0

for every (x, y,w) ∈ X2 × W . This shows that the measure θ(µ,ν) on N s defined
by

θ(µ,ν)(A) :=
∫
W

∫
X2

(�̂t (x, y)∗P x,y
t (w, ·))(A ∩ N s)µ(ω,dx)ν(ω, dy)Pw(dω),

is not identically 0. Here, µ(ω, ·) and ν(ω, ·) are the disintegrations of µ and
ν with respect to Pw . By using the hypothesis that P

x,y
t (w, ·) is a subcoupling

for Pt (w, ·) and Pt (w, ·) for every (x, y,w) ∈ X2 × W , it follows immediately
from the invariance of µ and ν that µ̃ := �∗

W1×X1
θ(µ,ν) and ν̃ := �∗

W2×X2
θ(µ,ν)

are smaller than µ and ν, respectively. Let us now consider the measure ν̄ :=
�∗

W1×X2
θ(µ,ν) on W × X. The definitions of ν̄ and ν̃ yield

R∗
s Q̄ν̄ =

∫
N s

R∗
s Q̄δ(y,ω)θ

(µ,ν)(dx, dy, dω,dω̃),

R∗
s Q̄ν̃ =

∫
N s

R∗
s Q̄δ(y,ω̃)θ

(µ,ν)(dx, dy, dω,dω̃).

Since (ω, ω̃) ∈ N s
W , it follows that R∗

s Q̄ν̄ ∼ R∗
s Q̄ν̃.

It remains to prove that R∗
s Q̄µ̃ �⊥ R∗

s Q̄ν̄. To see this, we observe that ϒ :=
�∗

W µ̃ = �∗
W ν̄ and therefore, by the triangle inequality and the fact that the mea-

sures µ̃ and ν̄ give full measure to N s , one has the inequality

‖R∗
s Q̄µ̃ − R∗

s Q̄ν̄‖TV

≤
∫
W

∫
X2

∥∥R∗
s Q̄δ(x,ω) − R∗

s Q̄δ(y,ω)

∥∥
TVµ̃(ω, dx)ν̄(ω, dy)ϒ(dω)

< 2ϒ(W) = ‖R∗
s Q̄µ̃‖TV + ‖R∗

s Q̄ν̄‖TV,

where µ̃(ω, ·) and ν̄(ω, ·) are disintegrations of µ̃ and ν̄, respectively, with re-
spect to ϒ . The strict inequality from the first to the second line is an imme-
diate consequence of the fact that the integral can be restricted to N s

X with-
out changing its value. The claim R∗

s Q̄µ̃ �⊥ R∗
s Q̄ν̄ is then a consequence of the

fact that if µ and ν are any two positive measures, then µ ⊥ ν if and only if
‖µ − ν‖TV = ‖µ‖TV + ‖ν‖TV.

Finally, note that since µ̃ ≤ µ and ν̃ ≤ ν by definition, we have R∗
s Q̄µ̃ ≤ R∗

s Q̄µ

and R∗
s Q̄ν̃ ≤ R∗

s Q̄ν. This completes the proof of the theorem. �

The conditions of Theorem 3.2 do not appear to be easily verifiable at first sight.
The remainder of this section is devoted to providing useful characterizations on
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the dynamics generated by an SDS � on the state space X which give sufficient
conditions for the assumptions in Theorem 3.2 to hold. It turns out that such prop-
erties are analogous to the strong Feller property and topological irreducibility in
the Markovian setting.

DEFINITION 3.3. An SDS � is said to be strong Feller at time t if there exists
a jointly continuous function � :X2 × W → R+ such that∥∥R∗

t Q̄δ(x,ω) − R∗
t Q̄δ(y,ω)

∥∥
TV ≤ �(x, y,ω)(3.2)

and �(x, x,ω) = 0 for every x ∈ X and every ω ∈ W .

REMARK 3.4. If the process is Markov in X, then the total variation distance
between R∗

t Q̄δ(x,ω) and R∗
t Q̄δ(y,ω) is equal to the total variation distance between

the transition probabilities at time t starting from x and y, respectively. Therefore,
Definition 3.3 reduces in this case to the statement “the transition probabilites at
time t are continuous in the total variation topology.” This implies the usual strong
Feller property but is not equivalent to it. However, it can be shown that if a Markov
semigroup is strong Feller at time t , then the corresponding transition probabilities
at time 2t are continuous in the total variation topology. This implies that for our
purpose (where we are only interested behavior at large times anyway), Defini-
tion 3.3 is equivalent to the usual strong Feller property in the Markovian case.

DEFINITION 3.5. An SDS � is said to be topologically irreducible at time
t if for every x ∈ X, ω ∈ W and every nonempty open set U ⊂ X, one has
Qt (x,ω;W × U) > 0.

REMARK 3.6. Since the dynamics which we are interested in take place in
the state space X, we do not generally require that the underlying Markov process
generated by the semigroup Qt be irreducible in the usual sense. In fact, the above
definition is much weaker than irreducibility of the Markov semigroup Qt .

In the sequel, we will use the following notation. If µ is a finite measure on a
measurable space (Y,B(Y )) and O ∈ B(Y ), then we write µ|O(A) := µ(A ∩ O)

for A ∈ B(Y ). Next, we introduce a class of SDS which plays an important role in
the theory.

DEFINITION 3.7. An SDS � is said to be quasi-Markovian if for any two
open sets V,U in W and for every t, s > 0, there exists a measurable map ω �→
P V,U

s (ω, ·) ∈ M+(W2) such that:

(i) the measure P V,U
s (ω, ·) is a subcoupling for Ps(ω, ·)|V and Ps(ω, ·)|U for

every ω ∈ W ,
(ii) one has P V,U

s (ω;N t
W ) > 0 for every ω such that min{Ps(ω;V ),

Ps(ω;U)} > 0.
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REMARK 3.8. The terminology quasi-Markovian is motivated by the follow-
ing fact. The process on X generated by the SDS � is a Markov process in its
own filtration precisely if Q̄δ(x,ω) is independent of ω. In this case, N t

W = W2 for
every t > 0 and one can simply choose P V,U

s (ω; ·) = Ps(ω; ·)|V × Ps(ω; ·)|U in
the definition above so that � is also quasi-Markovian.

REMARK 3.9. Definition 3.7 depends very weakly on the choice of the
SDS �. It is weak in the sense that it does not take into account the fine de-
tails of the dynamics of �, but only how the noise enters the system. For example,
we will show below that the solution to any SDE driven by fBm is always quasi-
Markovian, without any restriction on the coefficients of the equation (1.1) other
than what is required to obtain a well-posed SDS.

