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OCCUPATION TIMES FOR SMOOTH
STATIONARY PROCESSES!

By D. GEMAN AND J. HorOWITZ
University of Massachusetts, Amherst

An occupation-time density is identified for a class of absolutely con-
tinuous functions x(¢) in terms of x’(f) and the number of times that x()
assumes the values in its range. This result is applied to stationary random
processes with a finite second spectral moment. As a by-product, a gene-
ralization of Rice’s formula for the mean number of crossings is obtained.

0. Introduction. We construct an occupation-time density (OTD) for random
processes belonging to a class which includes all stationary processes having a
finite second spectral moment 2,. The problem is similar to that treated by
Berman [2] and Orey [12] for certain stationary Gaussian processes with 4, = co,
but is simpler to deal with in the present context.

The work breaks naturally into two parts. First, in Section 1, using classical
results from the theory of functions of a real variable, we give a necessary and
sufficient condition for an absolutely continuous (nonrandom) function x(r) to
have an OTD, which is given explicitly. Then, in Section 2, we impose prob-
abilistic conditions on a stationary process x(f, w) so that the results of Section
1 are applicable to almost every trajectory.

We then obtain a general form of Rice’s formula for the mean number of
crossings of a level. If x(t, ) is Gaussian, with 4, < oo, the present approach
to Rice’s formula is less efficient, but perhaps more revealing, than the usual
one [4]. Finally, we slightly improve a result of Berman on the multiplicity of
the values in the range of a stationary Gaussian process with 4, = oo.

1. A real variable theorem. Let x(f) be a real-valued, absolutely continuous
function on 7 = [0, 1]. We use <#(I) to denote the Borel o-field in /, <& the
Borel g-field in the real line R, and m for Lebesgue measure (‘“‘measurable” will
mean Lebesgue measurable, unless stated otherwise). The indicator of a set I is
denoted by I;.

For any subset U of I, xe R, put

vwx, U) = #{te U: x(t) = x},
where # denotes “cardinality of,” and is interpreted as co when the indicated
set is infinite. For each x, v(x, ) is a measure whereas for each interval U C I,

hence for each Ue Z(I), v(+, U) is a measurable function. When U is an
interval, v(x, U) is known as the Banach indicatrix of the function x(rf) on U. A
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theorem of Banach, together with basic properties of absolute continuity, yields
(1) §rv(x, U)dx = §, |X'(s)| ds

for any interval U in /, hence for any Ue 24(I), where x'(s) denotes the deriva-
tive of x(s). (If x(s) is only assumed continuous, (1) remains valid if the right
side is replaced by the variation of x(s) over U—this is Banach’s original result

[11)

THEOREM 1. The function b,(x) = §} |x'(s)|"v(x, ds) is finite for almost every x,
and satisfies

(2) §i b.(x)dx < §§ 1.(x(s)) ds (= m(x*(T") N[O, 1])) forevery I' € £7.
Equality obtains in (2) iff
3) ' mitel: x'(t) =0} =0.

Notice b,(x) = 27, |x'(¢;)|™* where n = v(x, [0, t]) and ¢, is the i*" hitting time
of x.

Proor. Let D = {rel: x'(t) does not exist}. Then m(D) =0, hence
m(x(D)) = 0 since an absolutely continuous function carries null sets into null
sets. Next, let N = {rel: x'(t) = 0}. By ([6](17.27)), m(x(N)) = 0. It follows
from (1) that m{x: v(x, I) = co} = 0; hence m(B) = 0, where B = x(D) U x(N) U
{x:v(x,I) = o0}. So b,(x) is finite for x ¢ B.

For any Ue £2(I), I' € <, observe that v(x, x{(I') N U) = v(x, U)I(x). Put-
ting this into (1) we find

(@) o U5, U) dx = §,oapop [X(5)| ds,  Ue 22(I), T e 7.
A monotone class argument gives
) $r §of(5)u(x, ds) dx = §.1r, f(5) [X'(5)] ds

for any nonnegative <2(I)-measurable function f(s). Take
JG8) = Iyeqpo.n(s) [K' ()| ace.

