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Coalescents with multiple collisions, also known as �-coalescents, were
introduced by Pitman and Sagitov in 1999. These processes describe the evo-
lution of particles that undergo stochastic coagulation in such a way that sev-
eral blocks can merge at the same time to form a single block. In the case that
the measure � is the Beta(2 − α,α) distribution, they are also known to de-
scribe the genealogies of large populations where a single individual can pro-
duce a large number of offspring. Here, we use a recent result of Birkner et al.
to prove that Beta-coalescents can be embedded in continuous stable random
trees, about which much is known due to the recent progress of Duquesne
and Le Gall. Our proof is based on a construction of the Donnelly–Kurtz
lookdown process using continuous random trees, which is of independent in-
terest. This produces a number of results concerning the small-time behavior
of Beta-coalescents. Most notably, we recover an almost sure limit theorem
of the present authors for the number of blocks at small times and give the
multifractal spectrum corresponding to the emergence of blocks with atypical
size. Also, we are able to find exact asymptotics for sampling formulae cor-
responding to the site frequency spectrum and the allele frequency spectrum
associated with mutations in the context of population genetics.

1. Introduction and preliminaries. Consider the following simple popula-
tion model. Assume that the size of the population stays constant, equal to a fixed
integer n ≥ 1, where individuals are numbered 1, . . . , n. In this population, each
individual reproduces at rate (n − 1)/2. When individual i reproduces, she gives
birth to two children. One of them is again called individual i and the other re-
places individual j for a randomly chosen label j �= i with 1 ≤ j ≤ n. If t > 0 is
a fixed time, we may define an ancestral partition (�t

s,0 ≤ s ≤ t) for this popu-
lation model by saying that i and j are in the same block of �t

s if and only if the
corresponding individuals at time t have the same ancestor at time t − s. It is ele-
mentary to check that the dynamics of the process (�t

s,0 ≤ s ≤ t) are governed by
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the rules of a process called Kingman’s coalescent. This is a Markov process char-
acterized by the fact that the only transitions are those where pairs of blocks merge
and any given pair of blocks merges at rate 1 independently of everything else. In
fact, even for more realistic population models, it is often the case that the geneal-
ogy of a small sample of a population may be effectively described by Kingman’s
coalescent; the introduction of this tool by Kingman [33, 34] was a major devel-
opment in population genetics. One of the great advantages of this theory is that
it is well adapted to the statistical analysis of molecular population samples since,
for instance, in this framework, one can deal with a population sample rather than
the population as a whole. Moreover, molecular and genetic data convey much in-
formation about ancestral relationships in a population sample. Much background
material on the use of coalescent models in the field of population genetics can be
found in the recent book [29] or in the review paper [25].

However, recent work (see, e.g., [21, 40, 49, 51]) has shown that Kingman’s
coalescent is not very well suited when we deal with populations where individ-
uals may give birth to a large number of offspring or when we consider the ge-
nealogy of a population affected by repeated beneficial mutations [20]. In these
cases, it is more appropriate to model the merging of ancestral lines by coalescent
processes that allow multiple collisions, that is, several blocks may merge at once,
although only one of those events may occur at a given time. These processes,
called �-coalescents, have been introduced and studied by Pitman [45] and Sagi-
tov [49]. As shown by Pitman [45], they are Markov processes in which any given
number of blocks may merge at once and are characterized by a finite measure
� on [0,1]. The �-coalescent has the property that whenever the process has b

blocks, any given k-tuple of blocks merges at a rate given by

λb,k =
∫ 1

0
xk−2(1 − x)b−k�(dx);

see the next section for a more precise definition. For instance, Schweinsberg [51]
showed that �-coalescents arise as the rescaled genealogies of some population
models where individual offspring distributions have infinite variance. More pre-
cisely, let 1 < α < 2 and let X be a random variable such that P(X > k) ∼ Ck−α

for some C > 0. Consider the following population model. As before, the size of
the population is kept constant, equal to n. The model is formulated in discrete
time. At each generation, each individual produces a random number of offspring
(distributed like X) independently of other individuals and of the past. Then n of
them are randomly chosen to survive and the others are discarded. One of the main
results of [51] is that the ancestral partitions, suitably rescaled, converge to the
Beta(2 − α,α)-coalescent, that is, a �-coalescent such that the measure � is the
Beta(2 − α,α) distribution.

This connection with population genetics has served both as a motivation for
studying these processes and also as a source of inspiration for a rich theory that is
only now starting to emerge, starting with the series of seminal papers by Bertoin
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and Le Gall [10–13]. In these papers, �-coalescents are obtained as duals of
measure-valued processes called generalized Fleming–Viot processes. In simple
cases (viz., the cases of quadratic branching and stable branching mechanisms),
these processes describe the composition of a population (Zt , t ≥ 0) undergoing
continuous branching (i.e., Z is a continuous-state branching process, or CSBP
for short; definitions will be given below). This stream of ideas has led Birkner et
al. [14] to prove that one can obtain Beta-coalescents by suitably time-changing
the ancestral partitions associated with the genealogy of (Zt , t ≥ 0). In this con-
tinuous context, it is technically nontrivial to make rigorous sense of the notion
of genealogy, but this is achieved through the use of a process called the (modi-
fied) lookdown process associated with (Zt , t ≥ 0), a powerful tool introduced by
Donnelly and Kurtz [16].

In parallel, it has been known for some time that CSBPs can be viewed as local
time processes of a process (Ht , t ≤ Tr) called the height process, in a way that is
analogous to the classical theorem of Ray and Knight for Brownian motion relating
the Feller diffusion, the solution of

dZt = √
Zt dWt,

where (Wt)t≥0 is Brownian motion, to the local times of a reflecting Brownian
motion. This connection has been formalized by Le Gall and Le Jan [36]. The
height process itself encodes a continuous random tree, analogous to the Brownian
tree of Aldous [1, 2], and can be viewed as the scaling limit of suitably normalized
Galton–Watson trees. A careful exposition of this rich theory can be found in [17].

In this paper, we have two main goals. The first is to describe another way of
thinking about the genealogy of a Beta-coalescent. This is achieved by embedding
a Beta-coalescent into a continuous random tree with stable branching mechanism.
To prove this result, we show that one can obtain the Donnelly–Kurtz lookdown
process from a continuous random tree in a very simple fashion. This is valid for
a general (sub)critical branching mechanism and is of independent interest. From
this, and careful analysis, it follows that the coalescent tree can be thought of as
what is perhaps the simplest genealogical model: a Galton–Watson tree with a
continuous time parameter. Our second goal is to use this connection to discuss
results about the small-time behavior of Beta-coalescents and related processes.
This study was initiated in [8] without the help of continuous random trees. In
particular, we apply these ideas to a problem of interest in population genetics.

Organization of the paper. After recalling the necessary definitions and results
about coalescent processes, CSBPs and continuous random trees in Section 2, we
state our results in Section 3. In Section 4, we explain our construction of the
Donnelly–Kurtz lookdown process from a continuous random tree. In Section 5,
we prove our results related to the small-time behavior of Beta-coalescents, giving
asymptotics for the number of blocks and the multifractal spectrum. Finally, results
concerning biological applications are proved in Section 6.
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2. Preliminaries.

2.1. The �-coalescent. Let Pn denote the set of all partitions of the set
{1, . . . , n} and P denote the set of all partitions of N = {1,2, . . .} (in this paper, it
is always assumed that the set N does not contain 0). It turns out that the simplest
way to define a coalescent process is by looking at a version of this process taking
its values in the space P . For all partitions π ∈ P , let Rnπ be the restriction of π

to {1, . . . , n}, meaning that Rnπ ∈ Pn and that two integers i and j are in the same
block of Rnπ if and only if they are in the same block of π . A �-coalescent (or
a coalescent with multiple collisions) is a P -valued Markov process (�(t), t ≥ 0)

such that, for all n ∈ N, the process (Rn�(t), t ≥ 0) is a Pn-valued Markov chain
with the property that whenever Rn�(t) has b blocks, any particular k-tuple of
blocks of this partition merges at a rate equal to λb,k , these being the only possible
transitions. The rates λb,k depend neither on n nor on the numbers of integers in
the b blocks. Pitman [45] showed that the transition rates must satisfy

λb,k =
∫ 1

0
xk−2(1 − x)b−k�(dx)(1)

for some finite measure � on [0,1]. The laws of the processes Rn� are consistent
and this allows one to consider a process � such that the restriction Rn� has the
above description. A coalescent process such that (1) holds for a particular measure
� is called the �-coalescent.

To better understand the role of the measure �, it is useful to have in mind
the following Poissonian construction of a �-coalescent, also due to Pitman [45].
Suppose � does not put any mass on {0}. Let (ti , xi)i∈I be the atoms of a Poisson
point process on R

+ × [0,1] with intensity measure dt ⊗ x−2�(dx). Observe that
although � is a finite measure, x−2�(dx) is not finite in general, but only sigma-
finite. Hence, (ti, xi)i∈I may have countably many atoms on any time interval
[t1, t2], so in order to make rigorous sense of the following description, one should
again work with restrictions to {1, . . . , n}. The coalescent only evolves at times t

such that t = ti for some i ∈ I . For each cluster present at time t−i , we flip an inde-
pendent coin with probability of heads xi , where (ti, xi) is the corresponding atom
of the point process. We merge all the clusters for which the coin came up heads
and do nothing with the other clusters. Hence, we see that in a �-coalescent where
� has no mass at 0, x−2�(dx) is the rate at which a proportion x of the blocks
merge (such an event is generally called an x-merger). On the other hand, when
� is a unit mass at zero, each transition involves the merger of exactly two blocks
and each such transition occurs at rate 1, so this is just Kingman’s coalescent.

Kingman’s theory of exchangeable partitions provides us with a way of looking
at this process as taking its values in the space S = {x1 ≥ x2 ≥ · · · ≥ 0,

∑∞
i=1 xi ≤

1}, which is perhaps a bit more intuitive since the notion of mass is apparent in this
context. The resulting process is called the ranked �-coalescent. Briefly, partitions
of N defined by the above procedure are exchangeable, so this implies that for each
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block of the partition, there exists a well-defined number called the frequency or
mass of the block, which is the almost sure limiting proportion of integers in this
block. Therefore, given a measure � and a �-coalescent � = (�t , t ≥ 0), one can
define a process X = (X(t), t > 0) with values in the space S by taking for each
t > 0 the frequencies of �(t) ranked in decreasing order. When S is endowed with
the topology that it inherits from �1, the law at time t of this process Qt defines
a Markov semigroup with an entrance law: the process enters at time 0+ from a
state called dust, that is, the largest frequency vanishes as t → 0+. These techni-
cal points are carefully explained in the original paper of Pitman [45], Theorem 8.
The process X is said to have proper frequencies if

∑∞
i=1 Xi(t) = 1 for all t > 0.

Pitman has shown that this is equivalent to
∫ 1

0 x−1�(dx) < ∞. This is also equiv-
alent to the fact that almost surely �(t) does not contain any singleton, or that
all blocks are infinite. Another notion which plays an important role in this theory
is that of coming down from infinity. Pitman [45] has shown that only two situa-
tions occur, depending on the measure �. Let E be the event that for all t > 0,
there are infinitely many blocks and let F be the event that for all t > 0, there
are only finitely many blocks. Then, if �({1}) = 0, either P(E) = 1 or P(F) = 1.
When P(F) = 1, the process X or � is said to come down from infinity. For in-
stance, Kingman’s coalescent comes down from infinity, while if �(dx) = dx is
the uniform measure on (0,1), the � coalescent does not come down from infin-
ity. This particular choice of � corresponds to the so-called Bolthausen–Sznitman
coalescent which first arose in connection with spin glasses [15]. For a necessary
and sufficient condition on � for coming down from infinity, see [13, 50] and the
forthcoming [7]. Note also that a coalescent that comes down from infinity must
have proper frequencies.

In this paper, we will be concerned with the one-parameter family of coalescent
processes called Beta-coalescents. These are the �-coalescent process obtained
when the measure � is the Beta(2 − α,α) distribution with 1 < α < 2,

�(dx) = 1

�(2 − α)�(α)
x1−α(1 − x)α−1 dx.

The reason we restrict our attention to 1 < α < 2 is that this corresponds to the
case where the coalescent process comes down from infinity (a consequence of
Schweinsberg’s [50] criterion). When α = 1, the Beta(1, 1) distribution is sim-
ply the uniform distribution on (0, 1), so this the Boltahusen–Sznitman coalescent,
which stays infinite. When α → 2, it can be checked that the Beta(2 − α,α) dis-
tribution converges weakly to the unit mass at zero, so, formally, the case α = 2
corresponds to Kingman’s coalescent. This family of processes enjoys some re-
markable properties, as can be seen from [14, 51] and results in the present work.
This partly reflects the fact that the continuous-state branching processes with sta-
ble branching mechanism, with which they are associated (see below), enjoy some
strong scale-invariance properties, just like Brownian motion.
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2.2. Continuous-state branching processes. Continuous-state branching pro-
cesses have been introduced and studied by, among others, Lamperti [35] and Grey
[27]. They are Markov processes (Zt , t ≥ 0) taking their values in [0,∞] and we
think of Zt ≥ 0 as the size of a continuous population at time t . Continuous-state
branching processes are the continuous analogues of Galton–Watson processes as
well as their scaling limits. They are characterized by the following branching
property: if pt(x, ·) denotes the transition probabilities of Z started with Z0 = x,
then for all x, y ∈ R+,

pt(x + y, ·) = pt(x, ·) ∗ pt(y, ·),(2)

which means that the process started from x + y individuals has the same law as
the sum of a process started from x and one started from y independently. The
interpretation of (2) is that if individuals live and reproduce independently, then
a population started from x + y individuals should evolve as the sum of two in-
dependent populations, one started with x individuals and one with y individuals.
Lamperti [35] has shown that a continuous-state branching process is character-
ized by a function ψ : [0,∞) → R called the branching mechanism, such that for
all t ≥ 0, the Laplace transform of Zt satisfies

E[e−λZt |Z0 = a] = e−aut (λ),(3)

where the function ut (λ) solves the differential equation

∂ut (λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ.(4)

Moreover, the branching mechanism ψ is the Laplace exponent of some spectrally
positive Lévy process (i.e., Lévy process with no negative jumps). That is, there
exists a measure ν on (0,∞) and some numbers a ∈ R and b ≥ 0 such that for all
q ≥ 0,

ψ(q) = aq + bq2 +
∫ ∞

0

(
e−qx − 1 + qx1{x<1}

)
ν(dx)(5)

and
∫ ∞

0 (1 ∧ x2)ν(dx) < ∞. Furthermore, if (Yt , t ≥ 0) is the Lévy process with
Laplace exponent ψ , that is,

E
[
e−λ(Yt−Y0)

] = etψ(λ),

then the distributions of (Zt , t ≥ 0) and (Yt , t ≥ 0) are related by a simple time-
change (sometimes called the Lamperti transform). Let

Ut =
∫ t

0
Ỹ−1

s ds,

where (Ỹt , t ≥ 0) is the process (Yt , t ≥ 0) stopped when it first hits zero, and call
U−1

t the inverse càdlàg of Ut . (Y
U−1

t
, t ≥ 0) then has the same law as Z. We refer

the reader to, for instance, [9] for more information about this.
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When ψ(q) = qα for some α ∈ (0,2], we say that the CSBP has a stable
branching mechanism. When α = 2, the process Z is Feller’s diffusion and the
Lévy process in Lamperti’s transformation is standard Brownian motion. When
1 < α < 2, this branching mechanism arises by taking a = b = 0 and

ν(dx) = α(α − 1)

�(2 − α)
x−1−α dx

in (5). The Lévy process in Lamperti’s transformation is an α-stable Lévy process
having the scaling property

(Yλt , t ≥ 0) =d (λ1/αYt , t ≥ 0).