The last result of this section, which is the main abstract result of the present
work, combines these definitions into a general criterion for an SDS to have a
unique invariant measure. It is the analogue in our non-Markovian setting of The-
orem 3.1 for Markovian systems.

THEOREM 3.10. If there exist times s > 0 and t > 0 such that, a quasi-
Markovian SDS � is strong Feller at time t and irreducible at time s, then satisfies
the assumption of Theorem 3.2. In particular, it can have at most one invariant
measure.

PROOF. Since W is Polish, there exists a countable dense subset {wn}n≥0 and
a metric dW generating the topology of W . Given this, we denote by {Vn}n≥0 the
countable collection of open balls with 1/2k and center wm for all pairs of positive
integers k and m. We also choose a metric dX on X. We will henceforth denote by
BX

ρ (x) ⊂ X the open ball of radius ρ centered at x and similarly by BW
ρ (w) ⊂ W

the open balls in W .
In order to verify the assumptions of Theorem 3.2, our aim is to find a measur-

able function

(x, y,w) �→ (nx, ny)(3.3)

and to define

P x,y
s (ω, ·) = P

Vnx ,Vny
s (ω, ·),(3.4)

where the right-hand side uses the family of subcouplings from Definition 3.7.
Note, first, that it is possible to construct a measurable function f :W → W

with the property that f (ω) ∈ suppPs(ω, ·) for every ω ∈ W . One way of con-
structing it is to define

n1(ω) = inf{n|Ps(ω,BW
1 (wn)) > 0}
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and then, recursively,

nk(ω) = inf
{
n|Ps(ω,BW

2−k (wn)) > 0 and wn ∈ B21−k

(
wnk−1(ω)

)}
.

It follows from the density of the wk that nk(ω) < ∞ for every k and every ω.
It follows from the construction that the sequence wnk(ω) is Cauchy for every
ω ∈ W , so we can then set f (w) = limk→∞ wnk(ω). Since, by construction,
Ps(ω,BW

ρ (f (ω))) > 0 for every ρ > 0, the function f indeed has the required
properties.

Define the map x̃ :X × W → W by

x̃(x,ω) = �s(x,f (ω)),

as well as the measurable map r :X × W → W by

r(x,ω) = sup{ρ|�(x′, x̃(x,ω),ω′) ≤ 1/4 for all (x′,ω′) ∈ Bρ(x,ω)},(3.5)

where we use Bρ(x,ω) as shorthand for BX
ρ (x̃(x,ω)) × BW

ρ (f (ω)). Since the
function � in Definition 3.3 is jointly continuous and vanishes on the diagonal, one
has r(x,ω) > 0 for every x ∈ X and every ω ∈ W .

Given these objects, we are now in a position to define nx and ny . Consider
(x, y,ω) to be given and set ρ = r(x,ω), ω̃ = f (ω) and x̃ = �s(x, ω̃). We set

nx = inf{n|Vn ⊂ BW
ρ (ω̃), ω̃ ∈ Vn and �s(x,Vn) ⊂ BX

ρ (x̃)},
(3.6)

ny = inf{m|Ps(ω,Vm) > 0 and �s(y,Vm) ⊂ BX
ρ (x̃)}.

Since one has �s(x, ω̃) = x̃ by definition, it follows from the continuity of �s and
the definition of the Vn that nx is finite for every possible value of x and ω. The fact
that ny is finite for every possible value of x, y and ω follows from the topological
irreducibility of �. This shows that P

x,y
s (ω, ·) as given by (3.4) and (3.6) is a map

satisfying the first assumption of Theorem 3.2.
It remains to show that (3.1) also holds. Since ω̃ ∈ Vnx , one has Ps(ω,Vnx ) > 0.

Furthermore Ps(ω,Vny ) > 0, by construction, so P
x,y
s (ω,N t

W ) > 0. It follows
from the definition of ρ that one has∥∥R∗

t Q̄δ(x̄,w) − R∗
t Q̄δ(ȳ,w)

∥∥
TV ≤ 1

2

for every (x̄, ȳ) ∈ BX
ρ (x̃)2 and every w ∈ Vnx . It follows immediately from the

definition of N W
t that

R∗
t Q̄δ(x̄,wx) �⊥ R∗

t Q̄δ(ȳ,wy)(3.7)

for every (x̄, ȳ) as above, every wx ∈ Vnx , and every wy such that (wx,wy) ∈ N W
t .

Since one has �(x,ωx) ∈ BX
ρ (x̃) and �(y,ωy) ∈ BX

ρ (x̃) for every (ωx,ωy) ∈
Vnx × Vny , (3.1) is now a consequence of (3.7) and of condition (ii) in Defini-
tion 3.7. �

The remainder of this article is devoted to showing that it is possible to associate
an SDS to (1.1) in such a way that the assumptions of Theorem 3.10 are satisfied.
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4. Construction of the SDS. In this section, we construct a continuous SDS
induced by the SDE (1.1) in the sense that for every generalized initial condition µ,
the probability measure Q̄µ on the path space is an adapted solution to (1.1). This
will then allow us to investigate ergodic properties of the SDE (1.1) according to
the program laid out in the Introduction.

In this work, we will make use of the well-known Mandelbrot–Van Ness rep-
resentation of the fBm [14]. The advantage of this representation is it is invari-
ant under time-shifts, so it is natural for the study of ergodic properties. We may
represent the two-sided fBm BH with Hurst parameter H ∈ (0,1) in terms of a
two-sided Brownian motion B as

BH(t) = αH

∫ 0

−∞
(−r)H−1/2(

dB(r + t) − dB(r)
)

(4.1)

for some αH > 0 (see [21] for more details).

4.1. Noise space and the stationary noise process. The aim of this section is
to define the stationary noise process which will be used to investigate ergodic
properties of the SDE (1.1) as laid out in Section 3. The main step is to consider a
suitable Polish space in such a way that:

(1) there exists a Feller semigroup on the noise space which admits the frac-
tional Brownian motion measure as its unique invariant measure;

(2) the solution map of the SDE (1.1) is continuous with respect to both the
driving noise and initial conditions on Rd .

One should note that such properties are closely related to the topology given on
the noise space. In particular, if we consider white noise (or fractional noise with
H < 1/2), property (2) could not be realized on any conventional space of paths,
but one would have to work with rough paths instead [3].