Then (5) becomes

) §r b(x)dx = m(x(T)n N°n[O0, 1)),

and the theorem is proven. [J

Clearly b,(x) is the density of the absolutely continuous component of the
measure m(x~Y([') N[0, r]). When there is no singular component, i.e. when
equality holds in (2), we call b,(x) an occupation-time density (OTD) for the func-
tion x(r).

Notes. (i) When (3) is in force, the existence, but not the explicit form, of an
OTD is immediate from the Radon-Nikodym theorem: let I" be a subset of the
range of x(r), m(I') = 0. Then x'(t) = 0 a.e. on x~(T') (see, e.g. [11] page 213),
so that m(x~(")) = 0 by (3).
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(i) Animmediate consequence of (4) with I' = (x — ¢, x +¢), U = [0, 1], is
. 1 ,
(™) U, [0, 1]) = lim, yo o= §5 Lo, ([X(5) — x]) [¥'(s)] ds

for almost every x. This generalizes Lemma 1 of Kac [10] which says that (7)
holds for every x provided that x’(z) is continuous and neither x(0) nor x(¢)
equals x. See also Ivanov [8].

2. Stochastic occupation times. Consider a strictly stationary stochastic process
x(t, w), te R, over a probability space (Q, .5, P), and denote by 6, the shift
transformation of the process ([4] page 149). If the trajectories are continuous,
then, by using a suitable function space representation, we may assume that
{6,: te R}isa flow, i.e. a one-parameter group of measurable, measure-preserv-
ing transformations on Q, with 6, the identity, and such that the mapping
(t, w) — 0,(v) of (R, 22) x (Q, &) onto (R, ..#") is measurable. The definition
of shifting entails that x(t + s, w) = x(¢, 6,w) for all 5, 1€ R, w € Q.

We shall apply the results of Section 1 to stationary processes within the
following framework:

DEFINITION. (i) An additive functional (AF) is a process a(t, o) (or a,(w)),
teR, weQ, for which a(0) = 0, a(r) is right continuous and nondecreasing
a.s., and, for each s, re R,

8) a(t + s, w) = a(t, w) + a(s, 0,0) a.s.
(For example, § X(f,w)ds is an AF for any bounded, nonnegative random
variable X.) If Ea(l) < oo, a is an integrable AF, and Ea(t) = tEa(l), te R.
(ii) The Palm measure of an AF a is defined as:
9) B (A) = E\i1, 00 da(r), Ae F .
Obviously, 13,, is a finite measure iff a is integrable.
(iii) A family of AF’s f(x) = (B,(x)), x € R, isan occupation-time density (OTD)

for the process x(1, ») if B,(x, w) is measurable in the pair (x, w), and there
exists a set Q' such that P(Q’) = 1 and

(10) §r Bu(x, @)n(dx) = §¢ I(x(s, w)) ds, e B, teR, weQ, where
2(T) = P{x(0) e T}.
We need two lemmas.

LEMMA 1. Let a, B be integrable AF’s. Then P, = Pﬂ iff for almost every v € Q,
a(t, w) = P(t, ) for all te R.

We omit the proof, which appears in [7]. By a regular conditional probability
given x(0) (briefly rcp) we mean a family {P*: x ¢ R} of measures on .. for
which x — P*(A) is measurable for each 4 ¢ &, and

(11) P{4, x(0) e T} = §, P*(A)r(dx), TeB Ae .
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Clearly P is a probability measure a.e. [z]. (The conventional notation for
P*(A) is P(A|x(0) = x).) We can now state

LEmMA 2. Let B(x), xe R, be a family of AF’s such that B,(x, w) is (X, ®)-
measurable. Then B(x) is an OTD iff the family of Palm measures P, is an rcp.