2.3. The height process and continuous random trees. Le Gall and Le Jan [36]
have introduced a new way of thinking about CSBPs, which was further carefully
explored by Duquesne and Le Gall in [17]. It is inspired by the well-known result
of Ray and Knight on the local times of Brownian motion and is related to the
construction of the Brownian continuum random tree of Aldous [1, 2]. Recall that
if B is a reflecting Brownian motion, (Lx

t , t ≥ 0, x ≥ 0) is a jointly continuous
version of its local times and (Tr , r ≥ 0) is the càdlàg inverse of L0

t , then for fixed
r > 0, the process (Lx

Tr
, x ≥ 0) is a Feller diffusion started with initial population r .

Le Gall and Le Jan have introduced a process (Ht , t ≥ 0) which generalizes the
Ray–Knight theorem to continuous branching process with (sub)critical branching
mechanism.

More precisely, consider a Laplace exponent ψ(q) and a ψ-CSBP (Zt , t ≥ 0).
We will assume that ψ is subcritical, that is, a.s. there exists some time 0 < τ < ∞
such that Zτ = 0. Grey has shown that this is equivalent to the condition that the
branching mechanism ψ satisfies∫ ∞

1

dq

ψ(q)
< ∞.

In particular, this is the case when ψ(q) = q2/2 or when ψ(q) = qα for 1 < α < 2.
Lamperti [35] has shown that there exists a sequence of offspring distributions
µn such that if we consider (Zn

k , k = 1,2, . . .), a discrete Galton–Watson process
with offspring distribution µn and started with n individuals, then (n−1Zn

γnt , t ≥ 0)

converges in the sense of finite-dimensional distributions to (Zt , t ≥ 0), where the
γn are suitable time-scaling constants. If we ask for finer limit theorems about
the genealogy of (Zt , t ≥ 0), then Duquesne and Le Gall have shown that the
discrete height process (Hn

k , k = 0,1, . . .), where Hn
k is the generation of the kth

individual, converges when suitably normalized to a process (Ht , t ≥ 0) called the
height process. One may directly construct this process (Ht , t ≥ 0) from a Lévy
process with Laplace exponent ψ . Thus, informally, the height process plays the
same role as the depth-first search process on a discrete tree, but in a continuous
setting. An important result of Duquesne and Le Gall [17] is that, even though H
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is, in general, neither a semi-martingale nor a Markov process, that is, H admits a
local time process, that is, almost surely, there exists a jointly continuous process
(La

s , s ≥ 0, a ≥ 0) such that for all t ≥ 0,

lim
ε→0

E

[
sup

0≤s≤t

∣∣∣∣1

ε

∫ s

0
1{a<Hr≤a+ε} dr − La

s

∣∣∣∣] = 0.

They were also able to prove that the process H has a continuous modification
provided the branching mechanism is subcritical.

The importance of the process H stems primarily from the generalized Ray–
Knight theorem, which we now state (see [17, 36]). Let Tr = inf{t > 0,L0

t > r} be
the inverse local time at 0. For all t ≥ 0, define

Zt = Lt
Tr

.(6)

Then (Zt , t ≥ 0) is a ψ-CSBP started at Z0 = r . If ψ(q) = q2/2, then (Ht , t ≥ 0)

has the law of a reflecting Brownian motion and (Zt , t ≥ 0) is the Feller diffusion,
as the classical Ray–Knight theorem states.

3. Main results.

3.1. The Beta-coalescent in the continuous stable random tree. Our first result
is the embedding of a Beta(2 − α,α)-coalescent for 1 < α < 2 in the tree coded
by the α-stable height process. Let Z be an α-stable CSBP obtained in the fashion
of Duquesne and Le Gall from the height process (Ht ,0 ≤ t ≤ Tr) associated with
ψ(q) = qα for a given 1 < α < 2, that is, Zt = Lt

Tr
. Consider, for all t , the random

level

Rt = α(α − 1)�(α)

∫ t

0
Z1−α

s ds(7)

and let R−1(t) = inf{s :Rs > t}. It follows from [14] that R−1(t) < ∞ a.s. for all
t and that limt→∞ R−1(t) = ζ , where ζ is the lifetime of the CSBP.

Let (Vi, i = 1,2, . . .) be a sequence of variables in (0, Tr) defined such that for
all i ∈ N, Vi is the left endpoint of the ith highest excursion of the height process
H above the level R−1(t). Next, we define a process (�s,0 ≤ s ≤ t) which takes
its values in the space P of partitions of N as follows:

i
�s∼ j ⇐⇒

(
inf

r∈[Vi,Vj ]Hr

)
> R−1(t − s).

That is, i and j are in the same block of �s if and only if Vi and Vj are in the same
excursion of H above level R−1(t − s).

THEOREM 1. The process (�s,0 ≤ s ≤ t) is a Beta(2 − α,α)-coalescent run
for time t .
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FIG. 1. A Beta-coalescent is obtained by coalescing excursions of (Ht , t ≤ Tr ) above R−1(t − s)

that reach R−1(t). Thus each excursion corresponds to a block of the coalescent and its mass is
given by its local time at level R−1(t).

Another way of looking at this result is to consider the ranked coalescent. Let
(X(s),0 ≤ s ≤ t) be the process with values in S defined by the following proce-
dure. For each s ≤ t , X(s) has as many nonzero coordinates as there are excursions
of the height process above R−1(t − s) that reach the level R−1(t). To each such
excursion we associate a mass given by the local time of that excursion at level
R−1(t), normalized by ZR−1(t) so that the sum is equal to 1. Then X(s) is defined
as the nonincreasing rearrangement of these masses.

COROLLARY 2. (X(s),0 ≤ s ≤ t) has the same distribution as the ranked
Beta(2 − α,α)-coalescent run for time t .

We picture the coalescent as the following process. As s increases from 0 to t ,
the level R−1(t − s) decreases from R−1(t) to 0. The excursions of H above level
R−1(t − s) coalesce because if s1 < s2, then several excursions of H above the
level R−1(t −s1) could be part of the same excursion of H above the level R−1(t −
s2). This will happen, for example, if the excursion of H above the level R−1(t −
s1) has a local minimum at the level R−1(t − s2). Then, in the corresponding
coalescent process, we observe a merging of masses at time s2 corresponding to
the fraction of local time at R−1(t) contained by each of those excursions.

REMARK 3. Recall the definition of an R-tree associated with a nonnega-
tive function H defined on an interval [0, Tr ]. If dH (u, v) = H(u) + H(v) −
2 infu≤t≤v H(t), then dH is a pseudodistance on [0, Tr ]. Equipped with dH , the
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quotient of [0, Tr ] by the relation dH (u, v) = 0 is an R-tree. For the function
(Hs, s ≤ Tr), this gives a Poissonian collection of scaled stable trees joined at
the root. In this context, the Vi are certain vertices at distance R−1(t) from the
root and the state of the coalescent at time s can be described as the partition
obtained by declaring i ∼ j if and only if their most recent common ancestor
is at distance greater than R−1(t − s) from the root, that is, if dH (Vi,Vj ) <

2(R−1(t) − R−1(t − s)). In other words, if we define a new distance d
(t)
� on N

by

d
(t)
� (i, j) = inf{s :R−1(t) − R−1(t − s) = dH (Vi,Vj )/2},

then the classes of �s are the balls of radius s for the metric d
(t)
� .

3.2. Small-time behavior and multifractal spectrum. We now use Theorem 1
to obtain several results about the small-time behavior of the Beta coalescents.

Let N(t) be the number of blocks at time t of a Beta-coalescent �(t). Our
first application gives the almost sure limit behavior of N(t) and has already been
shown in [8] using methods based on the analysis of CSBP with stable branching
mechanisms.

THEOREM 4.

lim
t→0

t1/(α−1)N(t) = (α�(α))1/(α−1) a.s.

For an exchangeable random partition, the number of blocks is related to the
typical block size. For instance, suppose � is an exchangeable random partition
and that |�| denotes the number of blocks of �. Using equation (2.27) in [46],
we see that if X1 is the asymptotic frequency of the block of � containing 1, then
E(|�|) = E(X−1

1 ). Hence, here, at least informally, we see that the frequency of
the block which contains 1 at time t must be of the order of 1/N(t) ∝ t1/(α−1)

(this result was proved rigorously in [8]). Put another way, this says that almost all
of the fragments emerge from the original dust by growing like t1/(α−1). We say
that 1/(α − 1) is the typical speed of emergence.

However, some blocks clearly have a different behavior. Consider, for instance,
the largest block and denote by W(t) its frequency at time t . It was shown in [8],
Proposition 1.6, that(

α�(α)�(2 − α)
)1/α

t−1/αW(t) →d X as t ↓ 0,

where X has the Fréchet distribution of index α. Hence, the size of the largest
fragment is of the order of t1/α .

This suggests studying the existence of fragments that emerge with an atypical
rate γ �= 1/(α − 1). To do so, it is convenient to consider a random metric space
(S, d) which completely encodes the coalescent � (this space was introduced by
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Evans [23] in the case of Kingman’s coalescent). The space (S, d) is the comple-
tion of the space (N, d), where d(i, j) is the time at which the integers i and j coa-
lesce. In particular, completing the space {1,2, . . .} with respect to this distance in
particular adds points that belong to blocks behaving atypically. In this framework,
we are able to associate with each point x ∈ S and each t > 0 a positive number
η(x, t) which is equal to the frequency of the block at time t corresponding to x.
(This is formally achieved by endowing S with a mass measure η.) In this setting,
we can reformulate the problem as follows: are there points x ∈ S such that the
block Bx(t) that contains x at time t behaves as tγ when t → 0 or, more formally,
such that η(x, t) � tγ ? [Here, f (t) � g(t) means that logf (t)/ logg(t) → 1.]
Also, how many such points typically exist?

We define, for γ ≤ 1/(α − 1),

S(γ ) =
{
x ∈ S : lim inf

t→0

log(η(x, t))

log t
≤ γ

}
and, similarly, when γ > 1/(α − 1),

S(γ ) =
{
x ∈ S : lim sup

t→0

log(η(x, t))

log t
≥ γ

}
.

When γ ≤ 1/(α − 1), S(γ ) is the set of points which correspond to large frag-
ments. On the other hand, when γ ≥ 1/(α − 1), S(γ ) is the set of points which
correspond to small fragments. In the next result, we answer the question raised
above by computing the Hausdorff dimension (with respect to the metric of S) of
the set S(γ ).

THEOREM 5.

1. If 1
α

≤ γ < 1
α−1 , then

dimH S(γ ) = γα − 1.

If γ < 1/α, then S(γ ) = ∅ a.s. but S(1/α) �= ∅ almost surely.
2. If 1

α−1 < γ ≤ α
(α−1)2 , then

dimH S(γ ) = α

γ (α − 1)2 − 1.

If γ > α
(α−1)2 , then S(γ ) = ∅ a.s. but S( α

(α−1)2 ) �= ∅ almost surely.

REMARK 6. The maximal value of dimH S(γ ) is obtained when γ = 1/(α −
1), in which case the dimension of S(γ ) is also equal to 1/(α − 1). This was to be
expected since this is the typical exponent for the size of a block. The value of the
dimension then corresponds to the full dimension of the space S, as was proved
in [8], Theorem 1.7.
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FIG. 2. Multifractal spectrum map γ �→ dimH S(γ ). The left-derivative at the critical point is α

while the right-derivative is −α.

REMARK 7. We recover part of Proposition 1.6 in [8] that the largest block
has size of order t1/α since this is the smallest γ for which S(γ ) �= ∅. It may be a
bit more surprising that there is such a thing as a notion of smallest block, whose
size is of order tγ , where γ = α/(α − 1)2.

REMARK 8. This is reminiscent of the problem considered in [6], in which
the long-time asymptotic behavior of homogeneous fragmentations was studied.
More precisely, it was shown there that if F(t) is a homogeneous fragmentation
of the interval (0,1) and Ix(t) denotes the fragment that contains x at time t, then
there is a typical speed of fragmentation v0, in the sense that if U is uniform on
(0,1), then almost surely |IU (t)| ∼ e−v0t . However, for v �= v0 in some range, the
random set of exceptional points S(v) := {x ∈ (0,1) : |Ix(t)| ∼ e−vt } is nonempty
and has zero Lebesgue measure. The main result in [6] gives an explicit expres-
sion of the multifractal spectrum map v �→ dimH (S(v)) where dimH (S) denotes
the Hausdorff dimension of S. However, we emphasize that in [6], this Hausdorff
dimension is computed with respect to the metric δ induced by the Lebesgue mea-
sure on (0,1). In that case, the fact that the diameter of a block is equal to its mass
plays a significant role. By contrast, here, we compute dimensions with respect to
the metric d , which should rather be understood as a genealogical distance.

3.3. Frequency spectra for mutation models. We now describe a result con-
cerning Beta-coalescents which has some applications to a question arising in
population genetics. The question is concerned with the quantification of poly-
morphism in a sample of given size taken from a population. Suppose we sample
n individuals from a population at a certain time. Due to mutations, at a given
locus, not all individuals in this sample will have the same allele. Moreover, mu-
tations also affect different sites. We may ask several questions. In the sample of
size n, how many different alleles should we observe at a given locus (site)? On
how many sites should we expect to see different alleles? With which frequency
should each of the different alleles be represented? As we will see, the answers to
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FIG. 3. In the infinite sites model, each mark stands for a mutation that affects a different locus. In
this example, there are four families: {1,4}, {4}, {2,3,5,6} and {2,5,6}. On the other hand, in the
infinite alleles model, the allelic partition �θ also has four blocks: {1}, {2,5,6}, {3} and {4}.

these questions depend heavily on the nature of the population, particularly on its
reproduction mechanism, in addition to the mutation rate.

To make the problem mathematically tractable, we will consider two simplified
models. The rate at which mutations occur will always be assumed to be a positive
number θ , constant with time. In the first model, called the infinite alleles model,
introduced by Kimura and Crow [32] in 1964, we study a given locus in the sample
and assume that each mutation has resulted in a new allele. This means that the
descendants of an individual affected by a mutation all carry the same allele except
those later affected by another mutation. In the second model, called the infinite
sites model, introduced by Kimura [31] in 1969, we look at the number of sites
where we expect individuals to show polymorphism. In this model, we assume
that each mutation occurs at a new site. In particular, if an individual is affected by
a mutation, all the descendants of this individual carry this mutation. See Figure 3
for an illustration of these two models.

