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ON A CONVEX FUNCTION INEQUALITY FOR
MARTINGALES!
By ADRIANO M. GARSIA
University of California
A new proof is given for the inequality
E(Q(ZT., E(z. | 7)) = CE(Q(XT., 2))

where zy, z2, - -+, z5, - -+ are nonnegative random variables on a probability
space (0, &, P), F1C F2C -+ C FnC -+ F is a sequence of g-fields
and ®(u) is a convex function satisfying ®(2u) £ c®(u).

0. Introduction. Let (Q, 57, P) be a probability space and
S, Sy CF,C s CF

be a fixed sequence of ¢-fields.
In a recent paper [1] Burkholder, Davis and Gundy prove the following
result.

THEOREM 0.1. Let ®(u) be a convex function from [0, co] to [0, co) such that
®(0) = 0 and

P2u) < cD(u) Yu>0.
Then, if {Z,} is any sequence of nonnegative 5 -measurable functions on Q
(0.1) E(@(X5. E(Z,].77,) = CE(Q(Z3-1 Z,)

where C depends on c.

This inequality is not only interesting in itself, but it is a key step in these
authors’ proof of a rather remarkable inequality for martingales (see Theorem
1.1 in [1]).

In this paper we shall present a new proof of this inequality. Indeed, we shall
show that (0.1) is actually very intimately related to some martingale inequali-
ties which may be considered ““classical.”

We hope that our efforts here will not only provide a quick path to (0.1) but
also shed some additional light on the true nature of this very interesting
inequality.

1. Preliminaries about convex functions. To avoid getting lost in technicalities,
we shall assume that our convex function @ () is of the type

Q(u) = §i ¢(r) dt
with, ¢(¢) strictly increasing and nonnegative in [0, o).
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To such a ®(x) we can associate a convex function ¥(v) of the same type
(the conjugate of ® in the sense of Young) such that

¥(v) = §5 () dr,

where ¢(u) and ¢(v) are inverses of each other.
The following relations are well known and easily established

(1.1) up(u) = ®(u) + ¥(e)) ,

(1.2) §5 1d(r) = @($(v)) »

(1.3) uww < O(u) + ¥(v) (Young’s inequality),
u 1

(1.4) ®<7> < — ), vizl.

Furthermore, when

D(2u) < cD(u)
then, setting
up(u)
D(u)

P = Supu>0

weeasilyget l <p<c— 1< oo.
Finally, we also have

(1.5) D(ou) < p*D(w) Ve
(1.6) Y() = (p = DHP($()) -
The proofs of these assertions can be found in [3].

2. Some “classical” martingale inequalities. Let {f,} be a nonnegative {5 }-
submartingale, i. e. F(f,) ¢ &, and

@1 0</f, S E(ful5), 0O<vsn
assume further that

(2.2) fo=0.

Furthermore, set

(2-3) fof = maxy,of,,  f*=sup.f,.

THEOREM 2.1. If m(t) is any non-decreasing function in [0, co) and m(0) = 0
then

(2.4) E(§{= tdm(1)) = E(fum(f.*)) -
Proor. From (2.2) we get
E(§{ tdm(r)) = T, B(§3 ¢ dm(1))
< D EIm(f) — m(f0)) -
Now, since f,* = f, when m(f,*) > m(f*_,), we must conclude that

(2.5) E(§§» tdm() < 20 E(fLIm(f,*) — m(fI)]) -



CONVEX FUNCTION INEQUALITY FOR MARTINGALES 173

This given, (2.1) immediately gives (2.4).
If we now replace m(t) in (2.4) by our function ¢(f) and use (1.2) we get

E(@(¢(f,*) = E(fud(f27)) -
So, by Young’s inequality

E@() = E(O(HLD)) + B (L),
and by (1.4)

P BOG() = BCV(RL)
Combining with (1.6) we finally obtain

(2.6) ECY(f,*)) = pECY(pfL)) -
Note. Inequalities of this type, especially in the case W(u) = u?(g > 1), are

classical. (See Doob [2] page 317.)
The usual method of proof consists in deriving first (2.4) in the special case

m(t) = 1 if t=12

=0 if t<2 (2> 0),
by a stopping time argument.
This gives
(2.7) APLf* 2 A = Siypean fu dP -

Then inequalities such as (2.4), in the case m(r) = »~'(p = 1), are obtained by
multiplying (2.7) by 27~* and integrating for 2 in [0, c0). Indeed, (2.4) itself
can be obtained from (2.7) by a similar method.

The reason for our including proofs of these known things here is that we
wish to point out that not only (2.7) but (2.4) as well is an almost immediate
consequence of the submartingale condition.

It is also worthwhile noticing that when we put dm(f) = (1 + *)~'dt we
obtain

E(log (1 + f.**) = =E(f,) -

This, in the L,-bounded case, yields
E(log (1 + f**) = = sup, E(f.) .
in particular f* < oo a.s.

3. Proof of the Burkholder-Davis-Gundy inequality. We shall show that (0.1)
holds with C = p*. Clearly, to do this, we need only show that

(3.1) E(@(Xr. E(z,| ) = pPPE@(ZI-,2.) -
To this end, set
7= 2012, 7= 20 Bz | )
fo=0, f, = E(e(7)| -#".) , 1
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This given, we have

E(re(7)) = 21 E(2.f) = EGf.Y) -

Thus, from Young’s inequality we obtain

E(re(7) < E@(p)) + E(W(f;)) ,

and (2.6) yields
E(o(7) < E@(pr)) + pE (w( 1Y) .
(i) = BQr) + pE (¥(£7))
Using (1.1) and (1.4) we then get

E(®(7)) + E(¥(p(7)) = E@(p7) + E¥(2(7)) »
and (3.1) finally follows from (1.5).

Note. A slight modification of the above proof in the case ®(u) =‘u"/p,
o) = vifq(p~* + ¢~ = 1), yields (0.1) with C = pr. It would be interesting
to find out whether (3.1) is best possible in the general case.
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Note added in proof. In ‘“Recent progress in the theory of Martingale ine-
qualities” (seminar notes), an entirely different argument yields 0.1 with C = pr+1,



