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CURVE CROSSING FOR RANDOM WALKS REFLECTED AT
THEIR MAXIMUM1

BY RON DONEY AND ROSS MALLER

University of Manchester and Australian National University

Let Rn = max0≤j≤n Sj − Sn be a random walk Sn reflected in its max-
imum. Except in the trivial case when P(X ≥ 0) = 1, Rn will pass over a
horizontal boundary of any height in a finite time, with probability 1. We ex-
tend this by giving necessary and sufficient conditions for finiteness of pas-
sage times of Rn above certain curved (power law) boundaries, as well. The
intuition that a degree of heaviness of the negative tail of the distribution of
the increments of Sn is necessary for passage of Rn above a high level is cor-
rect in most, but not all, cases, as we show. Conditions are also given for the
finiteness of the expected passage time of Rn above linear and square root
boundaries.

1. Introduction and preliminary results. Let X,X1,X2, . . . , be i.i.d. r.v.’s,
not degenerate at 0, with c.d.f. F(·) on R, and

Sn = X1 + X2 + · · · + Xn, S0 = 0,

the corresponding random walk. Denote by

Rn = max
0≤j≤n

Sj − Sn, n = 0,1,2, . . . ,

the random walk reflected in its maximum. Of course, Rn ≥ 0, n = 0,1,2, . . . .

The reflected process Rn is of fundamental importance in the theory of random
walks and is also an object of interest, in itself, in many applied areas, such as
queueing theory; see, for example, [1, 12, 18, 29] and their references. More re-
cently, Rn has been used extensively in various other kinds of modeling. The first
time the reflected process upcrosses a fixed level gives the optimal time to exercise
a “Russian” option [2, 26, 28]. Hansen [16] has some interesting generalizations
and an application to genetics of the maximal sequence R∗

n := max1≤j≤n Rj . There
are many other applications of Rn in finance studies and elsewhere. See also [10,
22] and [23].

Rn has been intensively studied in conjunction with these applications, but its
renewal-theoretic properties per se seem to have received little attention so far.
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Here we consider some very basic but important questions related to this aspect.
Thus, in Theorem 2.1 of Section 2, we give necessary and sufficient conditions for
the almost sure (a.s.) finiteness of passage times of Rn out of power law regions of
the form {(n, y) : 0 ≤ y ≤ rnκ, n = 1,2, . . .}, where r ≥ 0, κ = 0, or r > 0, κ > 0.
Then, in Theorem 2.2, we give conditions for the finiteness of expected values of
passage times of Rn out of linear (κ = 1) or parabolic (κ = 1/2) regions. These
can be thought of as extensions or generalizations of similar results for random
walks, and we use a variety of the techniques developed for random walks in their
proofs.

To complete the present section, we introduce some notation which will be use-
ful throughout the paper, and state an introductory Proposition 1.1 which helps to
motivate the kinds of issues we will consider. Let

S∗
n = max

0≤j≤n
Sj , n = 0,1,2, . . . .(1.1)

Then it is easy to see that

Rn = S∗
n − Sn = max

0≤j≤n
(Sj − Sn)

D= − min
0≤j≤n

Sj .(1.2)

The identity (1.2) (equality in distribution for each n = 1,2, . . . , but not of
processes) is of course well known. Another useful representation is to write Rn

as the sum of its increments:

Rn =
n∑

i=1

�i,(1.3)

where, as is easily checked,

�i = Ri − Ri−1 = −Xi1{Xi≤Ri−1} − Ri−11{Xi>Ri−1}, i = 1,2, . . . .(1.4)

Note that, if F(0−) = 0, then Rn is identically 0, while if F(0) = 1, then
Rn = −Sn, the negative of a random walk. The first case is trivial and, for the
second, the results we examine are already known, as discussed later (and, in fact,
our present results remain true in this case, with appropriate interpretations), so
we exclude them in what follows. Thus, throughout, we make the blanket assump-
tion that 0 < F(0−) ≤ F(0) < 1. Throughout, also, we will use “r.v.” to mean

“random variable,” “
D→” for convergence in distribution, “

P→” for convergence in
probability, “a.s.” for almost sure convergence and “i.o.” for “infinitely often.” Let
X+ = max(X,0) and X− = X+ − X (and similarly for X+

i and X−
i ).

Our first proposition lists some elementary properties of Rn.

PROPOSITION 1.1. (a) lim infn→∞ P(Rn > x) > 0 for every x > 0; conse-

quently, we always have lim supn→∞ Rn = +∞ a.s., and we never have Rn
P→ 0

(n → ∞).
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(b) (i) Rn
P→ ∞ (n → ∞) if and only if lim infn→∞ Sn = −∞ a.s.

(ii) The following four conditions are equivalent: P(Rn = 0 i.o.) < 1;
limn→∞ Sn = −∞ a.s.; limn→∞ Rn = +∞ a.s.; and∑

n≥1

P(Rn ≤ x) < ∞ for some (hence, every) x ≥ 0.(1.5)

REMARKS. (i) It is easy to show from (1.2) that Rn is tight as n → ∞ if and

only if limn→∞ Sn = +∞ a.s., and, in fact, this implies that Rn
D→ R, where R

D=
−min0≤j<∞ Sj , with P(0 ≤ R < ∞) = 1. Thus, Rn is stochastically bounded if
and only if Sn drifts to +∞ a.s. This situation has been well studied in various
applications (see, e.g., [3], page 388 and [29]), and we will mainly be concerned
with the other cases, when Sn oscillates or drifts to −∞ a.s., so that Rn continues
to grow with n [part (b) of Proposition 1.1].

(ii) Analytic conditions for limn→∞ Sn = ±∞ a.s. are in [20]. See Proposi-
tion 2.1 below for lim infn→∞ Sn = −∞ a.s.

(iii) We remark that, with the obvious modifications, all of our results apply
to the reflected process rn := Sn − min0≤j≤n Sj . For a financial application of rn,
see [13].

2. Passage times above power law boundaries. We can measure the rate of
growth of Rn by seeing how quickly it leaves a region. We restrict ourselves here
to power law regions. Thus, for constants κ > 0, r > 0, or κ = 0, r ≥ 0, define

τκ(r) = min{n ≥ 1 :Rn > rnκ}.(2.1)

(Throughout, give the minimum of the empty set the value +∞.) Basic questions
of interest are to find conditions on F which are equivalent to τκ(r) being a.s. fi-
nite or having a finite expectation. For random walk, the first question is answered
in [21] and [9]; a summary of their results (with a sign change) is in Proposi-
tion 2.1, later in this section. We build on these to give our first main result for Rn.
It might seem obvious, a priori, in keeping with Proposition 1.1, that a certain heav-
iness of the negative tail of F is required in order for Rn to escape the power law
region. However, when κ ∈ (1/2,1), just as in the case of a random walk crossing
a one-sided boundary, this intuition can fail. The second part of (2.3) below can
hold even when X is stochastically bounded below, so that the negative tail of F is
zero for large x; see part (e)(ii) of Proposition 2.1.