In the infinite alleles model, one can define the so-called allelic partition. That
is, one may divide the sample into groups of individuals having the same allele
at the observed locus. For a sample of size n, quantities of interest include the
number of different groups (which we will also refer to as clusters or also some-
times blocks), N(n), as well as typical sizes of groups: we denote by Nk(n) the
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number of blocks in the allelic partition of size k. In the infinite sites model,
one cannot define a partition of the sample because a given individual in the
sample may have been affected by several mutations. However, we can still de-
fine M(n) to be the total number of mutations and Mk(n) to be the number
of these mutations affecting exactly k individuals in the sample. For example,
in Figure 3, N(n) = 4, N1(n) = 3,N2(n) = 0,N3(n) = 1, while M(n) = 4 and
M1(n) = M2(n) = M3(n) = M4(n) = 1. The whole sequence (M1(n), . . . ,Mn(n))

is called the site frequency spectrum and the sequence (N1(n), . . . ,Nn(n)) is called
the allele frequency spectrum.

A fundamental result in this domain is the celebrated Ewens sampling for-
mula [24]. This result gives an explicit formula for the distribution of the allelic
partition, under some standard assumptions on the reproduction mechanism of the
population. The result is perhaps best explained through the theory of Kingman’s
coalescent. Based on this process, Kingman [33] was able to find a simpler proof
of Ewens’ sampling formula. Assume that the genealogy of the population may be
described by the dynamics of Kingman’s coalescent, that is, each pair of lineages
coalesces at rate 1. Assuming the rate of mutations is θ/2 along every lineage, the
Ewens sampling formula states that the probability that the allelic partition has ai

blocks of size i for i = 1, . . . , n is

P
(
N1(n) = a1, . . . ,Nn(n) = an

) = p(a1, . . . , an) = n!
θ(n)

n∏
i=1

θai

iai ai ! ,(8)

where θ(n) = θ(θ + 1) · · · (θ + n − 1). This formula has since played an important
role in many different areas of probability theory, sometimes fairly distant from
the original application to population genetics. Among many others, we refer the
reader to [4] and to [28] for different proofs of (8).

Unfortunately, the methods used to prove (8) do not seem to apply to the more
general framework of �-coalescents. In fact, there are very few explicit results
studying the structure of a sample of the population in this context. Let us men-
tion, in particular, the work of Möhle [39], Theorem 3.1, who gets a recursive
formula for the allele frequency spectrum. However, this may be so intricate that
this recursion is difficult to use in practice for moderately large sample sizes.

We present here an asymptotic formula for the frequency spectrum, both in the
infinite alleles and the infinite sites models, as the sample size n → ∞. We work
under the convention that the genealogy of the population can be described by
a �-coalescent (�t , t ≥ 0). We focus on the case where the measure � is the
Beta(2 − α,α) distribution and 1 < α < 2. We assume that mutations occur at
constant rate θ > 0.

THEOREM 9. Assume that � has the Beta(2 − α,α) distribution with 1 <

α < 2. Fix a positive integer k. Then

nα−2Mk(n) →p θα(α − 1)2 �(k + α − 2)

k!
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and

nα−2Nk(n) →p θα(α − 1)2 �(k + α − 2)

k! ,

where →p denotes convergence in probability as n → ∞.

REMARK 10. To understand where these results come from, recall that in
Theorem 1.9 of [8], we showed that

nα−2M(n) →p θ
α(α − 1)�(α)

2 − α
.(9)

In Section 5, we will show that for small times, the Beta(2 − α,α)-coalescent
can be approximately described by the genealogy of a continuous-time branching
process in which individuals live for an exponential amount of time with mean
1 and then have a number of offspring distributed according to χ , where P(χ =
0) = P(χ = 1) = 0 and where, for k ≥ 2, we have

P(χ = k) = α(2 − α)(3 − α) · · · (k − 1 − α)

k! = α�(k − α)

k!�(2 − α)
.(10)

This offspring distribution is supercritical with mean 1 + 1/(α − 1). We will show
that if τ is an independent exponential random variable with mean 1/c, where
c = (2 − α)/(α − 1) > 0, and k is a positive integer, then

Mk(n) ∼ M(n)P (ξτ = k),(11)

where

P(ξτ = k) = (2 − α)�(k + α − 2)

�(α − 1)k! .

This result, and the analogous result for Nk(n), will imply Theorem 9.

REMARK 11. One can only observe Mk(n) from biological data if the ances-
tral type is known. Otherwise, it is necessary to work with the “wrapped frequency
spectrum” M̂k(n) = Mk(n)+Mn−k(n). For fixed k ≥ 1, one can see from (11) that
as n → ∞, these two quantities have the same asymptotics because the limiting
values of Mk(n)/M(n) sum to one and therefore Mn−k(n)/M(n) goes to zero in
probability as n → ∞.

REMARK 12. It is natural that the distribution (10) arises in this context be-
cause when the Beta(2 − α,α)-coalescent has b blocks, the probability that its
next merger involves k blocks converges to P(χ = k) as b → ∞ (see [8, 13]). Of
course, an individual having k offspring in the Galton–Watson process corresponds
to a merger of k blocks in the corresponding coalescent process going backward
in time.
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REMARK 13. The limiting behavior described in Theorem 9 also arises in the
theory of exchangeable partitions. Following Lemma 3.11 in Pitman [46], let � be
an exchangeable random partition whose ranked asymptotic frequencies Pi satisfy

Pi ∼ Zi−1/(2−α)(12)

almost surely for some random variable Z such that 0 < Z < ∞. Then if |�n|
(resp., |�n,j |) is the number of blocks (resp., number of blocks of size j ) of �

restricted to {1, . . . , n}, we have

|�n| ∼ Sαn2−α(13)

almost surely for a random variable Sα determined explicitly from Z. Moreover,

|�n,j |
|�n| ∼ (2 − α)�(k + α − 2)

�(α − 1)k! .(14)

In fact, it follows from an unpublished work of Hansen and Pitman [26] that (13)
implies (12), which, in turn, using Lemma 3.11 of [46], implies (14). Note that the
distribution on the right-hand side of (14) previously appeared in the context of
urn schemes in the work of Karlin [30]. See also [48], and see [43, 44], where this
distribution occurs in the context of Brownian motion and related processes.

To connect these results to Theorem 9, let � be the allelic partition obtained
by superimposing mutation marks at rate θ on the tree associated with a Beta-
coalescent, started at time 0 with infinitely many individuals. Then � is an ex-
changeable partition and the restriction �n of � to {1, . . . , n} has the same distri-
bution as the partition described in Section 3.3. From this and (9), one can show
(see, e.g., Lemma 34) that nα−2|�n| →p sα , where sα is the constant on the right-
hand side of (9). If one could show that this convergence holds almost surely, then
this would supply an alternative proof of Theorem 9. Also, this would presum-
ably work for coalescent processes satisfying the condition of Theorem 1.9 in [8].
However, we note that proving almost sure convergence is difficult due to the ran-
domness of the asymptotic frequencies Pi .

4. The lookdown process in a continuous random tree.

4.1. Branching processes obtained from superprocesses. The lookdown pro-
cess is a powerful tool introduced (and subsequently modified) by Donnelly and
Kurtz [16] to encode the genealogy of a superprocess by a countable system of
particles. We will describe it in a more general context than the one strictly needed
for the applications we have in mind in this paper because we believe that this
construction is of independent interest. However, the lookdown process can be
defined even more generally than how we will do here (e.g., we will not treat the
case where the particles are allowed to have some spatial motion and interact).
The setting for this part is the following. We let ψ be a branching mechanism with
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no Brownian component and no drift term, that is, there exists a ∈ R and a Lévy
measure ν such that

ψ(q) = aq +
∫ ∞

0

(
e−qx − 1 + qx1{x≤1}

)
ν(dx).(15)

Rather than associating with ψ a CSBP with this branching mechanism, we first
construct a superprocess Mt taking its values in the space of finite measures on
(0,1), which is defined through its generator L: for a function F acting on mea-
sures µ on (0,1),

LF(µ) = a

∫ 1

0
µ(dx)F ′(µ, x)

(16)

+
∫ 1

0
µ(dx)

∫ ∞
0

ν(dh)
(
F(µ + hδx) − F(µ) − 1{h≤1}hF ′(µ, x)

)
.

The notation F ′(µ, x) stands for limε→0 ε−1(F (µ + εδx) − F(µ)) and accounts
for an infinitesimal modification of F in the direction δx . If ψ had a quadratic
term, then there would be an extra term in the generator; see equation (1.15) in
[14]. Note that for every 0 < r < 1,

Zt = Mt([0, r])
defines a ψ-CSBP started at M0([0, r]). Indeed, applying the generator to a func-
tion F(µ) = ϕ(z), where z = µ([0, r]), directly yields that the generator L1 of the
process Zt is

L1ϕ(z) = a

∫ r

0
µ(dx)ϕ′(x)

+
∫ r

0
µ(dx)

∫ ∞
0

ν(dh)
(
ϕ(z + h) − ϕ(z) − h1{h≤1}ϕ′(z)

)
= zL2ϕ(z)

since the second integral does not depend on x and is equal to L2ϕ(z), where L2
is the generator of a Lévy process with Lévy exponent ψ(q). By Lamperti’s result
relating a CSBP to a time-change of a Lévy process [35], we conclude that Zt is a
ψ-CSBP. The interpretation of Mt is as follows. If we imagine the population rep-
resented by Zt as a continuous population where each individual is endowed with
an originally distinct label between 0 and 1 (and where individuals and their de-
scendants have the same label), then Mt([0, a]) is the total number of individuals
at time t descending from some individual with a label between 0 and a. Another
process of interest in this setting is the so-called ratio process Rt = Mt/Zt , where
Zt = Mt([0,1]). Thus, for every t , Rt is a probability distribution on (0,1) which
describes the composition of the population at a given time: the typical state at
time t > 0 for Rt (at least in the subcritical case, see below) is a linear combina-
tion of Dirac masses

∑
i ρiδxi

, subject to
∑

i ρi = 1, where each atom corresponds
to groups of individuals in the population at time t descending from the same in-
dividual at time 0 (whose label was xi ) in proportion ρi .
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4.2. The lookdown process associated with a CSBP. The purpose of the
Donnelly–Kurtz construction is to give a representation of the ratio process Rt

as the limit of empirical distributions associated with a countable system of parti-
cles. A major consequence of this construction is a transparent notion of genealogy
for Zt , which is otherwise difficult to grasp in the context of a continuous popu-
lation. What follows is largely inspired by [14] and [22], Chapter 5. To define
the (modified) lookdown process, we have a countable number of individuals who
will be identified with their type. Initially, individual i has type ξi(0). The types
ξi(0) for i = 1,2, . . . are given by uniform i.i.d. random variables on (0,1). At
any given time t , ξi(t) will be the type of the individual occupying level i. The
variables ξi(t) may change due to events called birth events. Suppose we have a
countable configuration of space-time points,

n = ∑
i

δ(ti ,yi ),

where ti ≥ 0 and 0 ≤ yi ≤ 1, and assume that
∑

ti≤t y
2
i < ∞ for all t ≥ 0. [Later,

we will specify a point configuration (ti, yi) associated with a CSBP.] Each atom
(ti, yi) corresponds to a birth event. At such a time, a proportion yi of levels is
said to participate in the birth event: each level flips a coin with probability of
heads yi . Those which come up heads participate in the birth event. We describe
the modification in the levels on the first n levels. Suppose the levels participating
are 1 ≤ i1 < i2 < · · · < ik ≤ n. Then at time t = ti , their type is modified by the fol-
lowing rule: for all 1 ≤ j ≤ k, ξij (t) = ξi1(t

−). In other words, participating levels
take the type of the smallest level participating. We do not destroy the individuals
previously occupying levels i2, . . . , ik , but, instead, we move ξi2(t

−) to the first
level not participating in a birth event and keep shifting individuals upward, with
each individual taking the first available spot. This is illustrated in Figure 4.

One way to make this construction rigorous is to observe that due to our as-
sumption

∑
ti≤t y

2
i < ∞, only finitely many birth events affect the first n levels in

any compact time-interval. The processes defined by this procedure are consistent
by restriction as n increases, so there is a well-defined process (ξi(t), t ≥ 0, i =
1,2, . . .) by Kolmogorov’s extension theorem.

Having described the construction for a general configuration of space-time
points (ti, yi), we now restrict to the case where (ti, yi) is given by the follow-
ing construction. Let Zt(r) be a ψ-CSBP, where ψ has the form (15) and where
we have written the starting point r > 0 as an argument of Zt . Let τ be the extinc-
tion time (which may not be finite a.s., but will be in the subcritical case in which
we are interested). We only define the lookdown process until time τ−. With each
time ti such that �Zti > 0, associate yi = �Zti /Zti (observe that 0 ≤ yi ≤ 1). It is
then standard to check that if t < τ , then∑

ti≤t

y2
i < ∞.
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FIG. 4. Representation of the lookdown process. Levels 2, 4 and 5 participate in a birth event.
Other types get shifted upward. The numbers on the left and on the right indicate the types before
and after the birth event, respectively.

Indeed, one can bound Zti from below by It = inf0≤s≤t Zs > 0 so that this sum is
smaller than

(It )
−2

∑
ti≤t

(�Zti )
2 < ∞

because Z is obtained as a time-change of a Lévy process whose jumps are square-
summable due to the fact that

∫ ∞
0 (1 ∧ x2)ν(dx) < ∞ and when t < τ , the jumps

of Z are the jumps of the Lévy process in some random, but finite, time-interval.
Thus, there is a well-defined lookdown process (ξi(t), t ≥ 0, i = 1,2, . . .) asso-

ciated with this sequence (ti, yi). Observe that for all t ≥ 0, (ξi(t), i = 1,2, . . .) is
an exchangeable sequence so that the limit

ρt = lim
n→∞

1

n

∞∑
i=1

δξi(t)

is well defined by De Finetti’s theorem. Then (ρt , t ≥ 0) has the same distribution
as the process (Rt , t ≥ 0) obtained in the previous section from a superprocess
Mt started from M0 = r1{0≤x≤1} dx (see, e.g., the argument starting from (2.15)
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in [14]). To understand heuristically why this is true, note that when there is a
jump in the CSBP, so �Zt = x > 0, some individual in the population has a large
number of offspring, causing the proportion of individuals with the same type as
this individual to have a jump of size x/(Zt− + x) = �Zt/Zt . This is precisely
what happens in the lookdown process.

We now specialize to the subcritical case. That is, we assume that ψ is a branch-
ing mechanism as in (15) and that∫ ∞

1

dq

ψ(q)
< ∞.

By a well-known criterion of Grey [27], this ensures that τ < ∞ a.s., that is, the
population becomes extinct in finite time. Observe that one of the nontrivial fea-
tures of the lookdown process is that since Zt becomes extinct in finite time, almost
surely only finitely many individuals have descendants alive at time t > 0, which
means that the composition of the population is made of finitely many different
types of individuals and that, ultimately, only one type remains in the population.
Note that this can happen in the lookdown process even though we never kill labels
because some labels get pushed off to infinity due to the successive birth events,
thus disappearing from the visible population. This feature will become apparent
from our construction of the lookdown process in terms of the continuous random
tree.