Proor. Suppose B(x) is an OTD. For I' € 22 we have

SI‘ ﬁ,S(z)(A)n(dx) = \r E Sé I o0 0tdﬁt(x)r"(dx)

= E ;1,0 0,I(x(1)) dt by (10)

= P{4, x(0) e I'} (stationarity).
Thus {P,,)} is an rcp. Conversely, consider the additive functionals y.(f) =
{r B.(x)7(dx) and 6.(1) = (¢ I(x(s)) ds. The above computation, done in reverse,
shows that 7., 4. have the same Palm measure, hence (Lemma 1) coincide on a
set Q. of probability 1. Letting I' run through the family of intervals with
rational endpoints we obtain a set Q' for which (9) holds. []

Let {P*: xc R}, {Q*: x € R} be two rcp’s. If 5 is separable, as we can and
do assume (since x(¢) is continuous), then P* = Q® a.e. [z]. In some cases—
notably Gaussian—there is a natural choice of an rcp dictated by joint densities.

Let us now assume that the stationary process x(f, ) has a quadratic mean
derivative x(¢, »). (This is equivalent to the requirement that the second
spectral moment 4, be finite.) As Doob ([5] page 536) has shown, taking a
“standard modification” of the original process, we may assume the trajectories
are absolutely continuous and have sample derivative x(f, w)—all with proba-
bility one. In applying Section 1, we may remove the restriction that ¢ be in I:
all the definitions and results extend immediately to R. For the trajectory
x(t, w) we define v,(x, ) = v(x, (0, t], o) whent = 0, and v,(x, w) = —u(x, (£, 0], w)
when ¢ < 0, with »(x, U) as in Section 1. Obviously v,(x, ) is an AF for each
x€R.

THEOREM 2. If
(12) P{x(0)=0}=0,

then the one-dimensional distribution n(dx) is absolutely continuous, and there is an
OTD for the process. The converse is also true. Moreover, under (12),

(i) the additive functionals

(13) Bu(x, @) = (p(x))7 §5 [%(5)[ 7" dv(x, @)

serve as an OTD (p(x) being a density for n(dx));
(ii) dB,,, = p(x)|%(0)| dP* a.e. [x], where {P*, x € R} is an rcp;
(iii) Ev,(x) = p(x)E* |x(0)| a.e. [x] (E* denotes integration with P*).

Proor. If (12) holds, P{x(r) = 0} = O for each e R; hence it follows from
Fubini’s theorem that m{s: x(rf) = 0} = 0 a.s. Now, by Theorem 1, for almost
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every o the AF b,(x, ) = {}|x(s, w)|"' dv,(x, 0) satisfies (2) with equality.
Taking expectations shows that p(x) = Eb,(x) is a density for 7(dx) and, since
n(dx) = p(x)dx, the AF B,(x) = (p(x))~'b,(x) satisfies (10).

For the converse, let 7(dx) = p(x) dx and B,(x) be an OTD. Then with prob-
ability one, the trajectory x(f, w) cannot spend positive time in a set of
Lebesgue measure zero. By Theorem 1, m{t: %(t) = 0} = 0 a.s., and a Fubini
argument gives P{x(¢) = 0} = 0 for almost every ¢, hence for every ¢ by station-
arity. In particular, (12) holds. ‘

By Banach’s theorem (Section 1), v,(x) < oo for almost every x (hence a.e.
[7]) if we exclude a set of probability zero. Another Fubini argument allows
us to conclude that, for almost every x, v(x, w) < oo a.s. For such x, we can
“invert” (13) to obtain

(14) v(x) = p(x) §5 [x(s)| dB(x) a.s.
Putting P* = P,,, gives an rcp by Lemma 2, and (ii) and (iii) follow immedi-
ately. []

We conclude this section with several remarks.

(a) If we write (1) for the trajectory x(z, w) with U = [0, 1], and take the
expectation of both sides, then, with the sole assumption that 2, < oo, we get

§r Evi(x)dx = E |x(0)] < oo

since x(0) € L:. Thus Ev,(x) < oo a.e., a fact which does not seem to be in the
literature (see [4] page 201).

(b) Because the density p(x) is only determined almost everywhere, the
exceptional x-sets in (ii) and (iii) are to a certain extent unremovable unless, of
course, further restrictions are imposed. (See (d) below.)