Thus, delineating the precise conditions is not at all straightforward. We find the
following:

THEOREM 2.1. (a) Suppose κ = 0. We have τ0(r) < ∞ a.s. for all r ≥ 0, and,
in fact, E(eλτ0(r)) < ∞, at least for some small enough λ > 0, for all r ≥ 0.

(b) Suppose κ > 0. We have τκ(r) < ∞ a.s. for all r > 0 if and only if:
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(i) for κ > 1,

E(X−)1/κ = ∞;(2.2)

(ii) for 0 < κ ≤ 1,

E(X−)1/κ = ∞ or lim inf
n→∞

(
Sn

nκ

)
= −∞ a.s.(2.3)

Explicit criteria in terms of the distribution function F of the Xi for
lim infn→∞ Sn/nκ = −∞ a.s. are listed in Proposition 2.1 below. Parts (a) and (b)
of the proposition are essentially due to [6] and [11], respectively; parts (c) and (d)
are in [21]; part (e) and the following comment is from [9]. (Actually, these
papers deal with the condition lim supn→∞ Sn/nκ = +∞ a.s., but the results
for lim infn→∞ Sn/nκ follow after a sign reversal.) To state them, let F̄ (y) :=
1 − F(y), and define the integrals

A+(x) =
∫ x

0
F̄ (y) dy, x > 0, and J− =

∫
[0,∞)

x|dF(−x)|
A+(x)

.(2.4)

Note that 0 ≤ A+(x) ≤ EX+. We let A+(x)/x have its limiting value, 1 −
F(0) > 0, at 0. We also need the function defined, for y ≥ 0, when EX+ < ∞,
as

W(y) =
∫ y

0

∫
(z,∞)

xF (dx)dz = y

∫
(y,∞)

zF (dz) +
∫
[0,y]

z2F(dz).(2.5)

Note that W(y) > 0 for all y > 0, since we assume that F is not concentrated on
(∞,0]. Define, for λ > 0, y > 0, and 1/2 < κ < 1,

Iκ(λ) :=
∫ ∞

1
exp

{
−λ

(
y(2κ−1)/κ

W(y)

)κ/(1−κ)}dy

y
≤ ∞,(2.6)

and let

λ∗
κ = inf{λ > 0 : Iκ(λ) < ∞} ∈ [0,∞].(2.7)

PROPOSITION 2.1. lim infn→∞ Sn/nκ = −∞ a.s. if and only if:

(a) when κ > 1,∫
[1,∞)

(
x1/κ

1 + x(1/κ)−1A+(x)

)
|dF(−x)| = ∞;(2.8)

(b) when κ = 1 or 1
2 < κ < 1 and E|X| = ∞,

J− = ∞;(2.9)

(c) when 0 ≤ κ ≤ 1
2 ,

J− = ∞ or 0 ≤ −EX ≤ E|X| < ∞;(2.10)
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(d) when 1
2 < κ < 1, E|X| < ∞ and EX �= 0,

EX < 0;(2.11)

(e) when 1
2 < κ < 1, E|X| < ∞ and EX = 0,

(i) E(X−)1/κ = ∞, or(2.12)

(ii) E(X−)1/κ < ∞ = E(X+)1/κ and λ∗
κ = ∞.(2.13)

Furthermore, when 1
2 < κ < 1, E|X| < ∞, EX = 0 and E(X−)1/κ < ∞ =

E(X+)1/κ , then lim infn→∞ Sn/nκ = 0 a.s. if and only if λ∗
κ = 0.

REMARKS. (i) Our blanket assumption that 0 < F(0−) ≤ F(0) < 1 is not
restrictive in Proposition 2.1, because if F(0) = 1, then lim infn→∞ Sn/nκ =
− lim supn→∞ |Sn|/nκ a.s. and Theorem 1 of [21] gives the required criterion;
while if F(0−) = 0, then neither lim infn→∞ Sn/nκ = −∞ a.s. nor any of
(2.8)–(2.13) can occur.

(ii) In general, neither of the two conditions in (2.3) imply each other, as can be
seen from a perusal of Proposition 2.1.

(iii) Again, given our assumption that 0 < F(0−) ≤ F(0) < 1, the a.s. finiteness
of τκ(r) < ∞ a.s. is equivalent to lim supn→∞ Rn/nκ > r a.s. (see Lemma 3.1
of Section 3). Thus, the contrapositives of the conditions in Theorem 2.1 give
equivalences for lim supn→∞ Rn/nκ to be finite a.s. We summarize these in the
following:

COROLLARY 2.1 (Corollary to Theorem 2.1). lim supn→∞ Rn/nκ is finite a.s.
if and only if:

(a) when κ ≥ 1, E(X−)1/κ < ∞;
(b) when 0 < κ ≤ 1, E(X−)1/κ < ∞ and lim infn→∞ Sn/nκ > −∞ a.s.

In the case κ = 0, we have lim supn→∞ Rn = ∞ a.s., by Proposition 1.1, be-
cause we always assume that F(0−) > 0. From the proof of Theorem 2.1, it can
further be seen that lim supn→∞ Rn/nκ , when finite a.s., is in fact 0 a.s., except in
the cases (1) κ = 1, E|X| < ∞, EX < 0 (when limn→∞ Rn/n = |EX| a.s. by the
strong law of large numbers for Sn) and (2) 1/2 < κ < 1, E|X| < ∞, EX = 0 and
E(X−)1/κ < ∞ = E(X+)1/κ , when lim infn→∞ Rn/nκ ∈ (0,∞) a.s. if and only
if λ∗

κ ∈ (0,∞); see the remark following the statement of Lemma 3.4.
Our second main result considers the expected value of the passage time of Rn

above linear and square root boundaries.

THEOREM 2.2. (a) Suppose σ 2 = EX2 < ∞ and EX = 0. Then:

(i) Eτ1/2(σ r) = ∞ for r ≥ 1;
(ii) Eτ1/2(σ r) < ∞ for r < 1.
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(b) Suppose E|X| < ∞ and EX < 0. Then:
(i) Eτ1(r) < ∞ for r < −EX;

(ii) If r > −EX, P(τ1(r) = ∞) > 0.
(c) Suppose E|X| < ∞ and EX < 0, and, in addition, E(X+)2 < ∞. Then

Eτ1(r) = ∞ for r = −EX.