The remainder of this section is devoted to choosing a topology which realizes
(1) and (2). At first, one should note that by the properties of the fBm, it is conve-
nient to work with Polish spaces defined by some norm which captures the Hölder
continuity on bounded intervals and, at the same time, gives some kind of regular-
ity at infinity. For this purpose, if γ ∈ (0,1) and δ ∈ (0,1), then we define W(γ,δ)

as the completion of C∞
0 (R−;R) with respect to the norm

‖ω‖γ,δ = sup
t,s∈R−

|ω(t) − ω(s)|
|t − s|γ (1 + |t | + |s|)δ .(4.2)

We write W̃(γ,δ) for the corresponding space containing functions on the positive
line instead of the negative one. We also write W(γ,δ),T and W̃(γ,δ),T when we
restrict the arguments to the intervals [−T ,0] and [0, T ], respectively. It should be
noted that ‖·‖γ,δ,T is equivalent to the Hölderian norm ‖·‖γ for every 0 < T < ∞.
Moreover, W(γ,δ) is a separable Banach space. The following lemma states that
there is a Wiener measure on W(γ,δ) for the fBm.
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LEMMA 4.1. Let H ∈ (1/2,1), γ ∈ (1/2,H) and γ + δ ∈ (H,1). There ex-
ists a Borel probability measure PH on W(γ,δ) such that the canonical process
associated to PH is a fractional Brownian motion with Hurst parameter H .

PROOF. One can show, as in [7], that the set of all continuous functions w with
‖w‖γ ′,δ′ < ∞ for some γ ′ > γ and some δ′ such that δ′ + γ ′ < δ + γ is contained
in W(γ,δ). The claim then follows from Kolmogorov’s criterion and the behavior
of fractional Brownian motion under time inversion. �

One can similarly show that the two-sided fractional Brownian motion can be
realized as the canonical process for some Borel measure P̃H on W(γ,δ) × W̃(γ,δ).

Consider now the operator A defined by

Aω(t) = βH

∫ ∞
0

1

r
g

(
t

r

)
ω(−r) dr,(4.3)

where g is given by

g(x) = xH−1/2 + (H − 3/2)x

∫ 1

0

(u + x)H−5/2

(1 − u)H−1/2 du

and βH = (H −1/2)αHα1−H . It is shown in Proposition A.2 below that A actually
defines a bounded linear operator from W(γ,δ) into W̃(γ,δ).

It will be convenient in the sequel to make use of fractional integration and
differentiation. For α ∈ (0,1), we define the fractional integration operator Iα and
the corresponding fractional differentiation operator Dα by

Iαf (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s) ds,

(4.4)

Dαf (t) = 1

�(1 − α)

d

dt

∫ t

0
(t − s)−αf (s) ds.

For a comprehensive survey of the properties of these operators, see [20]. The
most important property that we are going to use here is that Iα and Dα are each
other’s inverses. Furthermore, denoting by τh :w �→ w+h the shift map on W̃(γ,δ),
we have the following result.

LEMMA 4.2. Let H(w, ·) be the transition kernel from W(γ,δ) to W̃(γ,δ) given
by

H(w, ·) = (τAw ◦ IH−1/2)∗W,

where W is the Wiener measure over R+. Then H is the disintegration of P̃H with
respect to PH .
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PROOF. This is a lengthy, but straightforward, calculation, using the represen-
tation (4.1) for the fractional Brownian motion. �

We are now a in position to define our stationary noise process. For this, let us
consider the one-sided Wiener shift θt :W(γ,δ) → W(γ,δ) defined by

θtω(s) := ω(s − t) − ω(−t), s ∈ R−, t ∈ R+.(4.5)

In order to construct the transition semigroup on W(γ,δ), we also introduce the
“concatenation” function Mt :W(γ,δ) × W̃(γ,δ) → W(γ,δ) defined by

Mt(ω, ω̃)
def=

{
ω̃(s + t) − ω̃(t), if −t < s,

ω(s + t) − ω̃(t), if s ≤ −t ≤ 0.
(4.6)

With these definitions at hand, we set

Pt (ω, ·) := M∗
t (ω, ·)H(ω, ·) for ω ∈ W(γ,δ) and t ∈ R+.(4.7)

We are now in a position to state the following result.

LEMMA 4.3. The quadruple (W(γ,δ), {Pt },PH , {θt }) is a stationary noise
process.

PROOF. It is obvious from the definition that Mt is continuous from W(γ,δ) ×
W̃(γ,δ) to W(γ,δ). Moreover, the operator A is continuous from W(γ,δ) to W̃(γ,δ).
Therefore, we may conclude that Pt (ω, ·) is a Feller semigroup on W(γ,δ). The
fact that its only invariant measure is given by PH is a straightforward calculation.
All the other properties follow immediately from the definitions. �

4.2. Definition of the SDS and existence of an invariant measure. Recall that
we are concerned with the multidimensional SDE

Xt = X0 +
∫ t

0
f (Xs) ds +

∫ t

0
σ(Xs) dBH (t), 1/2 < H < 1,(4.8)

where the integral with respect to BH is a pathwise Riemann–Stieltjes integral.
This kind of equation has been studied by several authors (see, e.g., [3, 15, 18])
using different approaches, but we will mainly use the regularity results from [15].

Note that we actually need d independent fractional Brownian motions to
drive (4.8), so we consider d copies of the stationary noise process defined in
Lemma 4.3. With a slight abuse of notation, we again denote it by (W(γ,δ), {Pt},
PH , {θt }). We define the continuous shift operator RT :W(γ,δ) → W̃(γ,δ),T by
(RT h)(t) := h(t − T ) − h(−T ) and set

� : R+ × Rd × W(γ,δ) → Rd,(4.9)

defined by �t(x,ω) := �̂t (x,Rtω)(t), where �̂t : Rd × W̃t → C([0, t],Rd) is the
solution map of equation (1.1) which depends on the initial conditions and the
noise.
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PROPOSITION 4.4. Let � be the function defined in (4.9). Then � is a
stochastic dynamical system over the stationary noise process (W(γ,δ), {Pt },
PH , {θt }). Moreover, for every generalized initial condition µ, the process gen-
erated by � for µ is an adapted weak solution of the SDE (1.1).

PROOF. The regularity properties follow from [15], Theorem 5.1, and the fact
that ‖ · ‖γ,δ,T is equivalent to the Hölderian norm ‖ · ‖γ for every 0 < T < ∞. The
cocycle property is a direct consequence of the composition property of ODEs
since we are dealing with pathwise solutions. Furthermore, it is obvious from
Lemma 4.2 that every process generated by a generalized initial condition from
� is a weak solution of equation (4.8).