(c) Let x(t, w) be Gaussian, with standard normal one-dimensional distribu-
tions. Then x(0) and %(0) are independent, and

POE® [3(0)] = (Z}/7) exp(—x/2),

where P= refers to the usual Gaussian rcp. It can be shown that (3,}/7)'8, , is
the so-called “horizontal window” probability P(. | x(0) = 0hw) defined in [14].
It is immediate that, under P°, x(¢) is distributed as the sum of two Gaussian
processes: x,(f) having mean zero and covariance r(t — s) — r(f)r(s) — 2,7r'(£)r'(s)
where r(t) = Ex(t)x(0), and x,(f) = 4,7 ¥'(r)é, where £ is standard normal and
independent of the process x,(t). Slepian’s [14] decomposition of the “horizontal-
window” process now follows directly from (ii).

(d) Let B = B(w) be defined as in the proof of Theorem 1, relative to the
trajectory x(f, ). Then m(B(w)) = 0 a.s.; in particular, there cannot be a
tangency to any x ¢ B(w). Hence with probability one, v,(x) = a,(x), for almost
every x, where a,(x) is the number of “genuine” crossings; such a crossing
occurs at f, if x(t)) = x and x(rf) — x changes sign on every neighborhood of ¢,
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With v replaced by a in Theorem 2, part (iii) is then a general form of Rice’s
formula ([4] Chapter 10) for the mean number of crossings. By using polygonal
approximations to x(¢), it follows that Ea,(x) < lim inf ,_ Ea,(x + k) for every x.
In general, one must impose further restrictions to obtain Ea,(x) = p(x)E* |x(0)]
for a given x. (See e.g. [8] Theorem 3.)

(e) From Theorem 1, every Gaussian process having absolutely continuous
trajectories has an OTD as in Section 1. This gives a partial answer to a conjec-
ture of Orey [12].

3. On a theorem of Berman. Let x(, w), 0 < t < 1, be as in Section 2, except
we now assume that x(f) is Gaussian, mean 0, and 1, = oo (equivalently,
t=%(1 — r(t)) — oo as t — 0 where r(t) is the covariance). The paths are no
longer absolutely continuous (see below) and the results of Section 2 do not
apply. However, we recall Banach’s theorem (Section 1): a continuous function
on an interval U has bounded variation if and only if v(x, U) is integrable over
R. We can apply this to obtain, and slightly improve, the following result of
Berman [2], amended in [3]:

THEOREM (Berman). Suppose, for almost every w € Q, x(t, w) has an OTD b,(x),
which admits a version continuous in x for every rational t. Then the set of values y
where x(+, w) crosses y at most finitely often is of category one in the range of x(-, w)
for almost all w.

We will show that the conclusion remains true without assuming the existence
of an OTD. The proof goes as follows. Let P denote the distribution of x(¢, w)
in the space C[0, 1] of continuous real-valued functions on [0, 1]; measurable
sets are those in the completion under P of the usual product ¢-field. Let G
consist of paths with a (finite) derivative at some fixed . Then G is a measura-
ble subgroup; hence P(G) = 0 or P(G) = 1—see [9]. If P(G) =1, A~'(x(h) — x(0))
converges in law, which is impossible since E[A~'(x(h) — x(0))]* diverges by our
hypothesis about r(f). By stationarity and a simple Fubini argument, x(t, ) is
non-differentiable a.e. on [0, 1] a.s. In particular, x(¢, ) is of unbounded
variation on every subinterval of [0, 1] a.s. It is known that for each y fixed,
a,(y, ®) = vy(y, w) a.s. Banach’s theorem now implies that the integral of
ay(y, w) diverges over every subinterval of [0, 1]. In particular, the closure of
{y: ay(y, w) £ k}n x([0, 1], ) has no interior for every k = 1 a.s. (see [13] for
the details). Noting that

B ={y: ay, ») < o} = Usa: {y: as(y, ) < k}
we are finished. (Of course, as a subset of B, {y: v(y, w) < oo} is also of
category one in x([0, 1], ») a.s.) []

The argument above extends immediately to any real Gaussian process on
[0, 1] with stationary increments, continuous paths, and for which ~%¢*(t) — oo
as t — 0 where %) is the incremental covariance. (See [3] for conditions under
which B is actually nowhere dense in x([0, 1], ») a.s.)
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