4.3. Constructing the lookdown process from a continuous tree. In this sec-
tion, we will provide a construction of the lookdown process from a continuous
random tree. Once again, we emphasize that the branching mechanism need not
be stable. However, we will always assume subcriticality, that is,∫ ∞

1

dq

ψ(q)
< ∞,

so that there is a continuous version of the height process and its local times are
well defined (see [17]).

Before we start, we need to recall some facts about the height process. Associ-
ated with the process H is an infinite measure N which plays a role analogous to
Itô’s excursion measure for Brownian motion (see [47]). The excursion property
for (Ht , t ≤ Tr) will be used on several occasions. It can be phrased as follows.
Let (gi, di), i ∈ I be the excursion intervals of H above zero, so⋃

i∈I

(gi, di) = {s ≥ 0 :Hs > 0}.

For each i ∈ I, define the function ei by ei(s) = Hgi+s for 0 ≤ s ≤ di − gi and
ei(s) = 0 otherwise. Let C+([0,∞)) be the set of nonnegative real-valued func-
tions defined on [0,∞). Recall that (La

s , s ≥ 0, a ≥ 0) is the local time process
for H . Then the random measure ∑

i∈I

δ(L0
gi

,ei )
(17)



BETA-COALESCENTS AND CONTINUOUS STABLE RANDOM TREES 1855

is a Poisson point process on [0,∞) × C+([0,∞)) with intensity measure dl ×
N(dω), where dl denotes Lebesgue measure and N(dω) is the excursion measure,
which is a σ -finite measure on C+([0,∞)). More generally, H (although not a
Markov process in general) enjoys a similar excursion property above any given
level a > 0. For each a > 0, let (ga

i , da
i ), i ∈ Ia , be the connected components of

the open set {s :Hs > a}. For each i ∈ Ia , define the excursion e
(a)
i by e

(a)
i (s) =

Hga
i +s − a for 0 ≤ s ≤ da

i − ga
i and e

(a)
i (s) = 0 otherwise. For each s ≥ 0, define

τ̃ a
s = inf

{
t :

∫ t

0
1{Hr≤a} dr > s

}
, τ a

s = inf
{
t :

∫ t

0
1{Hr>a} dr > s

}
.

Define the processes (H̃ a
s , s ≥ 0) and (H

a

s , s ≥ 0) such that H̃ a
s = Hτ̃a

s
and H

a

s =
Hτa

s
− a. By Proposition 3.1 of [18], the random measure∑

i∈Ia

δ
(La

ga
i
,e

(a)
i )

(18)

is a Poisson point process on [0,∞) × C+([0,∞)) with intensity measure dl ×
N(dω) and is independent of (H̃ a

s , s ≥ 0). Since H
a

can be recovered from the
random measure (18), a consequence of this result is that (H

a

s , s ≥ 0) has the same
law as (Hs, s ≥ 0) and is independent of (H̃ a

s , s ≥ 0).
Having recalled this property, we now describe our construction of the look-

down process in a continuous random tree. Let (Zt , t ≥ 0) be a ψ-CSBP started
from Z0 = r > 0 (ψ is assumed to be subcritical) and assume that Zt is obtained
as the local times of the height process (Ht , t ≤ Tr), as in (6). Let ξ̃ := ((ξ̃j (t)),
t ≥ 0, j = 1,2, . . .) be a lookdown process obtained from (Zt , t ≥ 0), as in the
previous section. That is, it is obtained from the configuration of space-time points
(ti,�Zti /Zti ). The process ξ̃ will serve as a reference lookdown process to which
we will compare the one we will construct below.

We will now construct a version ξ of the process ξ̃ that will be entirely defined
in terms of the height process H. We start by introducing some notation. Consider
the height process (Ht , t ≤ Tr). The key point of this construction is that we choose
a specific labeling for the excursions; namely, we rank the excursions according to
their supremum. We denote by e

(t)
j the j th highest excursion above the level t

(when t = 0, we sometimes simply write ej instead of e
(0)
j ). We draw a sequence

of i.i.d. random variables (Ui)i∈N with the uniform distribution on (0,1). They will
serve as the initial types in the lookdown construction, so that at any time, ξj (t) is
equal to one of the Ui ’s. Thus, let ξj (0) = Uj for all j ≥ 1. Then for each t > 0,

for each j ≥ 1, we let k(j, t) be the unique integer such that e
(t)
j , the j th highest

excursion above t , is part of the excursion e
(0)
k(j,t), the k(j, t)th highest excursion

above 0, and we let

ξj (t) = Uk(j,t).

We say that the excursion e
(t)
j has type Uk(j,t).



1856 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

THEOREM 14. The processes ξ and ξ̃ have the same distribution. That is,
((ξj (t)), t ≥ 0, j = 1,2, . . .) has the distribution of the modified lookdown con-
struction associated with the CSBP (Zt , t ≥ 0).

Before we start proving this result, here is a description of the dynamics of the
process (ξj (t), t ≥ 0). As t increases, the relative ranking of the excursions above
t evolves. If �Zt > 0, then this means that with probability one, H has (infi-
nitely many) local minima at t , resulting in (infinitely many) additional excursions
above t . Indeed, note that by Theorem 4.7 in [18], this corresponds to a unique
excursion above t− splitting into infinitely many excursions. Moreover, all local
minima of (Ht , t ≥ 0) are in fact associated with jumps of Zt (this would not be
true if ψ had a quadratic term; see Theorem 4.7 of [18]). We then say that some
birth event happens. We rerank all excursions according to their new order (again,
given by the rank of their supremum). Old excursions keep their old type (but
might change their level) and the newly added excursions take the type from their
father. If excursion e

(t)
j splits, then this means that many levels k with k ≥ j take

the type ξj (t). Those who do not take this type get shifted upward accordingly.
To use the Donnelly–Kurtz terminology, we say that the levels k ≥ j adopting the
type ξj (t) take part in the birth event.

Let F = (Fa, a ≥ 0) be the filtration such that Fa = σ(H̃ b, b ≤ a). The key
observation for the proof of Theorem 14 is summarized by the following lemma.

LEMMA 15. Let a > 0 be a stopping time of the filtration F such that
�Za > 0 a.s. Define a sequence (εi)i∈N by εi = 1 if the level i takes part in the
birth event at time a for the process ξ (i.e., the ith highest excursion above a is
a newly created excursion) and 0 otherwise. Then the distribution of the sequence
(εi)i∈N is that of a sequence of i.i.d. Bernoulli variables with parameter �Za/Za .

PROOF. We know (see Theorem 4.7 in [18]) that if �Za > 0, then a is neces-
sarily a level where exactly one excursion is splitting into infinitely many smaller
ones (i.e., a is a level where H reaches a multiple infimum and for b < a, all
those infima are reached within the same excursion above b). In other words, if
a is a jump time of Z, there is a unique interval (s, t) such that La−

t = La−
s and

La
t − La

s = �Za. Let us denote x = La
s and y = La

t .

For i ≥ 1, define h
(a)
i := max e

(a)
i to be the height of the ith highest excursion

above level a and let t
(a)
i denote the local time accumulated at level a when the ex-

cursion e
(a)
i starts. By applying the strong Markov property which will be proved

at the very end of this section, in Lemma 17 we see that conditionally on Za ,
the process H

a

t has the same distribution as H run until TZa . Hence, the atoms
(t

(a)
i , h

(a)
i ) form a Poisson point process on [0,Za] × R

+ with intensity measure
dt × n(dh), where n is absolutely continuous with respect to the Lebesgue mea-
sure, n(0,∞) = ∞ and n(h,∞) < ∞ for h > 0. The measure n is the “law” of the
heights of excursions under the measure N .
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Observe that the levels that take part in the birth event are exactly the levels k

which correspond to the rank of a newly created excursion e
(a)
k , that is, the ex-

cursion such that t
(a)
k ∈ (x, y), where (x, y) is the new interval of local time. The

statement then amounts to the well-known fact about Poisson point processes that
the tj (observe that tj is the time of the j th record of the Poisson point process)
are i.i.d. uniformly distributed random variables over (0,Za) and are independent
of the sequence of records h

(a)
j . As the events {tj ∈ (x, y)} and {εj = 1} coincide,

the conclusion follows. �

Now, fix ε > 0. Let a1 be the first time t such that �Zt/Zt > ε. Observe that
almost surely a1 > 0 and that a1 is a stopping time for F . We may thus define,
inductively, a1 < a2 < . . . , the set of stopping times such that �Zt/Zt > ε and for
each i ≥ 1, ai is a stopping time of F . For i ≥ 1, a multiple infimum is reached at
level ai , which corresponds to a single excursion that splits into an infinite number
of descendants at this precise level. Define a process (ξ

(ε)
j (t), t ≥ 0, j = 1,2, . . .)

as follows:

• if t is not a jump time for Z, then nothing happens for ξ (ε), that is, we have
ξ (ε)(t−) = ξ (ε)(t);

• if t is a jump time for Z, but �Zt/Zt < ε, we use an independent coin flip-
ping with probability of heads y = �Zt/Zt , and the standard Donnelly–Kurtz
procedure, to obtain ξ (ε)(t) from ξ (ε)(t−);

• if t is a jump time for Z and �Zt/Zt ≥ ε (i.e., t = ai for some i), we say that
the levels which take part in the birth event are exactly the relative ranks of the
newly created excursions at level t.

LEMMA 16. For each fixed ε > 0, the processes ξ (ε) and ξ̃ have the same
distribution.

PROOF. We only need to show that our new rule for the times ai does not
differ from the usual construction. As the ai ’s are a sequence of stopping times,
we can apply Lemma 15 to see that we are again deciding who takes part in the
birth event according to a sequence of i.i.d. Bernoulli variables with parameters
�Zai

/Zai
. The strong Markov property also implies that the sequences used at the

successive times ai are independent. Hence, ξ (ε) has the same distribution as ξ̃ .
�

PROOF OF THEOREM 14. Let b1, . . . , bm be the times at which there is a
change in the first n levels for the process ξ (the number m of such times is nec-
essarily at most n − 1 since at each of the bi , the diversity of types among the
first n levels must be reduced at least by 1). Let F be a bounded functional on the
Skorokhod space D(R∞+ ,R) endowed with the product topology inherited from
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D(R+,R) and assume that F only depends on the first n coordinates (levels) for
some arbitrarily fixed number n ≥ 1. Then∣∣E(F(ξ)) − E

(
F

(
ξ (ε)))∣∣ ≤ ‖F‖∞P({b1, . . . , bm} �⊂ {a1, a2, . . .})(19)

because when {b1, . . . , bm} ⊂ {a1, a2, . . .}, the first n coordinates of ξ (ε) and ξ

coincide exactly. Since ξ (ε) and ξ̃ have the same distribution, by Lemma 16, we
deduce that

|E(F(ξ)) − E(F(ξ̃ ))| ≤ ‖F‖∞P({b1, . . . , bm} �⊂ {a1, a2, . . .}).(20)

Note that

lim
ε→0

P({b1, . . . , bm} �⊂ {a1, a2, . . .}) = 0.

Indeed, there are only finitely many jumps affecting the first n levels, so

η := inf
t∈{b1,...,bm}

�Zt

Zt

> 0 a.s.

Since {b1, . . . , bm} �⊂ {a1, a2, . . .} is equivalent to η < ε, we see that

P({b1, . . . , bm} �⊂ {a1, a2, . . .}) = P(η < ε) → 0

as ε → 0 because η > 0 a.s. It follows by letting ε → 0 in (20) that the restrictions
of ξ and ξ̃ to the first n coordinates are identical in distribution. By the uniqueness
in Kolmogorov’s extension theorem, the processes ξ and ξ̃ are thus identical in
distribution. �

It now remains to establish the strong Markov property, which we used on sev-
eral occasions. Note that this lemma holds even at stopping times T such that
�ZT > 0.

LEMMA 17. Let T be a stopping time of F . Conditionally on ZT = z, the

processes H
T

t and H̃ T
t are independent. Moreover, H

T

t is distributed as (Ht , t ≤
Tz).

PROOF. When T = s is a deterministic stopping time, then this is the content
of Corollary 3.2 in [18]. Suppose we now try to verify the claim when T is a
stopping time of Z which can only take a countable number of values {tk}, say. Let
F , G be two nonnegative functions defined on C([0,∞]) and assume that they
are continuous for the topology of uniform convergence on compact sets. Since
{T = tk} is Ftk -measurable we then have

E[F(H̃ T
t , t ≥ 0)G(H

T

t , t ≥ 0)|ZT = z]
= ∑

k≥0

E
[
F(H̃

tk
t , t ≥ 0)G(H

tk
t , t ≥ 0)1{T =tk}|Ztk = z

]
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= ∑
k≥0

E[G(Ht∧Tz, t ≥ 0)]E[
F(H̃ T

t , t ≥ 0)1{T =tk}|ZT = z
]

= E[G(Ht∧Tz, t ≥ 0)]E[F(H̃ T
t , t ≥ 0)|ZT = z].

To extend this to stopping times taking a continuous set of values, we use standard
approximations of the stopping time T by

Tn = ∑
k≥0

k + 1

2n
1{k/2n≤T <(k+1)/2n}.

Note that Tn approaches T from above within 2−n. To begin observe that∫ Tr

0
1{T ≤Hu≤Tn} du =

∫ Tn

T
Za da,

which, by (right) continuity of Z at T , is smaller than C2−n for n sufficiently large

a.s. To see that H
Tn

s approaches uniformly H
T

s , we think of the following picture.

There are two sources of difference between H
Tn

s and H
T

s . One is a shift downward
for the excursions above 0 because the parts of an excursion between T and Tn are

erased in H
Tn

t . This shift is at most 2−n. The other source is that there may be some
excursions above T that are not counted as excursions above Tn, or an excursion
above T could be split into two or more excursions above Tn because of a local
minimum between T and Tn. This results in a horizontal shift. The total duration
of this horizontal shift may never exceed the total time spent by H in the strip
[T ,Tn], which is not more than C2−n, by the above remark. Hence, by uniform

continuity of H , H
Tn

s approaches uniformly H
T

s . A moment’s thought shows that
the same reasoning applies to H̃

Tn
s (and this does not require left continuity of Z

at T ).
Therefore, if F,G are, as above, two bounded, nonnegative and continuous

functions on C([0,∞]) and if ϕ is also a bounded, continuous, nonnegative func-
tion on R, since Tn is a stopping time that takes only countably many values, we
have

E[F(H̃
Tn
t , t ≥ 0)G(H

Tn

t , t ≥ 0)ϕ(ZTn)]
=

∫ ∞
0

P(ZTn ∈ dz)ϕ(z)E[G(Ht∧Tz, t ≥ 0)]E[F(H̃
Tn
t , t ≥ 0)|ZTn = z].