The adaptedness of the solution is a consequence of the construction since the
transition probabilities Pt of the noise process do not depend on the solution x.

�

To conclude this section, we study the problem of existence of the invariant
measure for equation (4.8). The main difficulty in proving it comes from the path-
wise stochastic integral. Suitable bounds on the stochastic integral, together with
a dissipativity assumption, are sufficient to ensure existence. More specifically, in
order to prove existence of the invariant measure, we make use of a Lyapunov
function in the following sense.

DEFINITION 4.5. We say that V : Rd → R+ is a Lyapunov function for � if
V −1([0,K]) is compact for every 0 ≤ K < ∞ and there exists a constant C and a
continuous function ξ : [0,1] → R+ with ξ(1) < 1 such that∫

V (x)Qtµ(dx, dw) ≤ C + ξ(t)

∫
V (x)µ(dx, dw)

for every t ∈ [0,1] and every generalized initial condition µ.

Note that this definition is slightly different from the one given in [7], but it
is straightforward to check that the Krylov–Bogoliubov criterion nevertheless ap-
plies, so the existence of a Lyapunov function ensures the existence of an invariant
measure.

PROPOSITION 4.6. Assume that the hypotheses (H1) and (H3) hold. Then for
every p ≥ 1, the map x �→ |x|p is a Lyapunov function for the SDS � defined
above. Consequently, there exists at least one invariant measure for equation (4.8)
and this invariant measure has moments of all orders.

PROOF. The proof follows closely the proof of [15], Proposition 5.1, but we
keep track on the dependence of the constants on the initial condition. Fix an ar-
bitrary initial condition x0 ∈ Rd and a realization BH of the fractional Brownian
motion with Hurst parameter H . We define xt and zt on t ∈ [0,1] by

dxt = f (xt ) dt + σ(xt ) dBH (t), dzt = f (zt ) dt,
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where the initial condition for xt is are given by x0 and the initial condition for zt

is also given by x0. We also define yt = xt − zt so that

yt =
∫ t

0

(
f (ys + zs) − f (zs)

)
ds +

∫ t

0
σ(ys + zs) dBH (s) =: Ft + Gt.

Fix two arbitrary values α ∈ (1 − H,1/2) and β ∈ (1 − α,H). Following [15], we
define, for t ∈ [0,1],

ht = |yt | +
∫ t

0

|yt − ys |
|t − s|α+1 ds

and verify that h satisfies the conditions of the fractional Gronwall lemma [15],
Lemma 7.6. Note, first, that the global Lipschitz continuity of f implies that

|Ft | +
∫ t

0

|Ft − Fs |
|t − s|α+1 ds ≤ C

∫ t

0
|ys |(t − s)−α ds.

Here and in the sequel, C denotes a generic constant depending only on α, β , f

and σ . In order to bound Gt , first note that since σ is bounded,

|σ(zs + ys) − σ(zr + yr)| ≤ C|zs − zr |β + C|ys − yr |.
Also, note that the dissipativity condition on f ensures that |zs − zr | ≤ C|s −
r|(1 + |x0|), so that

|σ(zs + ys) − σ(zr + yr)| ≤ C|s − r|β(1 + |x0|β) + C|ys − yr |.(4.10)

It follows, in the same way as in [15], Proposition 5.1, that

|Gt | ≤ C‖BH‖β

(∫ t

0

σ(zs + ys)

sα
ds +

∫ t

0

∫ t

0

|σ(zs + ys) − σ(zr + yr)|
|s − r|α+1 dr ds

)

≤ C‖BH‖β

(
1 + |x0|β +

∫ t

0

∫ t

0

|ys − yr |
|s − r|α+1 dr ds

)
.

One similarly obtains the bound∫ t

0

|Gt − Gs |
|t − s|α+1 ds ≤ C‖BH‖β

(
1 + |x0|β +

∫ t

0
(t − s)−α

∫ t

0

|ys − yr |
|s − r|α+1 dr ds

)
.

Combining all of the above yields for h that

|ht | ≤ C‖BH‖β

(
1 + |x0|β +

∫ t

0

(
1 + (t − s)−α)

hs ds

)

≤ C‖BH‖β

(
1 + |x0|β +

∫ t

0
(t − s)−αtαs−αhs ds

)
.

The fractional Gronwall lemma [15], Lemma 7.6, then implies that

|ht | ≤ C‖BH‖β(1 + |x0|β) exp
(
C‖BH‖1/(1−α)

β t
)
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for every t ∈ [0,1]. Furthermore, the dissipativity condition (H3) ensures the ex-
istence of γ > 0 such that |zt |p ≤ e−γ t |x0|p + C. Combining these bounds shows
that for every η > 0, there exists a constant C such that

|xt |p ≤ (1 + η)e−γ t |x0|p + C exp
(
C‖BH‖1/(1−α)

β t
)
.

Since ‖BH‖β is almost surely finite and BH is a Gaussian process, it has Gaussian
tails by Fernique’s theorem. This shows that there exists a constant C such that,
for every t ∈ [0,1], one has the bound∫

|x|p(Qtµ)(dx, dw) ≤ (1 + η)e−γ t
∫

|x|pµ(dx, dw) + C,

uniformly over all generalized initial conditions µ. Since η was arbitrary and
affects only the value of the constant C, one can choose it in such a way that
(1 + η)e−γ < 1, thus concluding the proof of Proposition 4.6. �

5. Uniqueness of the invariant measure. In order to simplify our notation,
we fix once and for all γ ∈ (1/2,H) and δ > 0 such that H < γ + δ < 1 and W
we denote by the noise space with these indices. We also use the shorthand W̃ for
W̃(γ,δ) and W̃T for W̃(γ,δ),T .