The random walk precursor of Theorem 2.2 (a) is in [4] and [15], who dealt with
independent orthonormal r.v.’s (having mean 0 and finite variance), and showed
that the first time (Tr , say) at which the corresponding partial sum exits the par-
abolic region {(n, y) : |y| ≤ r

√
n,n = 1,2, . . .}, where r > 0, has finite expectation

if r < EX2 and infinite expectation otherwise.
A corresponding linear version is the following: suppose E|X| < ∞ and

EX > 0, then the first time a random walk with step X starting from 0 passages
above the line y = rn, n = 1,2, . . . , r ≥ 0, has finite expectation if and only if
r < EX. This is easily proved by reducing the problem to the finiteness or other-
wise of the expected first passage time above 0 of a random walk which is drift
free or has negative drift when considering the cases r ≥ EX and has positive drift
otherwise; see, for example, [14] for a discussion of this.

Some other results are not so easily settled, even in the random walk case.
For example, Gundy and Siegmund [15] conjecture that, in the above notation,
ETr = ∞ continues to hold when EX2 = ∞, for all r > 0. They mention having a
proof of this for the case when the Xi are symmetrically distributed, but the general
problem remains open. Likewise, in our Theorem 2.2, the restriction E(X+)2 < ∞
may not be necessary in part (c).

A natural extension of our results is to ask for conditions for the finiteness or
otherwise of Eτκ(r) when κ �= 1/2 or 1. Again, in view of the above discussion,
we expect this may be a rather difficult exercise. But κ = 1/2 or 1 are probably the
most important practical cases.

We refer to Novikov [24, 25] and his references for more precise estimates
of magnitudes of tail probabilities of stopping time distributions, under certain
conditions.

CONCLUDING REMARKS. As might be expected, there is a counterpart of
Theorem 2.1 relating to the large time behavior of a Lévy process, and also for the
results of Proposition 1.1, with appropriate interpretations. The proofs can be con-
structed as in [8, 9], using the methods of [7]. We omit the details. Lévy versions
of Theorem 2.2 have been proved by Savov [27].

3. Proofs. Recall our blanket assumption throughout that 0 < F(0−) ≤
F(0) < 1.

PROOF OF PROPOSITION 1.1. (a) Since F(0−) > 0, there are ε > 0, δ > 0,
such that P(X ≤ −ε) > δ. Take any x > 0 and choose K > 1 so that Kε > x.
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Suppose Xi ≤ −ε, n + 1 ≤ i ≤ n + K . Then for n = 1,2, . . . ,

Sn+K = Sn +
n+K∑

i=n+1

Xi ≤ Sn − Kε < Sn − x ≤ S∗
n+K − x,

so Rn+K > x. Thus, for n = 1,2, . . . ,

P (Rn+K > x) ≥ P(Xi ≤ −ε,n + 1 ≤ i ≤ n + K) ≥ δK > 0,

so lim infn→∞ P(Rn > x) > 0. It then follows from the Hewitt–Savage 0–1 law

([17] or [5], page 226) that lim supn→∞ Rn = +∞ a.s., and clearly, also, Rn
P→ 0

(n → ∞) cannot occur.
(b) (i) We have

Rn
P→ ∞ ⇐⇒ lim

n→∞P(Rn ≤ x) = 0 for all x > 0

⇐⇒ lim
n→∞P

(
min

0≤j≤n
Sj ≥ −x

)
= 0 [by (1.2)]

⇐⇒ min
0≤j≤n

Sj
P→ −∞

⇐⇒ min
0≤j≤n

Sj → −∞ a.s. (since the sequence is monotone)

⇐⇒ lim inf
n→∞ Sn = −∞ a.s.

(ii) Let P(Rn = 0 i.o.) < 1 and suppose Sn does not drift to −∞ a.s. Then
lim supn→∞ Sn = +∞ a.s. and so there are infinitely many ascending ladder
times, a.s. This means that Sn exceeds S∗

n−1 infinitely often, a.s., hence, S∗
n = Sn

i.o. a.s., and so Rn = 0 i.o. a.s., a contradiction. Thus, limn→∞ Sn = −∞ a.s. Next,
limn→∞ Sn = −∞ a.s. implies Rn = S∗

n − Sn ≥ −Sn → ∞ a.s., while Rn → ∞
a.s. obviously implies P(Rn = 0 i.o.) = 0.

For the final equivalence, assume
∑

n P (Rn ≤ x) < ∞ for some x ≥ 0. Then∑
n P (Rn = 0) < ∞, so by the Borel–Cantelli lemma, P(Rn = 0 i.o.) = 0. This

implies limn→∞ Sn = −∞ a.s., as just shown, and this further implies, by Theo-
rem 2.1 of [20] [interchanging + and − in their result, i.e., applying their result to
the random walk S̃n = ∑n

i=1(−Xi)], that

∞ >
∑
n≥1

P

(
min

0≤j≤n
Sj ≥ −x

)
= ∑

n≥1

P(Rn ≤ x) for every x ≥ 0.
�

PROOF OF THEOREM 2.1. (a) Take an r ≥ 0. As in the proof of Propo-
sition 1.1, since F(0−) > 0, we can choose ε > 0, δ > 0, K ≥ 1, so that
F(−ε−) ≥ δ and Kε > r . Then for n = 0,1, . . . ,

P
(
τ0(r) ≤ n + K|τ0(r) > n

) ≥ P(Xi ≤ −ε, n + 1 ≤ i ≤ n + K) ≥ δK,
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and the required results in part (a) both follow from

P
(
τ0(r) > nK

) = P
(
τ0(r) > K

) n∏
j=2

P
(
τ0(r) > jK|τ0(r) > (j − 1)K

)
≤ (1 − δK)n.

The following lemma will be useful in the rest of the proof.

LEMMA 3.1. Take r > 0 and κ > 0. Then lim supn→∞ Rn/nκ > r a.s. if and
only if τκ(r) < ∞ a.s.

PROOF. Since {τκ(r) > n} = {max1≤j≤n(Rj/j
κ) ≤ r}, we have P(τκ(r) =

∞) = P(maxj≥1(Rj/j
κ) ≤ r). Now lim supn→∞ Rn/nκ > r a.s. implies

P(maxj≥1(Rj/j
κ) > r) = 1, so one direction of the proof is obvious.

Conversely, suppose τκ(r) < ∞ a.s., so limn P (max1≤j≤n(Rj/j
κ) ≤ r) = 0.

Note that then

P

(
max

1≤j≤n
(Rj/j

κ) ≤ r i.o.
)

= lim
n

P

(
max

1≤j≤m
(Rj/j

κ) ≤ r for some m > n

)

≤ lim
n

P

(
max

1≤j≤n
(Rj/j

κ) ≤ r

)
= 0.

We wish to show P(maxk≤j≤n(Rj/j
κ) ≤ r i.o.) = 0 for each k ≥ 1, and pro-

ceed by induction. Let Ak
n := {maxk≤j≤n(Rj/j

κ) ≤ r}. Suppose P(Ak
n i.o.) = 0

for some k ≥ 1, but P(Ak+1
n i.o.) > 0. Then by the Hewitt–Savage law,

1 = P(Ak+1
n i.o.)