If H ′ is another height process, independent of everything else, and if Ln = inf{t >

0,L0
t (H

′) > ZTn}, this can be rewritten as

E[F(H̃
Tn
t , t ≥ 0)G(H

Tn

t , t ≥ 0)ϕ(ZTn)]
= E[F(H̃

Tn
t , t ≥ 0)G(H ′

t∧Ln
, t ≥ 0)ϕ(ZTn)].

Note that if L = inf{t > 0,L0
t (H

′) > ZT }, then (H ′
t∧Ln

, t ≥ 0) → (H ′
t∧L, t ≥ 0)

uniformly almost surely. Indeed, because ZT is independent of H ′, it suffices to
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show, by Fubini’s theorem, that for a given z, (H ′
t∧T ′

z±ε
, t ≥ 0) converges uniformly

almost surely as ε → 0 to (H ′
t∧T ′

z ,t≥0), where T ′· is the inverse local time at 0 of H ′.
To see this, dropping the prime from the notation, first note that T· is continuous
at z almost surely because it is a subordinator and, as such, does not have fixed
discontinuities. Moreover, note that supTz≤s≤Tz+ε

Hs , say, is the supremum of the
heights of the excursions between Tz and Tz+ε . By the excursion theory for H ,
this can be written as Sε = supti≤ε h(ei), where (ti , h(ei)) is the Poisson point
process of the heights of the excursions on an interval of duration ε. For any δ > 0,
excursions of height greater than δ have finite measure under N and therefore
Sε ≤ δ for sufficiently small ε. It follows that Sε → 0 as ε → 0 almost surely or, in
other words,

‖Ht∧Tz+ε − Ht∧Tz‖∞ → 0

almost surely. Therefore, (Ht∧Tz±ε , t ≥ 0) converges uniformly to (Ht∧Tz, t ≥ 0)

a.s.
Since, on the other hand, H̃

Tn
t converges uniformly to H̃ T

t a.s., and since, sim-

ilarly, H
Tn converges a.s. uniformly to H

T
in the left-hand side, we conclude, by

Lebesgue’s dominated convergence theorem, that

E[F(H̃ T
t , t ≥ 0)G(H

T

t , t ≥ 0)ϕ(ZT )]
= E[F(H̃ T

t , t ≥ 0)G(H ′
t∧T ′

ZT

, t ≥ 0)ϕ(ZT )].
From this, we immediately deduce, by conditioning on ZT = z, the desired iden-
tity,

E[F(H̃ T
t , t ≥ 0)G(H

T

t , t ≥ 0)|ZT = z]
= E[G(Ht∧Tz, t ≥ 0)]E[F(H̃ T

t , t ≥ 0)|ZT = z]. �

4.4. Proofs of Theorem 1 and Corollary 2.

PROOF OF THEOREM 1. By Theorem 2.1 in [14], the time-changed genealogy
of ZR−1(t), as defined from the lookdown process, is a Beta(2 − α,α)-coalescent.
It then suffices to show that the notion of genealogy as we have defined it from the
height process coincides with the notion of genealogy for the lookdown process
constructed on the CRT.

There is a natural notion of genealogy associated with the lookdown construc-
tion. Namely, for any pair i, j ≥ 1 and any times 0 ≤ t ≤ T , we can decide if the
levels i and j at time T descend from the same level at time t (more precisely, we
can track their labels by going backward from time T to time t to see if they come
from the same label).

When the lookdown construction is obtained (as explained above) from the
process H , this means that levels i and j at time T have the same ancestor at
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time t if and only if the ith and j th highest excursions above T are descendants of
the same excursion above t .

Recall that (Vi, i = 1,2, . . .) is a sequence of variables in [0, Tr ] where each Vi

is the left endpoint of the ith highest excursion above R−1(t). It is clear that if

two excursions e
(R−1(t))
i and e

(R−1(t))
j above R−1(t) descend from the same excur-

sion above s, then Vi and Vj are straddled by this excursion above s or, in other
words, that minr∈(Vi ,Vj ) H(r) > s. Hence, we see that the partition-valued process
(�(s),0 ≤ s ≤ t) such that i and j are in the same block of �(s) if and only if
minr∈(Vi ,Vj ) H(r) > R−1(t − s), is exactly the process of the ancestral partition
of the lookdown process ξ between times R−1(t) and R−1(t − s). By applying
Theorem 2.1 in [14], this entails that when H is the height process associated with
the α-stable branching mechanism, � is a Beta(2−α,α)-coalescent—this was the
content of Theorem 1. �

PROOF OF COROLLARY 2. Again, observe that the genealogy as defined from
the lookdown process coincides with the following definition: i and j are in the
same block of �s if the ith and the j th highest excursions above level R−1(t)

are subexcursions of a single excursion above R−1(t − s). Let Ns be the num-
ber of excursions between R−1(t − s) and R−1(t) and, conditionally on Ns = k,
number these excursions in random order e1, . . . , ek , and let �1, �2, . . . , �k be their
respective local times at R−1(t). We want to show that the asymptotic frequency
of the block corresponding to an excursion is proportional to �. However, reason-
ing as in Lemma 15, we see that, conditionally on Ns = k and conditionally on
�1, �2, . . . , �k , each level i in the lookdown process at time R−1(t) falls in excur-
sion i with a probability that is equal to �i/ZR−1(t). It follows immediately from
the law of large numbers that the asymptotic frequency of the block associated
with ei is �i/ZR−1(t). In other words, the sequence of ranked frequencies of the
ancestral partition defined by the lookdown process is almost surely equal to the
process (X(s),0 ≤ s ≤ t). Corollary 2 immediately follows. �

5. Small-time behavior and multifractal spectrum. In this section, we use
Theorem 1 to prove Theorems 4 and 5. We start by introducing our main tool,
reduced trees.

5.1. Reduced trees as Galton–Watson processes. The key ingredient for the
theorems in this section is the reduced tree associated with a height process H .
For a fixed level a, the reduced tree at level a is a tree such that the number of
branches of the tree at height 0 ≤ t ≤ 1 is the number of excursions of H above
level at that reach level a, with the natural genealogical structure defined by saying
that v is an ancestor of w if the excursion associated with w is contained in v. We
will deduce from results of Duquesne and Le Gall [17] that when H is the height
process associated with the α-stable branching mechanism, this tree is a Galton–
Watson tree whose reproduction law can be described explicitly.
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When the Beta-coalescent is constructed from the continuous random tree, the
number of blocks N(s) at time s corresponds to the number of excursions above
level s′ that reach level R−1(t), for some s′ and t . We can deduce the limiting
behavior of N(s) when s → 0 from the limiting behavior of the reduced tree as
s′ → R−1(t). However, because the reduced tree is a Galton–Watson tree, its lim-
iting behavior is described by the Kesten–Stigum theorem, as stated in (22) below,
and this leads to a proof of Theorem 4. Likewise, Theorem 5 is established by
relating the multifractal spectrum of Beta-coalescents to the multifractal spectrum
for Galton–Watson trees and then applying recent results of Mörters and Shieh
[41] on the branching measure of Galton–Watson trees. An important step in the
proof of these theorems is showing that events concerning the reduced tree at a
fixed level can be carried over to the reduced tree at the random level R−1(t).

We now introduce more carefully the concept of reduced trees. We start with
some notation. If u > 0, let N(u) denote the excursion measure of the height
process, conditioned to hit level u,

N(u)(·) = N

(
·
∣∣∣ sup
s≥0

Hs > u

)
,

which is well defined since N(sups≥0 Hs > u) < ∞ for all u > 0. Let (Hs, s ≤ ζ )

be a realization of N(u) and consider the process (θu(t),0 ≤ t ≤ u) defined by
θu(t) = # exct,u, the number of excursions above level t reaching u of H . Simple
arguments show that almost surely for all t < u, we have θu(t) < ∞.

DEFINITION 18. The reduced tree Tu at level u associated with (Hs, s ≤ ζ )

is the tree encoded by the process (θu(tu),0 ≤ t ≤ 1). In other words, each branch
at level 0 ≤ t ≤ 1 is associated with a unique excursion above level tu reaching u.

In the context of quadratic branching where the height process is reflecting
Brownian motion, this is a variant of a process already considered by Neveu and
Pitman [42]. We should emphasize that, by a slight abuse of notation we will some-
times use the notation Tu even when the underlying process (Hs, s ≤ ζ ) is not a
realization of N(u), but, rather the height process considered until time Tr , where it
has accumulated local time r at zero. In this case, Tu is, in fact, a forest consisting
of a Poisson number of independent realizations of the tree of Definition 18. The
following fact will be a crucial tool for much of our analysis. It states that up to a
deterministic exponential time-change, the tree Tu is a continuous-time supercriti-
cal Galton–Watson (discrete) tree. We recall that here the branching mechanism is
assumed to be stable.

PROPOSITION 19. For fixed u > 0, the process (θu(u(1 − e−t )),0 ≤ t < ∞)

is a continuous-time Galton–Watson process where individuals reproduce at rate
1 with a number of offspring χ satisfying

E(rχ) = (1 − r)α − 1 + αr

α − 1
.(21)
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More explicitly,

P(χ = k) = α(2 − α)(3 − α) · · · (k − 1 − α)

k! , k ≥ 2,

and P(χ = k) = 0 for k ∈ {0,1}.
PROOF. We show how this result follows from a result in Duquesne and Le

Gall [17]. To simplify, we will assume that u = 1. By the remark following Theo-
rem 2.7.1 of [17], the time of the first split γ in θ1(t) is a uniform random variable
on (0,1). Then, conditionally on γ = t and θ1(γ ) = k, the process Zγ+s is distrib-
uted as the sum of k independent copies of (θ1−t (s),0 ≤ s ≤ 1− t). In particular, if
we follow a branch in the tree from level 0 to level 1, we see that the times at which
the corresponding individual reproduces are distributed according to the standard
“stick-breaking” construction of a Poisson–Dirichlet random variable, described
as follows. A first cut point is selected uniformly at random in (0,1) and the left
piece is discarded. Another point is selected uniformly in the right piece. Discard-
ing the left piece, we proceed further by selecting a point uniformly in the piece
left after the second cut, and so on. It is well known and easy to see that the image
of these points by the map t �→ − ln(1 − t) is a standard Poisson process. The dis-
tribution of the number of offspring at each branch point is naturally given by the
law of the random variable θ1(γ ), whose distribution is identified in the remark
following Theorem 2.7.1 of [17]. This implies the proposition. �

REMARK 20. We also present an intuitive, but less precise, argument for why
(θ1(1 − e−t ); t ≥ 0) is a Galton–Watson process (in the case of a stable branching
mechanism). We recall that the process H

a

t is independent of the process H̃ a ,
conditionally given the local time at level a = 1 − e−t , and the excursions are
given by the points of a Poisson point process with intensity dl × N(de); see
(18) for a precise formulation. In particular, given that k of them reach level 1,
they are k independent realizations of N(e−t ). This proves the independence of
θ1(1−e−(t+s)) with respect to its past, conditionally given θ1(1−e−t ). Moreover,
the law of each of these k subtrees is identical to that of the whole tree. Indeed,
the descendants at level 1 − e−(t+s) of some excursion above 1 − e−t reaching
1 is identical in law, after scaling the vertical axis by e−t , to the descendants at
level 1 − e−s of an excursion above level 0 reaching level 1. [Recall that because
the branching mechanism is stable, the height process has the following scaling
property: if (Hs, s ≥ 0) is the height process under the measure N(1), then H(u) =
(uHsu−α , s ≥ 0) is a realization of N(u).] This proves that |T1(1−e−t )| is a Galton–
Watson process. Observe, however, that this scaling argument does not give the
reproduction rate of individuals, nor the exact offspring distribution.

We conclude this section by observing that the Galton–Watson process [θu(u(1−
e−t )), t ≥ 0] satisfies the conditions needed to apply the celebrated Kesten–Stigum
theorem. More precisely, we have the following lemma.
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LEMMA 21. There exists a random variable W with W > 0 almost surely such
that

e−t/(α−1)θu(
u(1 − e−t )

) → W a.s. when t → ∞.(22)

PROOF. It can be checked that the reproduction law χ has mean m = 1 +
1/(α − 1). The Galton–Watson process is thus supercritical. Moreover, P(χ ≥
k) decays like k−α and in particular, E(χ logχ) < ∞, so we may apply to this
supercritical Galton–Watson process the Kesten–Stigum theorem (in continuous
time) [5], Theorem 7.1. �

5.2. Proof of Theorem 4 (number of blocks). We will now show that the vari-
able W in (22) above is a quantity which can be expressed in terms of the local
time at level u. We start by focusing on the case u = 1 and we work under the
measure N(1).

First, we need a simple continuity lemma for the local time at level 1 under N(1).

Let Z
(1)
t denote the total local time of the process H at level t .

LEMMA 22. Under N(1), Z
(1)
t is continuous at t = 1, that is, Z

(1)

1− = Z
(1)
1 ,

N(1)-a.s.

PROOF. When Zt is the local time at level t of (Hs, s ≤ Tr), then it is well
known that Zt cannot have a discontinuity at level 1 (indeed, Zt is a CSBP started
at Z0 = 1, hence it is a Feller process and so cannot have a fixed discontinuity).
Conditionally on

# exc0,1 = 1,

the excursion that reaches 1 is a realization of N(1) and as # exc0,1 is Poissonian,
this event has strictly positive probability. Hence, the result follows. �

We now give the interpretation of W in terms of Z
(1)
1 .

LEMMA 23. Let K = (α − 1)−1/(α−1) and let u > 0. Under N(u), we have

ε1/(α−1)θu(
u(1 − ε)

) → Ku−1/(α−1)Z(u)
u a.s.

as ε → 0, where Z
(u)
u denotes the local time of H at level u.

REMARK 24. This result is thus a generalization of Lévy’s result for the local
time of Brownian motion as the limit of the rescaled “downcrossing number” (see,
e.g., [47]). A similar result on the upcrossing number also exists and is, in fact,
much simpler than the one we prove here due to the existence of an excursion
theory above a fixed level.
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PROOF. For simplicity, we will prove this result assuming that u = 1, but the
case of general u follows exactly the same arguments. We thus wish to prove that

ε1/(α−1)θ1(1 − ε) → KZ
(1)
1 a.s.,

as ε → 0. We already know, by Lemma 21, that ε1/(α−1)θ1(1−ε) converges almost
surely to W . Hence, it is enough to prove the convergence in probability here to
obtain that W = KZ

(1)
1 a.s. and to thereby conclude.

By excursion theory, conditionally on Z
(1)
1−ε = zε , the number of excursions

above 1 − ε that reach 1 is Poisson distributed with mean zεN(sups≥0 Hs > ε).
Now, recall that by [17], Corollary 1.4.2 applied with ψ(u) = uα ,

N

(
sup
s≥0

Hs > ε

)
= (α − 1)−1/(α−1)ε−1/(α−1) = Kε−1/(α−1)

[this is why the factor u−1/(α−1) appears in the limit when u �= 1 since, in this case,
we need to compute N(sups≥0 Hs > uε)]. Let δ > 0 and let us show that

P
(
ε1/(α−1)θ1(1 − ε) > KZ

(1)
1 (1 + δ)

) → 0(23)

as ε → 0. To do this, note that this is smaller than

P
(∣∣Z(1)

1 − Z
(1)
1−ε

∣∣ > KZ
(1)
1 δ/2

)
(24)

+ P
(
ε1/(α−1)θ1(1 − ε) > KZ

(1)
1−ε(1 + δ/2)

)
.