The main goal of this section is to prove that the strong Feller property defined in
Section 3 holds for the solutions to equation (4.8). This property, together with an
irreducibility argument, will then provide the uniqueness of the invariant measure
for our system. In the Markovian case, one efficient probabilistic tool to recover the
strong Feller property is the Bismut–Elworthy–Li formula [5]. The main feature of
this formula is that it provides bounds on the derivatives of a Markov semigroup
which are independent of the bounds on the derivatives of the test function. In
the non-Markovian case, one would expect to recover the strong Feller property
by using a similar idea. In the language of the present article, given a measurable
function ϕ :C([1,∞);Rd) → R, a Bismut–Elworthy–Li type formula would be an
expression for the derivative (in the x variable) of the function Q̄ϕ : Rd × W → R
defined by

Q̄ϕ(x,w) :=
∫
C([1,∞),Rd )

ϕ(z)R∗
1Q̄δ(x,w)(dz)(5.1)

that does not involve any derivative of ϕ.
The main technical difficulty one faces when trying to implement this program

is that it seems to be very hard to prove that the Jacobian J0,t of the flow has
bounded moments. We will overcome this by a cutoff procedure in Wiener space.
The price we have to pay is that we are not able to show that Q̄ϕ is differentiable
in x, but only that it is continuous in x for any given w ∈ W and that its modulus
of continuity can be bounded by a function of |x| and ‖w‖(γ,δ) only, uniformly
over ϕ, with ‖ϕ‖∞ ≤ 1. This is, however, sufficient for Definition 3.3 to apply.
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We will need some basic lemmas concerning the smoothness of the solutions
with respect to their initial conditions and with respect to the noise. We begin with
an elementary regularity result. For sake of completeness, we give the details here.
As in the previous section, we denote by

�̂t : Rd × W̃t → W̃t

the solution map for (1.1). (The fact that its image actually belongs to W̃t and
not only to C([0, t],Rd) is a consequence of Proposition 4.6 and of the regularity
results from [15].) The main regularity result used in this section is the following.

LEMMA 5.1. Assume that the coefficients of the SDE, σ and f , satisfy hy-
potheses (H1) and (H2). Then the map �̂T is differentiable in both of its argument
for each fixed T > 0.

Define the matrix-valued function Jt = (Dx�T (x, w̃))(t). Then Jt and its in-
verse J−1

t , respectively, satisfy the equations

Jt = I +
∫ t

0
Df (xs)Js ds +

d∑
k=1

∫ t

0
Dσk(xs)Js dw̃k(s),(5.2)

J−1
t = I −

∫ t

0
J−1

s Df (xs) ds −
d∑

k=1

∫ t

0
J−1

s Dσk(xs) dw̃k(s),(5.3)

where I is the d × d identity matrix and where xs is shorthand for (�T (x, w̃))(s).
Here and below, we also defined σk by (σk)i = σk,i .

For any given v ∈ W̃ , define the process Kv
t = (Dw̃�T (x, w̃)v)(t). Then Kv

t

satisfies

Kv
t =

∫ t

0
Df (xs)K

v
s ds +

d∑
k=1

∫ t

0
Dσk(xs)K

v
s dw̃k(s) +

∫ t

0
σ(xs) dv(s).(5.4)

In particular, defining Js,t = JtJ
−1
s , the equation

Kv
t =

∫ t

0
Js,tσ (xs) dv(s)

holds. Furthermore, for every bounded set A ⊂ Rd of initial conditions and every
C > 0, there exists K > 0 such that

‖�T (x, w̃)‖γ + ‖Dx�T (x, w̃)‖γ ≤ K

for every x ∈ A and every w̃ with ‖w̃‖γ ≤ C.

PROOF. We know that xt = (�T (x, w̃))(t) is the unique solution to the equa-
tion

xt = x +
∫ t

0
f (xs) ds +

∫ t

0
σ(xs) dw̃(s).
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We can write this in the form �T (x, w̃) = MT (x, w̃,�T (x, w̃)), where MT : Rd ×
W̃T × W̃T → W̃T is a continuously differentiable map in all of its arguments.

Therefore, the claim follows from the implicit function theorem if we can show
that the derivative of MT in its last argument is of norm strictly smaller than 1.
This is not true in general, but it holds for T sufficiently small. The result then
follows from the a priori bounds of Proposition 4.6, together with a standard gluing
argument; see also [16] for a more detailed proof.

The equation for J−1
t is an immediate consequence of the chain rule. The last

expression for Kv
t is a consequence of the variation of constants formula. �

As usual with probabilistic proofs of regularization properties, the main ingredi-
ent in the proof of the strong Feller property will be an integration by parts formula.
Since the point-of-view taken in most of this work is to study the solutions to (1.1)
conditioned on a realization of the past of the driving fBm, the natural Gaussian
space in which to perform this integration by parts will be the space W̃ endowed
with the Gaussian measure H(0, ·). Note that it follows from (4.1) and the defi-
nition of H that the law of the canonical process w under H(0, ·) is the same as
the law of IH−1/2w under the Wiener measure W. Given any function F on W̃ ,
we can thus associate to it a function F̃ = F ◦ IH−1/2 on Wiener space. Note,
also, that the reproducing kernel space KH of H(0, ·) is precisely equal to those
functions v such that DH−1/2v belongs to the reproducing kernel space K of W.
This allows us to carry over the whole formalism of Malliavin calculus [17].

Note that the properties of the fractional derivative and integral operators (4.4)
are such that the notion of “adaptedness” with respect to the canonical process
or the transformed process IH−1/2 agree, so a process Ft is adapted to the incre-
ments of the canonical process if and only if F̃t is adapted to the increments of
the canonical process. This allows us to speak of an adapted process in this setting
without any ambiguity. In particular, the Malliavin derivative DF with respect to
an adapted KH -valued process v can be defined in a natural way by the equality

〈DF,v〉 = 〈DF̃ ,DH−1/2ṽ〉 ◦ DH−1/2.

In particular, if F is Fréchet differentiable with Fréchet derivative DF , it is also
Malliavin differentiable and we have the equality

〈DF,v〉 = 〈DF,v〉,(5.5)

where KH is identified with a subspace of W̃ in the usual way.
The following bound is an immediate consequence of the integration by parts

formula from Malliavin calculus, together with the representation (4.1) of frac-
tional Brownian motion.

THEOREM 5.2. Let F,G : W̃ → R be Malliavin differentiable functions such
that FG, F‖DG‖KH

and G‖DF‖KH
are square integrable. Furthermore, let
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v : W̃ → K̃H be an adapted process such that ‖v‖KH
is square integrable. Then

one has the bound

|E(〈DF,v〉G)| ≤ (E‖v‖2
KH

)1/2(
(EF 2G2)1/2 + (EF 2‖DG‖2

KH
)1/2)

.(5.6)

In the assumptions and the conclusion, expectations are taken with respect
to H(0, ·).

PROOF. Since the assumptions ensure that both sides of (5.6) are finite, a stan-
dard density argument shows that it suffices to check (5.6) under the assumption
that F , G and v are in the space D∞ of Malliavin smooth functions with bounded
moments of all orders; see [17] for this notation.