= lim
m

P (Ak+1
n , for some n > m)

≤ lim
m

P (Ak+1
n , for some n > m,Rk ≤ rkκ) + P(Rk > rkκ)

≤ lim
m

P (Ak
n, for some n > m) + P(Rk > rkκ)

= P(Ak
n i.o.) + P(Rk > rkκ)

= P(Rk > rkκ),

giving Rk > rkκ a.s. This is not possible when F(0−) > 0 since then P(R1 = 0) =
P(X ≥ 0) > 0, thus, P(Rk = 0) > 0 for each k ≥ 1. So P(maxk≤j≤n(Rj/j

κ) ≤
r i.o.) = 0, k ≥ 1, thus, limn P (maxk≤j≤n(Rj/j

κ) ≤ r) = P(maxj≥k(Rj/j
κ) ≤

r) = 0, k ≥ 1. Letting k tend to ∞ then gives P(Rj/j
κ > r i.o.) = 1, which implies

lim supn→∞ Rn/nκ > r a.s. �

We now return to the proof of Theorem 2.1. We first prove the forward direction
for both parts of (b).
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(b) (i) Keep κ > 1, and suppose τκ(r) < ∞ a.s. for some r > 0. If
E(X−)1/κ < ∞, the Marcinkiewicz–Zygmund law (e.g., [5], page 125) gives
limn→∞(

∑n
i=1 X−

i /nκ) = 0, a.s. If this is so, then

Rn = max
0≤j≤n

Sj − Sn = max
0≤j<n

(
−

n∑
i=j+1

Xi

)
∨ 0

≤ max
0≤j<n

(
n∑

i=j+1

X−
i

)
=

n∑
i=1

X−
i = o(nκ) a.s.

But by Lemma 3.1, this is a contradiction. Thus, the forward direction of part (i) is
proved.

(ii) Keep 0 < κ ≤ 1. Let Tn be the strict increasing ladder times of Sn, that is,
T0 = 0 and

Tn = min{j > Tn−1 :Sj > STn−1}, n = 1,2, . . . .(3.1)

If Tn−1 < ∞, define the depth of an excursion of Sn below the maximum as

Dn = max
Tn−1≤j<Tn

(
−

j∑
i=Tn−1+1

Xi

)
, n = 1,2, . . . .(3.2)

[In (3.2), and throughout, we make the convention that
∑b

i=a = 0 when b < a.]
The r.v. Dn measures the height of an excursion of Rn away from 0; we have
RTn = 0, n = 1,2 and

max
Tn−1≤j<Tn

Rj = Dn, n = 1,2, . . . .(3.3)

[If two ladder times Tn−1, Tn occur at consecutive integers, so that RTn−1 =
RTn = 0, (3.2) gives Dn = 0, agreeing with (3.3), and formally registering that
the depth of the nonexistent excursion is 0.]

LEMMA 3.2. Keep 0 < κ ≤ 1 and suppose limn→∞ Sn = +∞ a.s. Then
E(X−)1/κ < ∞ if and only if E(D

1/κ
1 ) < ∞.

PROOF. Assume limn→∞ Sn = +∞ a.s. Then Tn < ∞ a.s. for all n, and, in
fact, ET1 < ∞; see, for example, Theorem II.9.1, page 66, in [14]. Thus, the Dn

are well defined. Since Sj ≤ 0,0 ≤ j < T1, we have

D1 = max
0≤j<T1

(−Sj ) ≥ −S1 = S−
1 = X−

1 ,

and one direction of the lemma is obvious. Conversely,

D1 ≤ max
1≤j<T1

( j∑
i=1

X−
i

)
=

T1−1∑
i=1

X−
i = F1 say.
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Now for 0 < κ ≤ 1, E(X−)1/κ < ∞ and limn→∞Sn = +∞ a.s. imply ET
1/κ

1 < ∞
([20], Theorem 2.1), so we can apply Theorem I.5.2, page 22, in [14] to get
EF

1/κ
1 < ∞ and, hence, ED

1/κ
1 < ∞. �

LEMMA 3.3. Keep κ > 0. If ED
1/κ
1 < ∞ and limn→∞ Sn = +∞ a.s., then

limn→∞ Rn/nκ = 0 a.s., and so P(τκ(r) = ∞) > 0 for all r > 0.

PROOF. Again with Tn as the strict increasing ladder times of Sn,

max
j≥Tn

(
Rj

jκ

)
= max

m>n
max

Tm−1≤j<Tm

(
Rj

jκ

)
(3.4)

≤ max
m>n

(
maxTm−1≤j<Tm Rj

T κ
m−1

)
= max

m>n

(
Dm

T κ
m−1

)
.

Since limn→∞ Sn = +∞ a.s., we have ET1 < ∞, and thus, limm→∞ Tm/m = ET1

a.s. is finite a.s. The Dm are i.i.d., and with ED
1/κ
1 < ∞, by hypothesis, so we

have limm→∞ Dm/mκ = 0 a.s. Thus, the right-hand side of (3.4) tends to 0 a.s.
as n → ∞, giving limn→∞ Rn/nκ = 0 a.s. Then P(τκ(r) = ∞) > 0 for all r > 0
follows from Lemma 3.1. �

We can now complete the proof of the forward direction of part (b)(ii) of Theo-
rem 2.1. We have 0 < κ ≤ 1 and τκ(r) < ∞ for all r > 0, and must prove that (2.3)
holds.

If E(X−)1/κ = ∞, then (2.3) holds, so suppose E(X−)1/κ < ∞. Then by
Lemmas 3.2 and 3.3, we cannot have limn→∞ Sn = +∞ a.s., consequently,
lim infn→∞ Sn = −∞ a.s. So, using Proposition 2.1(c) with κ = 0, we see
that (2.10) holds.

First suppose 0 < κ ≤ 1/2. Then by (2.10) again, we have

lim inf
n→∞

(
Sn

nκ

)
= −∞ a.s.,(3.5)

so (2.3) holds.
Next consider 1/2 < κ ≤ 1. We still have (2.10). If E|X| = ∞, then J− = ∞

by (2.10), and then (3.5) holds by (2.9). If κ = 1, we can finish here because
E|X| < ∞ cannot occur. If it did, we would have, a.s. as n → ∞,

Rn

n
= S∗

n

n
− Sn

n
→ (EX)−.

Thus, if EX = 0, then P(τ1(r) = ∞) > 0 for all r > 0 by Lemma 3.1, while if
EX < 0, then P(τ1(r) = ∞) > 0 for all r > |EX|, again by Lemma 3.1. Either is
a contradiction.

Finally, consider 1/2 < κ < 1 and E|X| < ∞. Then EX ≤ 0 by (2.10). If
EX < 0, then limn→∞ Sn/n = EX < 0 a.s., so (3.5) and, hence, (2.3) holds. It
remains to consider the case EX = 0.
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The next lemma allows us to deal with this. Recall the definitions of W(y),
Iκ(λ) and λ∗

κ , in (2.5), (2.6) and (2.7), respectively.