The first term converges to 0 by continuity of Z at level 1. On the other hand,
Markov’s inequality implies that if X is a Poisson random variable with mean
m/ε, then for every λ > 0,

P
(
εX > m(1 + x)

) ≤ exp
[
m

ε

(−1 + eλ − λ(1 + x)
)]

.

By choosing λ > 0 sufficiently close to 0, we can find c > 0 such that

P
(
εX > m(1 + x)

) ≤ exp(−cm/ε).

Therefore, the second term in (24) is bounded from above by

E
(
exp

(−c′Z(1)
1−εε

−1/(α−1))) → 0

for some c′ > 0, by Lebesgue’s dominated convergence theorem, since Z
(1)
1−ε →

Z
(1)
1 , a.s. This gives the convergence in probability for the lemma. �

We note that the case u �= 1 can also be obtained from the case u = 1 by using
scaling properties of the process H : if (Hs, s ≥ 0) is the height process under the
measure N(1), then H(u) = (uHsu−α/(α−1) , s ≥ 0) is a realization of N(u) (see, e.g.,
the remark before Theorem 3.3.3 of [17]).
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LEMMA 25. Assume that θu(t) is obtained for 0 ≤ t ≤ u from the reduced
tree associated with the process (Ht ,0 ≤ t ≤ Tr). Then

lim
t→0

t1/(α−1)θu(1 − t) → Ku−1/(α−1)Zu a.s.(25)

PROOF. This is a simple extension of Lemma 23. Again, to simplify, assume
that u = 1. There is a slight difference with Lemma 23, because this was stated
under the measure N(1), whereas here, T1 is defined from the height process
(Hs, s ≤ Tr) and not a realization of N(1). However, this does not change the limit
result, since the excursions of (Hs, s ≤ Tr) reaching 1 are independent and distrib-
uted with law N(1) (note that the result is trivially true when no excursion reaches
level 1). Therefore, the result remains the same. �

The point of the next lemma is to show that any almost sure property Au of the
tree Tu still holds almost surely when the fixed level u is replaced by the random
level R−1(t) if we choose t outside a deterministic set of Lebesgue measure 0. By
convention, if Tu is empty (i.e., if sup0≤s≤Tr

Hs < u), we declare any property to
be true by default. Since we wish to study the property Au at level u = R−1(t) for
some t and Tu is never empty, this will never play any role.

LEMMA 26. Let Au be a property of the tree Tu such that for every u > 0,
P(Au| sup0≤s≤Tr

Hs > u) = 1. Then the set of t such that P(AR−1(t)) < 1 has zero
Lebesgue measure.

PROOF. Let F be the set of t such that At fails. By Fubini’s theorem,

E

∫ ∞
0

1{t∈F } dt = 0.

Therefore, Leb(F ) = 0 a.s. On the other hand, t �→ R(t) is almost surely an ab-
solutely continuous function. Indeed, it has a derivative at all points where Z is
continuous and Z has only countably many discontinuities a.s. Therefore, R(F)

also has zero Lebesgue measure almost surely. Hence,∫ ∞
0

1{R−1(t)∈F } dt = 0 a.s.

By taking expectations, we see that∫ ∞
0

P
(
R−1(t) ∈ F

)
dt = 0,

which proves the claim. �

The point is that the set F ′ of t such that A fails at R−1(t) may be chosen
deterministically. If t /∈ F ′, then, with probability one, AR−1(t) holds, even though
a priori we only knew this property for fixed, deterministic levels.
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As a consequence of Lemma 26, we may choose a deterministic t such that
the limit theorem for the number of vertices on Tu remains true for the level u =
R−1(t). For simplicity, we will assume that t = 1 is a valid choice, and we write
T0 = TR−1(1) for the tree which has a set of vertices at level t (0 ≤ t ≤ 1) given by
the excursions above R−1(1)t that reach level R−1(1). Hence,

lim
t→0

t1/(α−1)|T0(1 − t)| → K(R−1(1))−1/α−1ZR−1(1) a.s.(26)

The only thing that remains to be considered is the behavior of t �→ R−1(1 − t)

when t is small.

LEMMA 27. As t → 0, the following asymptotics hold almost surely:

R−1(1) − R−1(1 − t) ∼ t
1

α(α − 1)�(α)
Zα−1

R−1(1)
,

meaning that the ratio of the two sides converges to 1 almost surely.

PROOF. Let

q = 1

α(α − 1)�(α)
Zα−1

R−1(1)
.(27)

The lemma follows simply from the fact that almost surely the function R(t) is
differentiable at t = R−1(1) since Z is continuous at R−1(1). Its derivative is given
by

α(α − 1)�(α)Z1−α

R−1(1)
= q−1

which is nonzero almost surely. Therefore, R−1(t) is also differentiable at t = 1
and its derivative is q . �

PROOF OF THEOREM 4. Now, to finish the proof, note that for t ≤ 1,

N(t) = θR−1(1)(R−1(1 − t)
)
.

Since R−1(1 − t) = R−1(1) − tq + o(t), by monotonicity of θR−1(1), we see that

N(t) ∼ θR−1(1)(R−1(1) − tq
)
.

On the other hand, by (26), we have(
t

q

R−1(1)

)1/(α−1)

θR−1(1)(R−1(1) − tq
) → K(R−1(1))−1/(α−1)ZR−1(1) a.s.

After cancellation, we obtain that almost surely

t1/(α−1)N(t) → K
(
α(α − 1)�(α)

)1/(α−1) = (α�(α))1/(α−1),

as stated in Theorem 4. �
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5.3. Evans’ metric space and multifractal spectrum. We begin with by a de-
scription of the basic setup for this section, which is Evans’ random metric space S.
This space was introduced by Evans in [23] in the case of Kingman’s coalescent,
and some properties of S (such as its Hausdorff and packing dimensions) were
derived in [8] in the case of a Beta(2 − α,α)-coalescent and other coalescents be-
having similarly (see [8], Theorem 1.7). The space S is defined as the completion
of N for the distance dS which is defined on N by

dS(i, j) = inf
{
t : i ∼�(t) j

}
,

that is, dS(i, j) is the collision time of i and j. Observe that dS is, in fact, an
ultrametric, both on N and S, that is,

dS(x, z) ≤ dS(x, y) ∨ dS(y, z) ∀x, y, z ∈ S.

The space (S, dS) is complete by definition and hence it is compact as soon as
�(t) comes down from infinity. Indeed, for each t > 0, one needs only N(t) < ∞
balls of diameter t to cover it, which implies that S is precompact. Together with
completeness, this makes the space S compact. Given B ⊆ S, we write clB or B̄

for its closure (with respect to dS ). Let Ii(t) := min{j ∈ Bi(t)} be the least element
of Bi(t). Then the set

Ui(t) = clBi(t)

= cl
{
j ∈ N : j ∼�(t) Ii(t)

}
= cl{j ∈ N :d(j, Ii(t)) ≤ t}
= {y ∈ S :d(y, Ii(t)) ≤ t}

is a closed ball with diameter at most t. The closed balls of S are also the open
balls of this space and every ball is of the form Ui(t). In particular, it is easily seen
that the collection of balls is countable. For x ∈ S and t ≥ 0, we write B̄x(t) for
the ball of center x and diameter t [observe that in the case x ∈ N, this notation is
consistent with the blocks convention for �(t)].

It is possible (see [23]) to define almost surely a random measure η(·) on S by
requiring that for all i ∈ N and all t ≥ 0, the measure η(Ui(t)) is the frequency
of the block of �(t) containing i. We call η the mass-measure or the size-biased
picking measure. Recall that for γ ≤ 1/(α − 1), the subset S(γ ) of S is defined as

S(γ ) =
{
x ∈ S : lim inf

r→0

log(η(B̄x(r)))

log r
≤ γ

}
.

Results from [8] suggest that γ = 1/(α − 1) is the typical exponent for the size
of a block as time goes down to 0. Hence, here, we are looking for existence of
blocks whose size is abnormally large compared to the typical size as time goes
down to 0. The next result gives the precise value of the Hausdorff dimension of
this set (with respect to the distance on the space S).
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The key idea for the proof of Theorem 5 is the observation that the space S,
equipped with its mass measure η, can be thought of as the boundary of some
Galton–Watson tree [more precisely, the reduced tree at level R−1(t)] with the
associated branching measure. Hence, the multifractal spectrum of η in S is the
same as the multifractal spectrum of the branching measure in the boundary of
a supercritical Galton–Watson tree. The case where the offspring distribution is
heavy-tailed and has infinite variance has been recently studied by Mörters and
Shieh [41] and we can use their result to conclude. For basic properties of the
branching measure of a Galton–Watson tree, we recommend the references [37,
38, 41].

Recall that Tu designates the reduced tree at level u, that is, it is the tree where,
for each level 0 ≤ t ≤ 1, each vertex at level t corresponds to one excursion of H

above level ut that reaches level u. For our purposes, we eventually wish to work
under the law of (H(s),0 ≤ s ≤ Tr) (conditionally on the event sups≤Tr

Hs > u,
otherwise the tree is empty), but it will sometimes be more convenient to use Nu(·),
the excursion measure conditioned to hit level u. The difference is, of course that
in the latter case, Tu is a tree with a single ancestor, while in the former case, Tu is
actually a collection of a Poissonian number of i.i.d. trees joined at the root. These
trees have the distribution of the reduced tree under N(u)(·). We emphasize that for
this study of the multifractal spectrum, this does not create any real difference.

By definition, a ray of Tu is a path (ζ(t),0 ≤ t ≤ 1) such that ζ(0) is the root,
for every t, ζ(t) is a vertex at level t in Tu and for all s ≤ t , ζ(s) is an ancestor of
ζ(t). Then the boundary of the tree Tu, denoted ∂Tu, is just the set of all rays. The
boundary ∂Tu can be equipped with a metric dist∂T by letting dist∂T(U,V ) = 1− t

if t is the height at which U and V diverge. Let |Tu(t)| := θ(u)(ut) be the size of
generation at level t . By Proposition 19, we see that (|Tu(1 − e−t )|, t ≥ 0) is a
continuous-time Galton–Watson process where individuals live for an exponential
time with parameter 1 and then reproduce with offspring distribution χ. Recall
from Lemma 21 that there is a random variable W > 0 almost surely such that

W = lim
t→∞ e−t/(α−1)|Tu(1 − e−t )|.

Furthermore, for every vertex v ∈ Tu, we can define Tu(v), the subtree rooted at
v, and W(v), the limit (which exists almost surely) of its associated martingale. As
there are countably many branching points of Tu, this allows one to build a natural
measure µ, called the branching measure on ∂Tu, by introducing the requirement

µ
({ζ ∈ ∂Tu : ζ(1 − e−t ) = v}) = W(v)

et/(α−1)
.(28)

Observe that the set on the left-hand side is a ball of radius e−t centered on any ray
ζ such that ζ(1 − e−t ) = v. Having defined µ on arbitrary balls of the boundary
of the tree ∂Tu, this uniquely extends to a measure µ which is defined on arbitrary
subsets of ∂Tu by Carathéodory’s Extension theorem (see page 438 of [19]).
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When u > 0 is a fixed deterministic level, Tu is a collection of Galton–Watson
trees. The definitions introduced above then coincide with the standard notions
of distance, boundary and branching measure for a collection of Galton–Watson
trees. The lemma below is essentially a reformulation of Theorems 2.1 and 2.2 in
[41] within our framework.

LEMMA 28. Conditionally on sup0≤s≤Tr
Hs > u, the multifractal spectrum of

µ is given as follows: for all 1
α

≤ γ ≤ 1
α−1 ,

dimH

{
V ∈ ∂Tu : lim inf

r→0

log(µ(B(V, r)))

log r
≤ γ

}
= γα − 1

and the set is empty if γ < 1/α. If 1
α−1 < γ ≤ α

(α−1)2 , then

dimH

{
V ∈ ∂T : lim sup

r→0

log(µ(B(V, r)))

log r
≥ γ

}
= α

γ (α − 1)2 − 1

and the set is empty when γ > α/(α − 1)2.

PROOF. First, we remark that it suffices to prove this result under the measure
N(u). Moreover, it is elementary to check that{

V ∈ ∂Tu : lim inf
t→∞

log(µ(B(V, e−t )))

−t
= γ

}

=
{
V ∈ ∂Tu : lim inf

n→∞
log(µ(B(V, e−n)))

−n
= γ

}
and that {

V ∈ ∂Tu : lim sup
t→∞

log(µ(B(V, e−t )))

−t
= γ

}

=
{
V ∈ ∂Tu : lim sup

n→∞
log(µ(B(V, e−n)))

−n
= γ

}
.

Sampling at these discrete times gives us a discrete-time Galton–Watson process
which satisfies the assumptions of Theorems 2.1 and 2.2 of [41]. Its offspring
variable is given by

χdiscrete := |Tu(1 − e−1)|.
Observe that, by construction, P(χdiscrete = 0) = 0 and P(χdiscrete = 1) < 1. Fur-
thermore, it is easily seen that E(χdiscrete) = e1/(α−1). By [5], Corollary 2, Chap-
ter III.6, the offspring variable χdiscrete in discrete time and χ satisfy the X logX

condition simultaneously, so

E(χdiscrete logχdiscrete) < ∞.
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The last step is to check the values of the two constants

τ := − log
(
P(χdiscrete = 1)

)
/ log(E(χdiscrete))

and

r := lim inf
x→∞

− logP(χdiscrete > x)

logx
.

Note that χdiscrete = 1 occurs if the ancestor has not reproduced by time 1. Since the
time at which she reproduces is, on this timescale, an exponential random variable
with mean 1, we see that P(χdiscrete = 1) = e−1, so τ = −(α−1) log(e−1) = α−1.
To compute r requires a few more arguments. Now, it is known (see [37], (3.1) and
(3.2)) that r is equal to

sup{a > 0,E(χa
discrete) < ∞}.

On the other hand, by [5], Corollary 1, Chapter III.6 for all a > 1, E(χa
discrete) < ∞

if and only if E(χa) < ∞. Using (10), we see that χ admits moments of order up
to and excluding α, therefore r = α. Application of Theorems 2.1 and 2.2 of [41]
concludes the proof of the lemma. �

The proof of Theorem 5 is now straightforward. We show that the multifractal
spectrum of η in S with respect to the metric dS is necessarily the same as the
multifractal spectrum of µ in ∂T with respect to dist∂T.