Denoting by δ the adjoint of the derivative operator D in L2(W̃ ,H(0, ·)), we
then have

E〈DFG,v〉 = E(FGδv).

On the other hand, one has DFG = GDF + FDG, so

E(〈DF,v〉G) = E(FGδv) − E(〈DG,v〉F).

It now suffices to note that the adaptedness of v ensures that one can use the Itô
isometry to get E|δv|2 = E‖v‖2

KH
. �

This result allows us to show the following.

PROPOSITION 5.3. Assuming that (H1)–(H3) hold, the SDS constructed in
the previous section has the strong Feller property of Definition 3.3.

PROOF. Denote by W̃[1,T ] the restriction of functions in W̃ to the interval
[1, T ]. For every bounded measurable function ϕT : W̃[1,T ] → R, define Q̄ϕ : Rd ×
W → R by (5.1). The strong Feller property (3.2) follows if we can show that

|Q̄ϕT (x,w) − Q̄ϕT (y,w)| ≤ �(x, y,w),

uniformly over all T > 1 and all bounded Fréchet differentiable functions ϕ with
bounded Fréchet derivatives such that supX |ϕ(X)| ≤ 1.

Denoting by Ew for simplicity, expectations over W̃ with respect to the proba-
bility measure H(w, ·), we have

Q̄ϕT (x,w) = EwϕT (�̂T (x, w̃)).

Setting zs = sx + (1 − s)z and ξ = x − y, this yields

Q̄ϕT (y,w) − Q̄ϕT (x,w)
(5.7)

= Ew

∫ 1

0
〈DϕT (�̂T (zs, w̃)),Dx�̂T (zs, w̃)ξ〉ds.
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The problem at this point is that we do not have the a priori bounds on the Jacobian
Dx�̂T that would be required in order to exchange the order of integration. This
can, however, be overcome by the following cutoff procedure.

Note that we have the following result.

LEMMA 5.4. The maps NT : W̃ → R defined by

NT : w̃ �→ sup
s∨t≤T

|w̃(t) − w̃(s)|
|t − s|γ

belong to D2,1.

PROOF. Note that one actually has NT (w̃) = sups∨t≤T
w̃(t)−w̃(s)

|t−s|γ . The result
then follows from [17], Proposition 2.1.3, and the fact ([20], Theorem 3.1) that
IH−1/2 is bounded from H 1 to the space of γ -Hölder continuous functions. �

Now, let χ : R+ → [0,1] be a smooth function such that χ(r) = 0 for r ≥ 3,
χ(r) = 1 for r ≤ 1 and |χ ′(r)| ≤ 1 for every r . Then the cutoff functions
χR,R′ : w̃ �→ χ(N1(w̃)/R)χ(NT (w̃)/R′) all belong to D2,1 and one has the fol-
lowing, obvious, bound result.

LEMMA 5.5. There exists a constant C > 0 such that for every T > 1, there
exists R′

T such that the D2,1 norm of χR,R′ is bounded by C for every R and every
R′ ≥ R′

T .

Denoting by δQ̄ϕw
x,y (as short hand) the left-hand side of (5.7), we get the bound

|δQ̄ϕw
x,y | ≤ ∣∣Ew

(
(1 − χR,R′)(ϕT ◦ �̂T )(x, ·))∣∣

+ ∣∣Ew

(
(1 − χR,R′)(ϕT ◦ �̂T )(y, ·))∣∣

+
∣∣∣∣EwχR,R′(w̃)

∫ 1

0
〈DϕT (�̂T (zs, w̃)),Dx�̂T (zs, w̃)ξ〉ds

∣∣∣∣
def= T1 + T2 + T3.

Since ϕ is bounded by 1, the first two terms in this expression are both bounded by

T1 + T2 ≤ 2H
(
w, {w̃|N1(w̃) > R or NT (w̃) > R′}).(5.8)

Concerning the last term, we can now use Lemma 5.1 to exchange the order of
integration and obtain

T3 =
∣∣∣∣
∫ 1

0
Ew(χR,R′(w̃)〈DϕT (�̂T (zs, w̃)),Dx�̂T (zs, w̃)ξ〉) ds

∣∣∣∣.
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At this point, we use exactly the same trick as in the proof of the Bismut–Elworthy–
Li formula [5] to transform the derivative with respect to x into a Malliavin deriva-
tive with respect to the noise process w̃. Let h : [0,1] → R be any smooth function
with supph ⊂ (0,1) and

∫ 1
0 h(s) ds = 1 and set

vx(t) =
∫ t

0
h(s)σ−1(xs)Jsξ ds,

where xs and Js are as in Lemma 5.1. It then follows from Lemma 5.1 that one has
Kv

t = Jtξ for every t ≥ 1. Therefore,

(Dx�T (x, w̃)ξ)(t) = (Dw�T (x, w̃)vx)(t)

for every t ≥ 1.
Since, on the other hand we assumed that ϕ does not depend on the solution of

the SDE up to time 1, this implies, by (5.5), that

T3 =
∣∣∣∣
∫ 1

0
Ew(χR,R′(w̃)〈D(ϕT ◦ �T )(zs, ·), vzs 〉) ds

∣∣∣∣.(5.9)

Note, now, that it follows from Lemma 5.1 that d
dt

vz(t) is γ -Hölder continuous
with its norm bounded uniformly over z in a ball of radius 1 around x and over
N1(w̃) ≤ 3R. Since χR,R′ vanishes for N1(w̃) ≥ 3R, this shows that there exists a
constant C(R,x) depending on R and x, but not on R′, such that we can replace v

in (5.9) by v̂, defined by

v̂(t) =
∫ t

0

dv

ds
(s ∧ τ) ds,

where τ is the stopping time defined as the first time that ‖ d
dt

v|[0,τ ]‖γ is greater
or equal to C(R,x). This ensures that ‖ d

dt
v̂‖γ ≤ C(R,x) almost surely, while still

being adapted.
In order to apply Theorem 5.2, it thus suffices to note that the fact that

d
dt

v̂zs (t) = 0 for t ≥ 1 implies that there exists a constant C such that

‖v̂‖2
KH

=
∫ ∞

0
(DH+1/2v̂x(t))

2 dt ≤ C

∥∥∥∥ d

dt
v̂x

∥∥∥∥
γ

.