LEMMA 3.4. Keep 1/2 < κ < 1. Suppose that E|X| < ∞, EX = 0,
E(X−)1/κ < ∞ = E(X+)1/κ , and λ∗

κ < ∞. Then

lim sup
n→∞

(
Rn

nκ

)
≤ r0 := 9 · 2κ(6λ∗

κ2κ)1−κ a.s.,(3.6)

and consequently, P(τκ(r) = ∞) > 0 for all r ≥ r0.

REMARK. Suppose 1/2 < κ < 1, E|X| < ∞, EX = 0 and E(X−)1/κ < ∞ =
E(X+)1/κ . If λ∗

κ = ∞, then Proposition 2.1(e)(ii), together with the fact that
Rn > −Sn, n = 1,2, . . . , gives lim supn→∞ Rn/nκ = ∞ a.s., a partial converse
to (3.6).

It is possible to have Iκ(λ) = ∞ for some but not all λ > 0, as shown in [9].
If this happens, then λ∗

κ ∈ (0,∞) and so lim infn→∞ Sn/nκ < 0 a.s., by part (f)
of Proposition 2.1, and hence, we have lim supn→∞ Rn/nκ > 0 a.s., as well as
lim supn→∞ Rn/nκ < ∞ a.s. So it is possible to have lim supn→∞ Rn/nκ ∈ (0,∞)

a.s. in this case. Lemma 3.4 should be compared with Corollary 1.1 of [9].

PROOF OF LEMMA 3.4. Fix 1/2 < κ < 1, suppose E|X| < ∞, EX = 0,
E(X−)1/κ < ∞ = E(X+)1/κ , and λ∗

κ < ∞. Then there is a λ > λ∗
κ with

Iκ(λ) < ∞. We keep this λ fixed through the proof, then at the end let λ ↓ λ∗
κ

to get (3.6).
We can write

Rn = max
0≤j≤n

(
−

n∑
i=j+1

Xi

)
(3.7)

= max
0≤j≤n

(
n∑

i=j+1

X−
i −

n∑
i=j+1

X+
i

)
.

For D > 0, we have

n∑
i=j+1

X+
i ≥ D

n∑
i=j+1

1{X+
i >D} +

n∑
i=j+1

X+
i 1{X+

i ≤D}

= (n − j)D − D

n∑
i=j+1

1{X+
i ≤D} +

n∑
i=j+1

X+
i 1{X+

i ≤D}.

Note that EX− = EX+ in our case, and recall that limy→∞ yF̄ (y) = 0 when
E|X| < ∞. We will also use the function ν+(x) := ∫

[0,x] y dF(y), for x > 0. Some
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algebra then shows that
n∑

i=j+1

X−
i −

n∑
i=j+1

X+
i

≤
n∑

i=j+1

(X−
i − EX−) + D

n∑
i=j+1

(
1{X+

i ≤D} − F(D)
)

(3.8)

−
n∑

i=j+1

(
X+

i 1{X+
i ≤D} − ν+(D)

) + n

∫ ∞
D

F̄ (y) dy.

We will choose D as follows. We have W(x) > 0 for all x > 0 (because EX = 0),
limx→∞ W(x)/x = 0 (because EX+ < ∞), and limx↓0 W(x)/x = EX+. So,
given δ > 0 and x > x0 := (δ/EX+)1/(1−κ), we can define D(x) = D(x, δ) by

D(x) = inf
{
y > 0 :

W(y)

y
≤ δ

x1−κ

}
.

Then 0 < D(x) < ∞ for x > x0, limx→∞ D(x) = ∞, and by the continuity of
W(x), D(x) satisfies

x1−κW(D(x))

D(x)
= δ.(3.9)

Now take k ≥ 1 and 1 ≤ n ≤ 2k , and let

An =
n∑

i=1

(X−
i − EX−),

Bnk = D(2k)

n∑
i=1

(
1{X+

i ≤D(2k)} − F(D(2k))
)
,

Cnk =
n∑

i=1

(
X+

i 1{X+
i ≤D(2k)} − ν+(D(2k))

)
.(3.10)

Then from (3.7) and (3.8),

Rn ≤ |An| + max
1≤j≤n

|Aj | + D(2k)

(
|Bnk| + max

1≤j≤n
|Bjk|

)

+ |Cnk| + max
1≤j≤n

|Cjk| + n

∫ ∞
D(2k)

F̄ (y) dy,

so

max
1≤n≤2k

Rn ≤ 2 max
1≤n≤2k

|An| + 2D(2k) max
1≤n≤2k

|Bnk|
(3.11)

+ 2 max
1≤n≤2k

|Cnk| + 2k
∫ ∞
D(2k)

F̄ (y) dy.
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The last term on the right-hand side of (3.11) is, by (3.9) and the definition
of W(x), not larger than δ2κk . We will show that the other terms on the right-hand
side of (3.11) are o(2κk) a.s., as k → ∞.

We need some properties of D(x). Differentiation using the implicit function
theorem gives

D′(x) = (1 − κ)δD2(x)

x2−κ
∫
[0,D(x)] y2F(dy)

, x > x0.(3.12)

Hence, D(·) is strictly increasing and so has a unique increasing inverse D←(x)

satisfying, for large x, x ≥ x1, say,

D←(x) =
(

δx

W(x)

)1/(1−κ)

.(3.13)

Our next step is to show, under our assumption Iκ(λ) < ∞, that

lim
x→∞x1−2κW(D(x)) = 0.(3.14)

To see this, write

Iκ(λ) =
∫ ∞

1
e−λyq/h(y) dy/y,

where q = (2κ − 1)/(1 − κ) > 0 and h(x) = (W(x))κ/(1−κ) is an increasing func-
tion. [In fact, differentiation shows that W(x) is increasing and concave.] Now
Iκ(λ) < ∞ implies

log 2
∑
n≥1

e−λ2(n+1)q/h(2n) ≤ ∑
n≥1

∫ 2n+1

2n
e−λyq/h(y) dy/y < ∞,

thus, limn→∞ h(2n)/2(n+1)q = 0 and so limn→∞ h(2n)/2(n−1)q = 0. Given x > 0,
choose n(x) so that 2n−1 ≤ x < 2n. Then

h(x)

xq
≤ h(2n)

2(n−1)q
→ 0 as x → ∞,

thus,

lim
x→∞

(W(x))κ/(1−κ)

x(2κ−1)/(1−κ)
= 0.

Substituting x = (D←(x))1−κW(x)/δ from (3.13) gives

lim
x→∞

δ(2κ−1)/(1−κ)W(x)

(D←(x))2κ−1 = 0,

or, equivalently, since limx→∞ D(x) = ∞, (3.14) holds, as required.