PROOF OF THEOREM 5. Let T be the tree whose vertices at level t consist
of those excursions above level R−1(t) that reach level R−1(1). As above, the
boundary ∂T of the tree T is just the set of all “infinite” paths, that is, of paths
(ζ(t),0 ≤ t ≤ 1) such that for every t , ζ(t) is at level t of T . We may equip ∂T
with the following metric: the distance between two rays ζ and ζ ′ is simply

dist∂T (ζ, ζ ′) = 1 − sup{t ≤ 1 : ζ(t) = ζ ′(t)}.
There is a one-to-one map � between S and ∂T which can be described as

follows: let ζ ∈ ∂T , then for each t ∈ (0,1), the vertex ζ(1 − t) corresponds, by
definition, to an excursion above R−1(1 − t) that hits level R−1(1) and hence to
a block Bζ (t) of the partition �(t), where � is the embedded coalescent process.
When t < t ′, Bζ (t) ⊆ Bζ (t

′). Define i(t) := minBζ (t), the least element of the
block that corresponds to the vertex ζ(1 − t). Note that the function i(t) satisfies
the Cauchy criterion (with respect to the metric dS ) as t → 0, by construction.
Since S is a complete metric space under dS , it follows that there is a unique
x ∈ S such that dS(x, i(t)) → 0 when t → 0. We put �−1(ζ ) = x. In the converse
direction, since N is dense in S, for any x ∈ S, we may consider a sequence (in, n =
1,2, . . .) in N such that dS(in, x) → 0 when n → ∞. Without loss of generality, we
may assume that dS(in, x) is monotone decreasing. Then the sequence of blocks
B(in, tn) that contain in at time tn = dS(in, x) defines a unique ray ζx such that
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ζx(1− tn) corresponds to B(in, tn) for each n. Moreover, ζx does not depend on the
particular sequence in converging to x, so we may unambiguously define �(x) =
ζx . It is easy to see that �(�−1(ζ )) = ζ . For instance, this map � acts on the
integers as follows: ∀i ∈ N, �(i) is the unique ray (ζ(t), t ≥ 0) such that for each
t ≥ 0, the integer i is in the block of �(t) which corresponds to ζ(t).

Hence, we may identify S with ∂T and note that, by construction, distances are
preserved in this identification

dS(x, y) = dist∂T (�(x),�(y)).

Furthermore, if z is a vertex at level t of T , let �(z) the total local time at level
R−1(1) of the excursion defining z, divided by ZR−1(1), the total local time of the
whole process (Hs, s ≤ Tr) at level R−1(1). The correspondence between local
time at level R−1(1) and asymptotic frequencies of the blocks of �(t) implies that

η(B(x, t)) = �(ζx(t)),(29)

where ζx(t) is the vertex corresponding to B(x, t), that is, the vertex at level t

on the ray ζx . Hence, as the map � preserves the distance, it is easy to see that
dimH S(γ ) = dimH S′(γ ), where

S′(γ ) =
{
ζ ∈ ∂T : lim inf

t→0

log �(ζ(1 − t))

log t
≤ γ

}
(30)

because the two sets coincide via the map �. Thus, we want to prove that
dimH S′(γ ) = (γ α − 1). On the other hand, recall that T is just a rescaling of T0,
which is the shorthand notation for the reduced tree at level R−1(1). Recall that
this tree has a set of vertices at level t (for 0 ≤ t ≤ 1) corresponding to excursions
above level tR−1(1) reaching R−1(1). Let us first treat the case γ ≤ 1/(α − 1) of
“thick points.” By Lemma 27, we have that R−1(1) − R−1(1 − t) ∼ tq (where, as
before, q denotes the random number in Lemma 27), so it is enough to prove that
dimH S′

0(γ ) = (γ α − 1), where

S′
0(γ ) =

{
ζ ∈ ∂T0 : lim inf

t→0

log �(ζ(1 − t))

log t
≤ γ

}
.

On the other hand, by Lemma 23, for a fixed level u > 0, the limit W of the
Kesten–Stigum martingale associated with the reduced tree at level u is a constant
multiple of the local time at u. Let (ζ(t),0 ≤ t ≤ 1) be a ray in ∂Tu. Applying
this to the subtree rooted at v = ζ(t), it follows that the number W(v) defining
the branching measure on ∂Tu is also a constant multiple of the local time �(v) at
level u enclosed in the excursion corresponding to vertex v,

W(v) = K(ue−t )−1/(α−1)�(ζ(t)),

since the subtree rooted at v has the law of Tue−t
. In other words, dividing both

sides by et/(α−1) and referring to (28), if µ is the branching measure on ∂Tu, then
almost surely, for all t > 0,

µ(B(ζ, e−t )) = K�(ζ(t)),
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that is, the branching measure associated with a vertex ζ(t) = z ∈ Tu is a constant
multiple of the local time �(z) enclosed at level u in the excursion corresponding
to z. Therefore, using Lemma 28, this implies that almost surely, conditionally on
the event sup0≤s≤Tr

Hs > u,

dimH

{
ζ ∈ Tu : lim inf

t→0

log �(ζ(1 − t))

log t
≤ γ

}
= γα − 1.

We may therefore apply Lemma 26 to conclude that if t /∈ N , where N is a de-
terministic set of Lebesgue measure zero, then this property also holds for the
reduced tree at level R−1(t). There is, of course, no loss of generality in assuming
that 1 /∈ N , so we conclude that

dimH S′
0(γ ) = γα − 1,

as required. When γ > 1/(α − 1), the proof follows the same lines and uses the
“thin points” part of Lemma 28. This concludes the proof of Theorem 5. �

6. Site and allele frequency spectrum. Our goal in this section is to prove
Theorem 9. Our proof relies heavily on the connection between Beta-coalescents
and Galton–Watson processes developed in the previous section. Throughout this
section, (ξt , t ≥ 0) will denote the continuous-time Galton–Watson process where
individuals live for an independent exponential amount of time and then give birth
to a number of offspring distributed according to χ , where P(χ = 0) = P(χ =
1) = 0 and, for k ≥ 2,

P(χ = k) = α(2 − α)(3 − α) · · · (k − 1 − α)

k! = α�(k − α)

k!�(2 − α)
.

This offspring distribution is supercritical, with mean m = 1 + 1/(α − 1). Also,
recall that Mk(n) denotes the number of families of size k in the infinite sites model
when the sample has n individuals, and that Nk(n) is the equivalent quantity in the
infinite alleles model.

6.1. Expected values. Suppose marks occur at times of a constant rate θ Pois-
son point process along the branches of a reduced tree at level 1 under the measure
N(1), so that the reduced tree has a single ancestor. Recall that the number of
branches of T1 at level 1 − e−t is a Galton–Watson process. Hence, after rescal-
ing, this amounts to having mutation marks at intensity θe−s per unit length at
time s on the Galton–Watson tree that comes from the process ξ . We will stop the
Galton–Watson process at a fixed time t . If there is a mutation at time s < t , then
we say that it creates a family of size k if the individual with the mutation at time s

has k descendants alive in the population at time t . Let MGW
k (t) denote the number

of families of size k at time t . The following result shows that a simple calculation
gives the asymptotic behavior of E[MGW

k (t)]. A sharper argument will be needed
to establish convergence in probability.
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PROPOSITION 29. Let τ be an independent exponential random variable with
mean 1/c, where

c = 2 − α

α − 1
.

We have

lim
t→∞ e−ctE(MGW

k (t)) = θ

c
P (ξτ = k).

PROOF. By applying the branching property and using the facts that E[ξt ] =
e(m−1)t and that m − 2 = c for the third equality, we obtain

E(MGW
k (t)) =

∫ t

0
P(there is a mark in dl)P (ξt−l = k)

=
∫ t

0
E(ξlθe−l) dl P (ξt−l = k)

=
∫ t

0
θeclP (ξt−l = k) dl

= θect
∫ t

0
e−cuP (ξu = k) du

= ect θ

c

∫ t

0
ce−cuP (ξu = k) du.

Multiplying both sides by e−ct and letting t → ∞, we get

lim
t→∞ e−ctE(MGW

k (t)) = θ

c

∫ ∞
0

ce−cuP (ξu = k) du

= θ

c
P (ξτ = k). �

To make the limiting expression for E[MGW
k (t)] more explicit, we now calcu-

late P(ξτ = k).

LEMMA 30. For all positive integers k, we have

P(ξτ = k) = (2 − α)�(k + α − 2)

�(α − 1)k! .(31)

PROOF. We prove the result by induction. Note that ξτ = 1 if and only if there
are no birth events before time τ . Because τ has an exponential distribution with
rate parameter c and individuals give birth at rate 1, it follows that

P(ξτ = 1) = c

1 + c
= 2 − α,
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which agrees with the right-hand side of (31) when k = 1.
Now, suppose that k ≥ 2 and (31) is valid for j = 1, . . . , k − 1. Let rk = P(ξt =

k for some t ≤ τ). By conditioning on the number of individuals before there were
k individuals, we get

rk =
k−1∑
j=1

rj · j

j + c
P (χ = k − j + 1)(32)

because if there are j < k individuals, then the probability of having another birth
before time τ is j/(j + c) and if this happens, the probability that there are k

individuals after the next birth is P(χ = k − j + 1). If ξt = k for some t ≤ τ , then
we will have ξτ = k if and only if τ occurs before the next birth event. When there
are k individuals, birth events happen at rate k, so the probability that τ happens
before the next birth is c/(k + c). Therefore, P(ξτ = k) = crk/(k + c) and so
rk = P(ξτ = k)(k + c)/c. Substituting this into (32), we get

P(ξτ = k) = 1

k + c

k−1∑
j=1

jP (ξτ = j)P (χ = k − j + 1).(33)

Using the induction hypothesis and the fact that P(χ = k) = α�(k − α)/(k!�(2 −
α)), we obtain

P(ξτ = k) = α(2 − α)

�(α − 1)�(2 − α)(k + c)

k−1∑
j=1

�(j + α − 2)�(k − j + 1 − α)

(j − 1)!(k − j + 1)! .

Using the fact that k + c = (kα − k + 2 − α)/(α − 1) and letting � = j − 1 in the
sum, we get

P(ξτ = k) = α(α − 1)(2 − α)

(kα − k + 2 − α)�(α − 1)�(2 − α)
(34)

×
k−2∑
�=0

�(� + α − 1)�(k − � − α)

�!(k − �)! .

If a, b ∈ R and n ∈ N, then by starting with the identity (1 − x)−a(1 − x)−b =
(1 − x)−(a+b) and considering the nth order term in the Taylor series expansion of
both sides, we get (see, e.g., page 70 in [3])

n∑
k=0

(a)k(b)n−k

k!(n − k)! = (a + b)n

n! ,

where (a)k = a(a +1) · · · (a + k −1). Since (a)k = �(a + k)/�(a), it follows that
n∑

k=0

�(a + k)�(b + n − k)

k!(n − k)! = �(a)�(b)(a + b)n

n! .(35)
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When a + b = −1, we have (a + b)n = 0. Therefore, (35) with a = α − 1 and
b = −α implies that the sum on the right-hand side of (34) would be zero if it
went up to k rather than k − 2. It follows that the sum up to k − 2 is equal to the
negative of the sum of the terms when � = k and � = k − 1, which is

−�(k + α − 2)�(1 − α)

(k − 1)! − �(k − α − 1)�(−α)

k!
= �(2 − α)�(k + α − 2)(kα − k + 2 − α)

k!α(α − 1)
.

Combining this result with (34) gives (31). The lemma follows by induction. �

6.2. A queueing system result. The problem on a Galton–Watson tree will es-
sentially reduce to the following lemma.

Let Qt be the state of a queueing system where customers arrive at rate Aect

for some constants A and c > 0. We assume that there are infinitely many servers
and that each customer requires an independent exponential rate λ amount of time
to be served, so when the state of the queue is m, the departure rate is λm per unit
of time.

LEMMA 31. As t → ∞, almost surely

e−ctQt → A

λ + c
.

PROOF. Because all customers depart at rate λ, the number of customers at
time zero does not affect the limiting behavior of the queue as t → ∞. Therefore,
we may assume that the number of customers at time zero is Poisson with mean
A/(λ + c). The probability that a customer who arrives at time s ≤ t is still in the
queue at time t is e−λ(t−s). Therefore, the distribution of Qt is Poisson with mean

Ae−λt

λ + c
+

∫ t

0
Aecse−λ(t−s) ds = Aect

λ + c
.

For all positive integers n, let tn = (3/c) logn, so E[Qtn] = An3/(λ + c). Let
Bn be the event that (1 − ε)An3/(λ+ c) ≤ Qtn ≤ (1 + ε)An3/(λ + c). Note that if
Z has a Poisson distribution with mean µ, then

P(|Z − µ| > εµ) ≤ 1

ε2µ
,(36)

by Chebyshev’s inequality. Applying (36) with µ = An3/(λ + c), we get

P(Bc
n) ≤ λ + c

Aε2n3 .

Therefore, by the Borel–Cantelli lemma, almost surely Bn occurs for all but finitely
many n.
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Between times tn and tn+1, the number of arrivals is Poisson with mean at most∫ tn+1

tn

Aecs ds = A

c

(
(n + 1)3 − n3) ≤ 3A(n + 1)2

c
.

Therefore, the probability that there are more than 6A(n + 1)2/c arrivals between
times tn−1 and tn is at most the probability that a Poisson random variable with
mean 3A(n + 1)2/c is greater than 6A(n + 1)2/c, which by (36) with ε = 1, is
at most c/(3A(n + 1)2). The number of departures between times tn and tn+1
also has a Poisson distribution and since E[Qt ] is an increasing function of t ,
the expected number of departures between times tn and tn+1 is also bounded by
3A(n + 1)2/c. Therefore, the probability that there are more than 6A(n + 1)2/c

departures between times tn and tn+1 is at most c/(3A(n + 1)2). Let Dn be the
event that between times tn−1 and tn, there are at most 6A(n + 1)2/c arrivals and
at most 6A(n + 1)2/c departures. By the Borel–Cantelli lemma, almost surely Dn

occurs for all but finitely many n.
Suppose that Bn and Dn occur for all n ≥ N . Suppose that tn ≤ t ≤ tn+1. If

n ≥ N , then

(1 − ε)An3

λ + c
− 6A(n + 1)2

c
≤ Qt ≤ (1 + ε)An3

λ + c
+ 6A(n + 1)2

c
.

Because 1/n3 ≤ e−ct ≤ 1/(n + 1)3, it follows that

lim sup
n→∞

e−ctQt ≤ (1 + ε)A

λ + c
a.s.

and

lim inf
n→∞ e−ctQt ≥ (1 − ε)A

λ + c
a.s.

Since ε > 0 is arbitrary, the result follows. �

Having proven this result, we easily deduce the following one. Suppose that
(Qt , t ≥ 0) is the length of the queue in a queueing system, where the arrival rate is
a random process at [i.e., the process of arrivals (Q+

t , t ≥ 0) is a counting process
such that Q+

t − ∫ t
0 as ds is a martingale] and the departure rate at time t , which is

nonrandom, is λ(t) per customer. Then if at and λ(t) have the correct asymptotics
as t → ∞, the asymptotics of Qt are also the same as in the previous case.

LEMMA 32. If at ∼ Aect almost surely as t → ∞ and limt→∞ λ(t) = λ, then
almost surely

e−ctQt → A

λ + c
.
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PROOF. Let At = ∫ t
0 as ds. Since Q+

t is a counting process and Q+
t − At is a

martingale, there exists a Poisson process N0
t such that Q+

t = N0
At

. Let ε > 0 and
consider the function

bt = (
A(1 + ε)ect − at

)
+.