Again using the fact that ϕ is bounded by 1, we get, for T3, the bound

T3 ≤ C

∫ 1

0
Ew

(∥∥∥∥ d

dt
v̂zs

∥∥∥∥2

γ

)1/2(
1 + (Ew‖DχR,R′‖2)1/2)

ds

≤ C(R,x)‖x − y‖,
for all y with ‖y − x‖ ≤ 1. Here, we used Lemma 5.5 to obtain the last bound.
Note that this bound does not depend on R′ and T , provided that R′ is larger than
the value R′

0 found in Lemma 5.5. We can therefore let R′ go to ∞ and get

|δQ̄ϕw
x,y | ≤ 2H

(
w, {w̃|N1(w̃) > R}) + C(R,x)‖x − y‖
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for every y with ‖y − x‖ ≤ 1. Since both terms can be chosen to be continuous in
w, R, x and y and since the first term tends to 0 as R → ∞, the required bound
follows at once. �

REMARK 5.6. There is a direct relation between the integrability of
‖σ−1(xt )Jt ξ‖γ and the continuity of R∗

1Q̄δ(x,ω) in the total variation topology.
In fact, if ‖σ−1(xt )Jt ξ‖γ has second moments, then R∗

1Q̄δ(x,ω) is not only contin-
uous, but it is Lipschitz in Rd . In fact, one then has the following generalization of
the Bismut–Elworthy–Li formula:

DξQ̄ϕ(x,w) = Ew

(
(ϕ ◦ �)(x, ·)

∫ ∞
0

DH−1/2h(s)σ−1(xs)Jsξ dB(s)

)
,(5.10)

where B is the Brownian motion obtained from w̃ via B = DH−1/2w̃, Q̄ϕ is as
in (5.1) and h is a smooth function with support in [0,1] and which integrates to 1.
The main difficulty in getting good a priori bounds on the Jacobian comes from
the fact that the diffusion coefficient for the SDE satisfied by the Jacobian is not
globally bounded. One can check in [15] that, in general, the Jacobian has finite
moments in γ -Hölder spaces for some γ ∈ (1/2,H) if H > 3/4.

We conjecture that by using a Picard iteration, it should be possible to show
integrability for the Jacobian in the supremum norm by realizing the pathwise
Riemann–Stieltjes integral as a symmetric integral in the sense of Russo and Val-
lois [19]. In this case, there is a representation of the Riemann–Stieltjes integral
in terms of the Skorokhod integral plus a trace term involving the Gross–Sobolev
derivative; see [1] for more details. This may allow sufficient improvement of the
existing estimates to get (5.10) directly, without requiring any cutoff procedure.

REMARK 5.7. Between the completion of this article and its publication, Hu
and Nualart [10] announced bounds on the Jacobian for SDEs driven by fractional
Brownian motion with H > 1

2 .

5.1. Proof of the main result. Similar to the Markovian case, the strong Feller
property defined in Section 3 is not sufficient for uniqueness of invariant probabil-
ity measures in the framework of SDS. In addition to the strong Feller property, we
need an additional argument which provides the desired result of uniqueness. As
discussed in Section 3, this will be achieved by means of an irreducibility argument
jointly with the quasi-Markovian property for �. In general, irreducibility requires
some kind of nondegeneracy of the diffusion term. As far as the quasi-Markovian
property is concerned, it is a direct consequence of the properties of fractional
Brownian motion. We first show that under (H1)–(H3), the SDS constructed above
is topologically irreducible.

PROPOSITION 5.8. Assume that the SDE (4.8) satisfies assumptions (H1)
and (H2). Then the SDS � induced by the SDE is irreducible at time t = 1.
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PROOF. Since everything is continuous, the proof of this is much easier than
that of the original support theorem [22] and we can use the same argument as
in [11], for example. The invertibility of σ implies that the control system

ẋt = f (xt ) + σ(xt )u̇t , t ∈ [0,1], x0 ∈ Rd,

is exactly controllable for every x0. This shows that the solution map �1 : Rd ×
W̃ → Rd is surjective for every fixed value of the first argument. Since this map
is also continuous, the claim follows from the fact that the topological support of
H(w, ·) is all of W̃ (this is a consequence of the fact that it is a Gaussian measure
whose Cameron–Martin space contains C∞

0 and is thus a dense subspace of W̃ ).
�

In the sequel, we will use the following notation. If µ1 and µ2 are positive
measures with Radon–Nikodym derivatives D1 and D2, respectively, with respect
to some common reference measure µ, we define the measure µ1 ∧ µ2 by

(µ1 ∧ µ2)(dx) := min{D1(x),D2(x)}µ(dx).

Note that such a common measure µ can always be found (take µ = µ1 + µ2, for
example) and that the definition of µ1 ∧ µ2 does not depend on the choice of µ.

Next, we prove that the SDS � defined in (4.9) is quasi-Markovian over the
stationary noise process (W , {Pt }t≥0,PH , {θt }t≥0). The main technical estimate
that we need for this is the following.

LEMMA 5.9. Let A be the operator defined in Lemma 4.2. Then DH+1/2Ah ∈
L2(R+) for every h such that h′ ∈ C∞

0 (R−).

PROOF. Note that a simple change of variables yields, for Ah, the formula

(Ah)(t) =
∫ ∞

0

g(y)

y
h̄(t/y) dy,(5.11)

where we set h̄(t) = h(−t) for convenience. This shows, in particular, that Ah is
smooth. Therefore, we have, for DH+1/2Ah, the expression

DH+1/2Ah(t) =
∫ ∞

0

g(y)

yH+3/2 (DH−1/2h′)(t/y) dy.(5.12)

It follows immediately from the fact that h′ ∈ C∞
0 that there exists C such that

DH−1/2h′ is a smooth function bounded by C min{1, t−H−1/2}.
Therefore, one gets the bound

|DH+1/2Ah(t)| ≤ C

(
t−H−1/2

∫ t

0

g(y)

y
dy +

∫ ∞
t

g(y)

yH+3/2 dy

)
.

Using Lemma A.1, it is straightforward to get the bound

|DH+1/2Ah(t)| ≤ C min{t−1, t1/2−H },
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where the constant C depends on h. Since t−1 is square integrable at ∞ and t1/2−H

is square integrable at 0, this concludes the proof. �

An immediate corollary of this is the following.

COROLLARY 5.10. The set of pairs (w, w̃) such that w̃ − w ∈ C∞
0 (R−) is

contained in N t
W for every t > 0.

This eventually leads to the following result.

PROPOSITION 5.11. The SDS in (4.9) induced by the SDE (4.8) is quasi-
Markovian over the stationary noise process (W , {Pt }t≥0,PH , {θt }t≥0) defined in
Lemma 4.3.