1364 R. DONEY AND R. MALLER

Now consider first the Cnk term in (3.11). By (3.10), Cnk is, for each k and
n ≤ 2k , the sum of n i.i.d. mean 0 r.v.’s, and we can calculate

Var(Cnk) = nVar
(
X+

i 1{X+
i ≤D(2k)}

)
(3.15)

≤ 2k
∫
[0,D(2k)]

y2F(dy) ≤ 2kW(D(2k)) = o(22κk),

where the last estimate follows from (3.14). The inequality |median(Y )| ≤√
2 VarY is valid for any mean zero r.v., so we have from (3.15)

max
1≤n≤2k

∣∣∣∣∣median

( 2k∑
i=n

(
X+

i 1{X+
i ≤D(2k)} − ν+(D(2k))

))∣∣∣∣∣ = o(2κk).

Thus, by a version of Lévy’s inequality (e.g., [5], page 71), for large enough k,

P

(
max

1≤n≤2k
|Cnk| > 2δ2κk

)
≤ 2P(|C2kk| > δ2κk).(3.16)

The summands of Cnk are bounded by 2D(2k), so Bernstein’s inequality ([5],
page 111) gives an upper bound for the last probability as

2 exp
( −δ222κk

2(2kW(D(2k)) + 2D(2k)δ2κk)

)
= 2 exp

( −δ2κk

6D(2k)

)
,(3.17)

where we used (3.9) to substitute for W(D(2k)). Adding over k, we find that∑
k≥1

e−δ2κk/6D(2k) ≤ ∑
k≥1

∫ 2k+1

2k
e−δyk/(6·2κD(y)) dy/y

= 1

log 2

∫ ∞
2

e−λyκ/(δκ/(1−κ)D(y)) dy/y,

where in the last we chose δ so that δ = 6 · 2κλ/δκ/(1−κ), that is, δ = (6λ2κ)1−κ .
Now change variable to get the last integral as∫ ∞

D(2)
e−λ(D←(z))κ/(δκ/(1−κ)z) dz

D′(D←(z))D←(z)
.(3.18)

In view of (3.13), the exponent here is

−λzκ/(1−κ)

z(W(z))κ/(1−κ)
= −λz(2κ−1)/(1−κ)

(W(z))κ/(1−κ)
,

as required in (2.6). Also, by (3.12) and (3.13),

D′(D←(z))D←(z) = (1 − κ)δz2

(D←(z))1−κ
∫
[0,z] y2F(dy)

= (1 − κ)zW(z)∫
[0,z] y2F(dy)

≥ (1 − κ)z,
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where the last follows because W(z) ≥ ∫
[0,z] y2F(dy); see (2.5). As a result of

these two calculations, the integral in (3.18) is bounded by a multiple of Iκ(λ).
Going back to (3.16), we thus have, by the Borel–Cantelli lemma,

lim sup
k→∞

(max1≤n≤2k |Cnk|
2κk

)
≤ 2δ = 2(6λ2κ)1−κ a.s.(3.19)

Next we have to deal with the (B) term in (3.11). For each k ≥ 1 and 1 ≤ n ≤ 2k ,
Bnk/D(2k) is a sum of i.i.d. mean zero r.v.’s bounded by 2 [see (3.10)], and we can
calculate

Var(Bnk/D(2k)) =
n∑

i=1

F(D(2k))F̄ (D(2k))

≤ 2kF̄ (D(2k)) ≤ 2kW(D(2k))/D2(2k)

= δ2κk/D(2k),

using (3.9) for the last equality. Thus, by a similar argument as for the (C) term,
involving Lévy’s and Bernstein’s inequalities,

P

(
max

1≤n≤2k
|Bnk| > 2δ2κk

)
≤ 2P

(|B2kk|/D(2k) > δ2κk/D(2k)
)

≤ 2 exp
( −δ222κk/D2(2k)

2(δ2κk/D(2k) + 2δ2κk/D(2k))

)

= 2 exp
( −δ2κk

6D(2k)

)
.

This is the same bound as in (3.17) and the same argument leading to (3.19) which
gives

lim sup
k→∞

(max1≤n≤2k |Bnk|
2κk

)
≤ 2(6λ2κ)1−κ a.s.(3.20)

Finally, for the (A) term in (3.11), we simply use the Marcinkiewicz–Zygmund
law to get An = o(nκ) a.s., since E(X−)1/κ < ∞. So

lim
k→∞

(max1≤n≤2k |An|
2κk

)
= 0 a.s.(3.21)

Putting (3.19)–(3.21) into (3.11) gives

lim sup
k→∞

(max1≤n≤2k Rn

2κk

)
≤ 8(6λ2κ)1−κ + δ = 9(6λ2κ)1−κ a.s.

If m is large, choose k(m) so that 2k−1 ≤ m < 2k . Then (3.6) follows from

Rm

mκ
≤ 2κ max1≤n≤2k Rn

2κk
≤ 2κ9(6λ2κ)1−κ + o(1) a.s.,
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after letting λ ↓ λ∗
κ . �

Finally we can complete the proof of the forward direction in (2.3). Recall that
we are in the case 1/2 < κ < 1, E|X| < ∞ and EX = 0, and have assumed
that τκ(r) < ∞ a.s. for all r > 0. Thus, by Lemma 3.1, lim supn Rn/nκ = ∞
a.s. If E(X−)1/κ < ∞ and E(X+)1/κ < ∞, that is, E|X|1/κ < ∞, we get
limn→∞ Rn/nκ = 0 a.s. from the Marcinkiewicz–Zygmund law, so we must have
E(X−)1/κ = ∞ or E(X−)1/κ < ∞ = E(X+)1/κ . In the latter case we must further
have λ∗

κ = ∞ by Lemma 3.4. But then lim infn→∞ Sn/nκ = −∞ a.s. by part (e)
of Proposition 2.1.

For the converse part of Theorem 2.1(b), note first that, by its definition, for
r > 0, κ > 0, n = 1,2, . . . ,

{τκ(r) > n} =
{

max
0≤k≤j

Sk − Sj ≤ rjκ, 1 ≤ j ≤ n

}
⊆ {−Xj ≤ rjκ,1 ≤ j ≤ n},

the last following just by taking the term for k = j − 1 from the max. So

P
(
τκ(r) > n

) ≤
n∏

j=1

P(X1 > −rjκ) ≤ exp

(
−

n∑
j=1

P(X1 ≤ −rjκ)

)
.

Thus, if
∑

j≥1 P(X1 ≤ −rjκ) = ∞, or, equivalently, E(X−)1/κ = ∞, then
P(τκ(r) < ∞) = 1 for each r > 0.

Next, the second condition in (2.3) implies lim supn→∞ Rn/nκ = ∞ a.s., hence,
it also implies P(τκ(r) < ∞) = 1 for each r > 0 by Lemma 3.1.