Let N1 be an independent Poisson process. Compare the state of the queue
(Qt , t ≥ 0) with the queue (Q1,t , t ≥ 0), in which customers arrive with the jumps
of (N0

At
+ N1

Bt
, t ≥ 0), where Bt = ∫ t

0 bs ds, and customers get served at rate λ(t).
By properties of Poisson processes, the arrival process of the queue Q1 is thus it-
self a Poisson process with rate at +bt per unit time. Observe that for t sufficiently
large, at ≤ A(1+ε)ect , so for t sufficiently large, bt = A(1+ε)ect −at . Thus, for t

sufficiently large, the total rate of arrivals for the queue Q1 is at +bt = A(1+ε)ect .
Let (Q2,t , t ≥ 0) be the queue where arrivals are given by N0

At
+ N1

Bt
when

at ≤ A(1 + ε)ect and N2
A(1+ε)ect otherwise, where (N2

t , t ≥ 0) is another inde-
pendent Poisson process. Again, assume that customers depart from the queue at
rate λ(t). Since customers depart from Q1 and Q2 at the same rate, the queues
can be coupled so that they are identical after a certain random time T . More-
over, (Q2,t , t ≥ 0) is a queueing system where arrivals occur at rate A(1 + ε)ect

throughout time. Because λ(t) → λ, we have λ(t) ≥ λ − ε for sufficiently large t .
Therefore, the queue (Q2,t , t ≥ 0) can be coupled with another queue (Q3,t , t ≥ 0)

with arrival rate A(1+ε)ect and departure rate λ−ε such that Q2,t ≤ Q3,t for suf-
ficiently large t , because for t sufficiently large, all customers depart Q2 at least as
quickly as they depart Q3. Hence, by Lemma 31, almost surely

lim sup
t→∞

e−ctQ2,t ≤ A(1 + ε)

(λ − ε) + c

and similarly for Q1, because Q1 and Q2 have the same asymptotics. By con-
struction, we also have that for all t ≥ 0, Qt ≤ Q1,t , because every customer who
arrives in Q also arrives in Q1. By taking ε → 0, this implies that

lim sup
t→∞

e−ctQt ≤ A

λ + c
.

Applying similar reasoning, we get lim inft→∞ e−ctQt ≥ (1 − ε)A/((λ + ε) + c)

a.s. for all ε > 0, which implies the lemma. �

6.3. Almost sure result for a Galton–Watson tree. Recall that we are consider-
ing the Galton–Watson tree associated with the branching process (ξt , t ≥ 0), with
mutation marks along the branches at rate θe−s at time s. By Lemma 21, there is
a random variable W such that

e−(m−1)t ξt → W a.s.

Recall that MGW
k (t) denotes the number of marks before time t such that the in-

dividual who gets the mutation has k descendants at time t . Likewise, let NGW
k (t)
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denote the number of blocks of size k in the allelic partition at time t , when we
assume two individuals have different alleles if any of their ancestors have had a
mutation since their most recent common ancestor.

For the proof, we introduce two other quantities. Let Lk(t) be the number of
mutations before time t such that the individual who gets the mutation has k de-
scendants alive at time t and none of this individual’s descendants undergoes an-
other mutation before time t . Let K(t) be the number of mutations before time t

such that some descendant of the individual that undergoes the mutation also un-
dergoes another mutation before time t . The strategy of the proof will be to show
that MGW

k (t) and NGW
k (t) both behave asymptotically like Lk(t), while K(t) is of

lower order. The lemma below concerns Lk(t).

LEMMA 33. For all k ≥ 1,

e−ctLk(t) → θW

c
P (ξτ = k) a.s.

PROOF. Our first step is to prove that this result holds with a limit being θWak

for some deterministic sequence of positive numbers ak .
We prove this by induction on k ≥ 1. For k = 1, observe that, conditionally on

the process (ξt , t ≥ 0), the process L1(t) can be viewed as a birth-and-death chain
in which the total birth rate is θe−t ξt and each individual dies at rate 1 + θe−t . In-
deed, L1(t) increases by one every time some branch gets hit by a mutation. Since
marks arrive at rate θe−t dt at time t on each branch of the Galton–Watson tree,
this means that, conditional on (ξt , t ≥ 0), new mutations occur at rate θe−t ξt dt .
Also, L1(t) decreases by one each time a member of a family of size 1 either
reproduces or experiences a mutation, which happens at rate 1 + θe−t for every
individual. Because e−(m−1)t ξt → W a.s., we can view L1(t) as a queueing system
whose arrival rate is asymptotic to θWect and whose departure rate converges to 1.
Therefore, by conditioning on W and applying Lemma 32, we have

e−ctL1(t) → θW

1 + c
.

Because

P(ξτ = 1) =
∫ ∞

0
ce−cuP (ξu = 1) du

=
∫ ∞

0
ce−cue−u du

= c/(c + 1),

we can take a1 = (1/c)P (ξτ = 1), which is deterministic.
Now suppose that k ≥ 2. Note that families of size k are obtained when an

individual in a family of size j with j ≤ k − 1 reproduces and has k − j + 1
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offspring. Therefore, the process (Lk(t), t ≥ 0) is a birth-and-death chain with
arrival rate

k−1∑
j=1

jLj (t)P (χ = k − j + 1) dt.(37)

We emphasize that this does not mean that conditionally on (Lj (t), t ≥ 0, i =
1, . . . , k − 1), the process Lk is a queueing system with arrival rate (37). Indeed,
the positive jump times of Lk are necessarily negative jump times of Lj for some
j < k. Instead, this means that the arrival process L+

k for the queue Lk is a counting
process such that

L+
k (t) −

∫ t

0

k−1∑
j=1

jLj (s)P (χ = k − j + 1) ds(38)

is a martingale and conditionally on L+
k , the process Lk(t) is independent of the

lower-level queues Lj , j = 1, . . . , k−1. The departure rate at time t is k(1+θe−t )

because for each family of size k, there are k individuals that could reproduce or
experience mutation.

In particular, the arrival rate (37) for Lk(t) is almost surely asymptotic to

θW

(
k−1∑
j=1

jajP (χ = k − j + 1)

)
ect .

Applying Lemma 32 with λ = k, we conclude

e−ctLk(t) → θWak a.s.,

where

ak = 1

k + c

k−1∑
j=1

jajP (χ = k − j + 1).

Thus, the constants ak satisfy the same recursion established in (33) for P(ξτ = k).
Because a1 = (1/c)P (ξτ = k), it follows that ak = (1/c)P (ξτ = k) for all k. �

We now use this result to obtain the asymptotic behavior of the quantities MGW
k

and NGW
k .

LEMMA 34. For all k ≥ 1, almost surely

e−ctMGW
k (t) → θW

c
P (ξτ = k)

and

e−ctNGW
k (t) → θW

c
P (ξτ = k).
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PROOF. Note that every mutation before time t that is counted by Lk(t) is
inherited by k individuals at time t . By the definition of Lk(t), these k individuals
experience no additional mutations, so they form a block of the allelic partition at
time t . It follows that Lk(t) ≤ MGW

k (t) and Lk(t) ≤ NGW
k (t). Furthermore, if any

mutation not counted by Lk(t) is passed on to k individuals at time t or gives rise
to a block of size k in the allelic partition at time t , then some descendant of the
individual that experiences the mutation must experience another mutation before
time t . Therefore, we have MGW

k (t) ≤ Lk(t) + K(t) and NGW
k (t) ≤ Lk(t) + K(t).

Thus, the result will follow from Lemma 33 once we prove that

lim
t→∞ e−ctK(t) = 0 a.s.(39)

To prove (39), note that if M(t) denotes the total number of mutations before
time t , then for all positive integers N ,

K(t) = M(t) −
∞∑

k=1

Lk(t)

≤ M(t) −
N∑

k=1

Lk(t).

Conditional on (ξt , t ≥ 0), the process (M(t), t ≥ 0) is a queueing system with
departure rate zero and arrival rate θe−t ξt . Therefore, by Lemma 32, we have
e−ctM(t) → θW/c a.s. By combining this result with Lemma 33, we get

lim sup
t→∞

e−ctK(t) ≤ θW

c
−

N∑
k=1

θW

c
P (ξτ = k)

= θW

c
P (ξτ > N).

Letting N → ∞ gives (39). �

REMARK 35. Another consequence of this result is that the proportions of
families of size k both in the infinite sites and the infinite alleles models satisfy

MGW
k (t)

M(t)
→ P(ξτ = k),

NGW
k (t)

M(t)
→ P(ξτ = k),

almost surely. We will use this below.
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6.4. Almost sure result for the Beta-coalescent tree. Let u > 0 and consider
the reduced tree Tu at level u, which, we recall, has, at level 0 ≤ t ≤ 1, as many
vertices as there are excursions between tu and u. Suppose mutation marks fall
at intensity θ dt per unit length on this tree and for k ≥ 1, we let MTu

k (t) be the
number of families of size k at level 0 ≤ t ≤ 1 in the infinite sites model, and let
NTu

k (t) be the equivalent quantity in the infinite alleles model.

LEMMA 36. For fixed u, conditionally on sup0≤s≤Tr
Hs > u, almost surely as

t → 0,

tcMTu

k (1 − t) → θK

c
u−1/(α−1)ZuP (ξτ = k)(40)

and

tcNTu

k (1 − t) → θK

c
u−1/(α−1)ZuP (ξτ = k),(41)

where K = (α − 1)−1/(α−1).

PROOF. The proof follows from Lemma 34 in exactly the same way that Lem-
mas 23 and 25 follow from the Kesten–Stigum theorem, the idea being simply that
we can again identify W with Ku−1/(α−1)Zu when we look at the reduced tree at
level u, Tu. �

PROOF OF THEOREM 9. We first note that (40) may be strengthened into the
same result where the convergence holds almost surely for all θ simultaneously.
Indeed, if we assume that mutation marks come with a label θ in (0,∞) and that
mutation marks fall on the tree with intensity dθ ⊗ dt , where dt stands for the unit
length of the tree, we obtain a construction of MTu

k (t) for all θ simultaneously by
considering those marks whose label is smaller than θ . (We note for later purposes
that, independent of the shape of the tree, such mutation marks may themselves
be obtained from a probability measure Q which is a countable collection of inde-
pendent Poisson processes with intensity dθ ⊗ dt .) Observe that since MTu

k (t) is
monotone in θ and since (40) holds for all rational θ , it also holds for nonrational
values of θ . To get (40) simultaneously for all θ in the infinite allele case as well,
note that |MGW

k (t)−NGW
k (t)| ≤ K(t) for all k and t . Since K(t) is monotone in θ ,

the result (39) holds for all θ > 0, so (41) also holds simultaneously for all θ .
Let Au be the event that (40) and (41) hold almost surely for all θ simulta-

neously. By applying Lemma 26 with the product probability P × Q, we may
assume, without loss of generality, that (40) and (41) hold almost surely for all θ

also at level u = R−1(1), that is,

P × Q
(
AR−1(1)

) = 1.

Let T0 = TR−1(1) be the reduced tree at level R−1(1). In order to translate the result
to the Beta-coalescent tree, one more fact is needed, since the coalescent tree is
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not exactly T0, but a time-change of T0. (Indeed, for t ≤ 1, the coalescent tree T
has t # excR−1(1−t),R−1(1) branches at level, rather than # exctR−1(1),R−1(1).) In fact,
this simply translates into a change of the intensity of the mutation marks for T0.
Indeed, for a given segment in the coalescent tree, between level R−1(1 − t) and
R−1(1 − s) for s ≤ t , there is a Poisson number of marks with intensity θ(t − s).
So, if 0 ≤ σ ≤ τ ≤ 1, the number of marks on a segment of the reduced tree T0
between levels σ and τ is also a Poisson random variable with parameter θ(t − s),
with R−1(1 − t) = τR−1(1) and R−1(1 − s) = σR−1(1). Now, observe that as
t → 0 or τ → 1, this means that the intensity of the marks becomes asymptotic to
θR−1(1)/q , where q is the derivative of the function R−1(1 − t) at t = 0, which
was shown to be

q = 1

α(α − 1)�(α)
Zα−1

R−1(1)

in Lemma 27. Let M�
k (t) be the number of families of size k obtained from the

coalescent tree considered for all s ≥ t . (I.e., this tree at level s ≥ 0 has |�t+s |
branches.) Using monotonicity of M

T0
k (t) (number of families of size k in the

infinite-site case on T0) with respect to the intensity, this means that for all ε > 0,
for t sufficiently small, M�

k (t) ≤ M
T0
k (1− tq/R−1(1)), where the intensity is (θ +

ε)R−1(1)/q . Using (40) and the notation u = R−1(1), we have

lim sup
t→0

tcM�
k (t) ≤ lim sup

t→0
tcM

T0
k

(
1 − tq/R−1(1)

)
≤ K(θ + ε)u

qc
u−1/(α−1)Zuu

cq−cP (ξτ = k)

≤ θ + ε

c
(α�(α))1/(α−1)P (ξτ = k)

after simplification, recalling that c = (2 − α)/(α − 1). We may proceed similarly
with the lim inf, so we have proven that almost surely as t → 0,

tcM�
k (t) → θ

c
(α�(α))1/(α−1)P (ξτ = k).

Combining this result with (39), we get

tcN�
k (t) → θ

c
(α�(α))1/(α−1)P (ξτ = k).

The same calculations apply to show that the total number of marks M�(t) satis-
fies

tcM�(t) → θ

c
(α�(α))1/(α−1)

almost surely. We apply this convergence at times t = Tn = inf{t > 0 : |�t | ≤ n}.
Recall that Tn ∼ (α�(α))n1−α almost surely and that when |�(Tn)| = n (i.e., if
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the coalescent ever has n blocks), then M�(Tn) is identical to M(n). On the other
hand, by Theorem 1.8 in [8], limn→∞ P(|�Tn | = n) = α − 1 > 0, so conditioning
on this event which has asymptotically positive probability, we find that

nα−2M(n) →p θ
α(α − 1)�(α)

2 − α

(this argument is similar to the one for Theorem 1.9 in [8]). On the other hand, the
total number of families M(n) is Poisson with parameter θLn, conditionally on Ln,
where Ln is the total length of the tree, so this gives another proof of Theorem 1.9
in [8] which states that

nα−2Ln →p

α(α − 1)�(α)

2 − α
.

We conclude similarly that

nα−2Mk(n) →p θ
α(α − 1)�(α)

2 − α
P (ξτ = k).

It follows immediately that the same convergence holds for Nk(n) and this con-
cludes the proof of Theorem 9. �

COROLLARY 37. Let K(n) be the size of a family chosen uniformly at random
among all M(n) families when the population has n individuals. Then

K(n) →d ξτ .

This is just a reformulation of the fact that the proportions of families of size k

converge to P(ξτ = k). Note that ξτ < ∞ almost surely, meaning that, asymptoti-
cally, a typical family stays of finite size.
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