PROOF. Let us fix two nonempty open sets U,V in W and two times, s, t > 0.
As in the proof of Theorem 3.10, it is straightforward to construct measurable maps
fU and fV from W to W with the property that fU(w) ∈ suppPs(w, ·)∩U for all
w such that Ps(w,U) > 0, and similarly for fV . Now, define a map w �→ ε(w) by

ε(w) = sup{ε > 0|B(fU(w), ε) ⊂ U and B(fV (w), ε) ⊂ V },
where we denote by B(w, r) the ball of radius r centered at w in W . Note that

ε(w) > 0 on A
def= {w|Ps(w,U) ∧ Ps(w,V ) > 0}.

Note, also, that the support of Ps(w, ·) consists precisely of those functions w̃

such that w̃(t) − w(t + s) is constant for t ≤ −s. Let h0(w) = fV (w) − fU(w)

so that h0(w) is a function in W which is constant for times prior to −s. We now
approximate h0 by a smooth function h with h′ ∈ C∞

0 . This can, for example, be
achieved by choosing two positive smooth functions ψ and ϕ such that ψ(t) = 0
for t /∈ [−2,−1] and

∫ −2
−1 ψ(t) dt = 0. Furthermore, ϕ : R− → [0,1] is chosen to

be decreasing and to satisfy ϕ(−2) = 1 and ϕ(−1) = 0. We then define

Kεh(t) = ϕ(t/ε)

∫ t−ε

t−2ε
h(r)ε−1ψ

(
(r − t)/ε

)
dr.

It is easy to check that Kεh0 converges to h0 strongly in W and that for every
ε > 0, the derivative of Kεh0 has support in [−s + ε,−ε]. We now define h(w) =
Kδ(w)h0(w), where

δ(w) = sup{δ > 0|‖Kδh0(w) − h0(w)‖ ≤ ε(w)/2}.
We thus constructed three measurable maps w �→ ε(w), w �→ fU(w), and w �→
h(w) such that, for every w ∈ A, the following properties hold:

fU(w) ∈ suppPs(w, ·) ∩ U,
(5.13a)

B
(
fU(w), ε(w)/2

) ⊂ U,

fU(w) + h(w) ∈ suppPs(w, ·) ∩ V,
(5.13b)

B
(
fU(w) + h(w), ε(w)/2

) ⊂ V.
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Now, consider the maps I1,I2 :W × W → W × W defined by

I1(w, w̃) = (
w̃, w̃ + h(w)

)
,

I2(w, w̃) = (
w̃ − h(w), w̃

)
.

With this notation, we define

P U,V
s (w, ·) = (I1(w, ·))∗Ps(w, ·)|U ∧ (I2(w, ·))∗Ps(w, ·)|V .(5.14)

It follows immediately from the definitions that P U,V
s (w, ·) is a subcoupling for

the measures Ps(w, ·)|U and Ps(w, ·)|V . Since h(w) has its derivative in C∞
0 ,

it is straightforward to check that it belongs to the reproducing kernel space of
Ps(w, ·), so (I1(w, ·))∗Ps(w, ·) and (I2(w, ·))∗Ps(w, ·) are mutually absolutely
continuous. This, together with (5.13), implies that P U,V

s (w, ·) > 0 for every
w ∈ A, as required.

The fact that P U,V
s (w,N t

W ) > 0 is then an immediate consequence of Corol-
lary 5.10. �

Combining all of these results, we can now prove the main “concrete” result of
this article.

THEOREM 5.12. Under (H1)–(H3), there exists exactly one invariant proba-
bility measure for the SDS constructed in Section 4.2.

PROOF. The existence of such an invariant measure is ensured by Propo-
sition 4.6. Its uniqueness follows from Theorem 3.10, combined with Proposi-
tions 5.3, 5.8 and 5.11. �

REMARK 5.13. Note that the solution to (1.1) obtained from the SDS con-
structed in Section 4.2 precisely coincide with the set of all adapted solutions
to (1.1). Therefore, Theorem 1.1 is an immediate consequence of Theorem 5.12.

APPENDIX

This section studies some of the properties of the operator A defined in (4.3).
We first obtain the following bound.

LEMMA A.1. Let g : R+ → R be the function defined in Lemma 4.2. We then
have g(x) = O(x) for x � 1 and g(x) = O(xH−1/2) for x � 1.

PROOF. Since g is smooth at every x > 0, we only need to check the result for
x � 1 and x � 1. The behavior of g(x) for x � 1 is straightforward since

xH−1/2 + (H − 3/2)xH−3/2 ≤ g(x) ≤ xH−1/2 ∀x ≥ 0.
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In order to treat the case x � 1, we rewrite g as

g(x) = C1x(1 + x)H−1/2 + C2x

∫ 1

0
(u + x)H−5/2(

1 − (1 − u)1/2−H )
du

for two constants C1 and C2. Note that for x � 1, the first term is O(x), so

|g(x)| ≤ Cx + Cx

∫ 1

0
uH−5/2(

1 − (1 − u)1/2−H )
du.

Now, note that (1 − (1 − u)1/2−H ) = O(u) for u ≈ 0 and that it diverges like
(1−u)1/2−H for u ≈ 1. Since, furthermore, H > 1/2, the function appearing under
the integral is integrable, so g(x) = O(x). �

This allows us to show the following.

PROPOSITION A.2. Let γ and δ be such that 1/2 < γ < H and H < δ +
γ < 1. Then the operator A is bounded from W(γ,δ) into W̃(γ,δ).

PROOF. Fix w ∈ W(γ,δ) with ‖w‖(γ,δ) ≤ 1 and consider two times s and t with
s < t . Using (5.11), we obtain

|Aw(t) − Aw(s)| ≤
∫ ∞

0

g(y)

y

|t − s|γ
yγ

(
1 + t

y

)δ

dy,

so the claim follows if we can show that∫ ∞
0

g(y)

y1+γ

(
1 + t

y

)δ

dy ≤ C(1 + t)δ.

The left-hand side of this expression is bounded by

2
∫ t

0

g(y)

y1+γ

tδ

yδ
dy + 2

∫ ∞
t

g(y)

y1+γ
dy ≤ 2tδ

∫ ∞
0

g(y)

y1+γ+δ
dy + 2

∫ ∞
0

g(y)

y1+γ
dy.

Now, note now that it follows immediately from Lemma A.1 that g(y)y−α is inte-
grable for every α ∈ (H + 1

2 ,2). This condition is satisfied for both α = 1 + γ and
α = 1 + γ + δ, so the claim follows. �
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