This completes the proof of Theorem 2.1. �

PROOF OF THEOREM 2.2. (a) For the square root boundary, assume
EX2 < ∞ and EX = 0.

(i) Introduce the function

φ(x) = 2
{∫ ∞

x
yF̄ (y) dy − x

∫ ∞
x

F̄ (y) dy

}
= 2

∫ ∞
0

yF̄ (y + x)dy,

and define

Zn = R2
n − nσ 2 +

n∑
1

φ(Ri−1), n = 1,2, . . . ,Z0 = 0.(3.22)

Now, whenever E|X| < ∞, we can use (1.4) to write

E(�i | Fi−1) = −
∫
(−∞,Ri−1]

y dF(y) − Ri−1F̄ (Ri−1)

(3.23)
= −EX +

∫ ∞
Ri−1

F̄ (y) dy,
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where Fi = σ(X1,X2, . . . ,Xi) is the σ -field generated by X1,X2, . . . ,Xi , with
F0 as the trivial σ -field. Using (3.23), and similarly calculating

E(�2
i | Fi−1) =

∫
(−∞,Ri−1]

y2 dF(y) + R2
i−1F̄ (Ri−1)

= σ 2 − 2
∫ ∞
Ri−1

yF̄ (y) dy,

we can write

Zn = R2
n −

n∑
1

E(�2
i |Fi−1) − 2

n∑
1

Ri−1E(�i |Fi−1).

From this, it is easy to check that Z is a martingale. Now fix r > 0 and m > 0
and write τ for τ1/2(σ r) and τm = m ∧ τ . This is a bounded stopping time, so by
Doob’s theorem (e.g., [5]), EZτm = 0, and thus, from (3.22),

σ 2Eτm = ER2
τm + E

τm∑
1

φ(Ri−1) ≥ ER2
τm + φ(0).(3.24)

Suppose now that Eτ < ∞. By monotone convergence, Eτm → Eτ as m → ∞,
while

lim inf
m→∞ ER2

τm ≥ ER2
τ ≥ r2σ 2Eτ

by Fatou’s lemma. Thus, we can let m → ∞ in (3.24) to get σ 2(1 − r2)Eτ ≥
φ(0) > 0. This is impossible if r ≥ 1, so in this case we must have Eτ = ∞.

(ii) We now take 0 < r < 1, assume Eτ = ∞, and establish a contradiction.
Assume the truth of the following statement: for any ε > 0, there is an mε such
that

E

τm∑
1

φ(Ri−1) ≤ εEτm for all m ≥ mε.(3.25)

Note that Rτm = Rτm−1 + �τm ≤ σr
√

τm + �τm , and choose ε ∈ (0, σ 2). Then
for any m ≥ mε , we have, using the equality in (3.24), and (3.25),

σ 2Eτm = ER2
τm + E

τm∑
1

φ(Ri−1)

≤ σ 2r2Eτm + E�2
τm + 2σrE

(√
τm�τm

) + εEτm

≤ σ 2r2Eτm + E�2
τm + 2σr

√
Eτm

√
E�2

τm + εEτm.

Thus,

(σ 2 − ε)Eτm ≤ (√
E�2

τm + σr
√

Eτm
)2

.(3.26)
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From this, we see that the ratio E�2
τm/Eτm is bounded below when ε is small

enough, m ≥ mε , and r < 1. The contradiction will follow by showing that
E�2

τm/Eτm → 0 as m → ∞.
To see this, take any δ > 0. First note that we can choose M = M(ε, δ) ≥ mε so

large that, whenever m ≥ M ,

max
i≥1

E
(
�2

i 1{�2
i >εEτm} | Fi−1

) ≤ δ a.s.(3.27)

This can be demonstrated as follows. Since EX2 < ∞, given δ > 0, we can choose
y0(δ) so large that∫

|z|>y
z2 dF(z) + sup

z>y
z2F̄ (z) ≤ δ for all y ≥ y0.(3.28)

Since we assumed Eτ = ∞, we have limm→∞ Eτm = ∞. So we can also choose
M(ε, δ) so large that

√
εEτm ≥ y0 when m ≥ M . Now for any a > 0, using the

representation (1.4),

1{�2
i >a} = 1{X2

i >a}1{Xi≤Ri−1} + 1{R2
i−1>a}1{Xi>Ri−1},

so

�i1{�2
i >a} = −Xi1{X2

i >a}1{Xi≤Ri−1} − Ri−11{R2
i−1>a}1{Xi>Ri−1}.

Hence,

E
(
�2

i 1{�2
i >a} | Fi−1

)
=

∫
|y|>√

a
y21{y≤Ri−1} dF(y) + R2

i−11{Ri−1>
√

a}F̄ (Ri−1)(3.29)

≤
∫
|y|>√

a
y2 dF(y) + sup

y>
√

a

y2F̄ (y).

Substituting a = εEτm, we have
√

a ≥ y0 when m ≥ M , so (3.29) gives (3.27)
via (3.28), when m ≥ M . From (3.27), still with a = εEτm, we deduce

E�2
τm1{�2

τm>a} ≤ E

τm∑
i=1

�2
i 1{�2

i >a}

= E
∑
i≥1

E
(
1{τm>i−1}�2

i 1{�2
i >a} | Fi−1

)

= E

τm∑
i=1

E
(
�2

i 1{�2
i >a}|Fi−1

)
≤ δEτm,
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for m ≥ M . We also have E�2
τm1{�2

τm≤a} ≤ a = εEτm. (3.26) then gives

(σ 2 − ε)Eτm ≤ (√
ε + δ + σr

)2
Eτm

for m ≥ M , which is impossible for ε and δ small enough, when r < 1. So to
complete the proof, it suffices to prove (3.25).

Note first that φ(x)/2 ≤ σ 2+ := E(X+)2 for all x ≥ 0, and φ(x) ↓ 0 as x → ∞.
Fix ε > 0 and choose Kε < ∞ such that φ(Kε) ≤ ε/3. Then we have the bound

n∑
1

φ(Ri−1) ≤ 1
3nε + 2σ 2+

n∑
1

1{Ri−1≤Kε}.

Define

N(ε) = max

(
n :

n∑
1

1{Ri−1≤Kε} ≥ nε

6σ 2+

)
.

Then it suffices to show that EN(ε) < ∞, since this gives

E

τm∑
1

φ(Ri−1)1{τm≤Nε} ≤ 2σ 2+ENε = o(Eτm),

while

E

τm∑
1

φ(Ri−1)1{τm>Nε} ≤ ε

3
Eτm + 2σ 2+E

(
τmε

6σ 2+

)
= 2ε

3
Eτm.

To show that EN(ε) < ∞, introduce the r.v.s αn, βn, n ≥ 1, given recursively by

α1 = min{n ≥ 1 :Rn > Kε},
β1 = min{n ≥ 1 :Rα1+n ≤ Kε},
γ1 = α1 + β1,

and, for i = 2,3, . . . ,

αi = min{n ≥ 1 :Rγi−1+n > Kε},
βi = min{n ≥ 1 :Rγi−1+αi+n ≤ Kε},
γi = γi−1 + αi + βi.

In view of Proposition 1.1, the αi and βi are finite, a.s. Then, by construction,

n∑
1

1{Ri−1≤Kε} = un :=
dn∑
1

αi + (n − γdn),(3.30)

where dn = max{k :γk ≤ n}. Now write ε̃ = εσ 2/(4σ 2+), assume without loss of
generality that ε̃ < 1, and note that the maximum values of n−1un occur when
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n = γk + αk+1 for some k ≥ 0, that is, when γdn = n − αk+1, at which times un

has the value
∑k+1

i=1 αi . So

N(ε) = max{n :un ≥ ñε}

≤ max

{
γk + αk+1 :

k+1∑
i=1

αi ≥ ε̃(γk + αk+1)

}

≤ 1

ε̃
max

{
k+1∑
i=1

αi :
k+1∑
i=1

αi ≥ ε̃

(
k+1∑
i=1

αi +
k∑

i=1

βi

)}

= 1

ε̃
max

{
k+1∑
i=1

αi :
k∑

i=1

(1 − ε̃)αi − ε̃βi ≥ (̃ε − 1)αk+1

}
.

Thus, writing Yi = ε̃βi − (1 − ε̃)αi and k∗ = max{k :
∑k

1 Yi ≤ (1 − ε̃)αk+1}, we
have, for any c > 0,

P
(
N(ε) ≥ m/̃ε

) ≤ P

(
k∗+1∑

1

αi ≥ m

)
(3.31)

≤ P(k∗ ≥ mc − 1) + P

(
mc∑
1

αi ≥ m

)
.

Now
∑mc

1 αi ≤ ∑mc
1 α̃i , where α̃1, α̃2, . . . are i.i.d. with the distribution of the time

that R, starting from 0, crosses the level Kε . Part (a) of Theorem 2.1 shows that
Eeλα̃1 < ∞ for some λ > 0, so using a standard exponential bound and choosing
c < λ/ logEe−λα̃1 , we see that the second term in (3.31) is summable. On the other
hand, we have

βk ≥ β̃k := min{n :Rγk−1+αk+n ≤ Rγk−1+αk
} ≥ min{n : Ŝn ≥ 0},(3.32)

where Ŝn = Sγk−1+αk+n − Sγk−1+αk
, n ≥ 0, and the β̃n are an i.i.d. sequence with

infinite mean since lim infn Sn = −∞ a.s.; see Theorem II.9.1(iii) of [14], page 66.
Thus, Ỹi := ε̃β̃i − (1 − ε̃)αi are the i.i.d. steps of a random walk that drifts to
+∞ a.s.; see, for example, Theorem II.8.3(i) in [14], page 64.

Then with A(y) := E((Y1 ∧ y) ∨ (−y)), write∑
j≥1

P(k∗ ≥ j) = ∑
j≥1

P

(
for some k ≥ j,

k∑
i=1

Ỹi ≤ (1 − ε̃)αk+1

)

≤ ∑
j≥1

∑
k≥j

∑
a≥1

P

(
k∑

i=1

Ỹi ≤ (1 − ε̃)a

)
P(αk+1 = a)

= ∑
a≥1

∑
k≥1

kP

(
k∑

i=1

Ỹi ≤ (1 − ε̃)a

)
P(αk+1 = a)
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≤ c1 + c2
∑
a≥a0

(
(1 − ε̃)a

A((1 − ε̃)a)

)2

P(αk+1 = a)

≤ c1 + c3Eα2
1 < ∞.

Here the ci and a0 are positive constants, A(y) is bounded away from 0 for a ≥ a0,
say [in fact, limy→∞ A(y) = ∞ since EỸ1 = +∞], and the inequality in the fourth
line follows from Theorem 2.2 of [20]. Thus, k∗ has finite mean, and the result
follows from (3.31).

(b) For the linear case, assume E|X| < ∞ and EX < 0.

(i) We first show that Eτ1(r) < ∞ for r < −EX. We have

τ1(r) = min{n ≥ 1 :Rn > rn} ≤ min{n ≥ 1 :Sn < −rn}

= min

{
n ≥ 1 :

n∑
i=1

(
Xi − EX − (|EX| − r)

)
< 0

}
,

so τ1(r) does not exceed the first strict decreasing ladder time of a random walk
which has negative drift. Thus, Eτ1(r) < ∞ in this case.

(ii) Now take r > |EX|. If Eτ1(r) < ∞, then τ1(r) < ∞ a.s., so lim supn Rn/

n > r a.s. by Lemma 3.1, contradicting limn→∞ Rn/n = |EX| < r a.s., which
follows from the strong law of large numbers for Sn.

(c) Assume E|X| < ∞ and EX < 0, and in addition, that E(X+)2 < ∞. We
will show that Eτ1(r) = ∞ when r = |EX|. This follows immediately from the
next lemma, which proves a little more.

LEMMA 3.5. Let S be a random walk with steps X having E|X| < ∞,
EX = µ < 0 and E(X+)2 < ∞, and for the corresponding reflected process
Rn = max0≤i≤n Si − Sn, R0 = 0, write

Ta = min(n ≥ 1 :Rn > n|µ| + a).(3.33)

Then ETa = ∞ for a ≥ 0.

REMARK. Of course, ET0 = ∞ implies ETa = ∞ for a ≥ 0, but it does not
seem possible to prove it without considering the case a > 0.

PROOF OF LEMMA 3.5. Since EX = µ < 0, but P(X ≥ 0) > 0, there is
probability mass above µ, so we can assume P(X ≥ −|µ| + δ) > c > 0 for
some δ ∈ (0, |µ|). First we show the required result holds for sufficiently large a.
Note that Rn = S∗

n + n|µ| − S̃n, where S̃ is a zero-mean random walk and
S∗

n = max0≤i≤n Si ≤ S∗∞, where b := ES∗∞ < ∞ since E(X+)2 < ∞; see [19].
Assuming ETa < ∞, we get

0 = ES̃Ta = ES∗
Ta

+ |µ|ETa − ERTa

≤ ES∗∞ + |µ|ETa − (a + |µ|ETa) = b − a.
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This is a contradiction when a > b, so ETa = ∞ for a > b.

Next, observe that ETa ≥ P(X ≥ 0)ETa+|µ| = cETa+|µ|, for a c > 0. Thus,
if ET0 were finite, ETn|µ| would also be finite for n = 1,2, . . . . This proves the
lemma. �

With this, the proof of Theorem 2.2 is complete. �
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