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SAMPLE FUNCTIONS OF THE GAUSSIAN PROCESS!

By R. M. DUDLEY
Massachusetts Institute of Technology

This is a survey on sample function properties of Gaussian processes
with the main emphasis on boundedness and continuity, including Holder
conditions locally and globally. Many other sample function properties
are briefly treated.

The main new results continue the program of reducing general
Gaussian processes to ‘‘the’” standard isonormal linear process L on a
Hilbert space H, then applying metric entropy methods. In this paper
Hélder conditions, optimal up to multiplicative constants, are found for
wide classes of Gaussian processes.

If H is L? of Lebesgue measure on R¥, L is called ‘‘white noise.” It is
proved that we can write L = P(D)[x] in the distribution sense where x has
continuous sample functions if P(D) is an elliptic operator of degree > k/2.
Also L has continuous sample functions when restricted to indicator func-
tions of sets whose boundaries are more than k& — 1 times differentiable in
a suitable sense.

Another new result is that for the Lévy(-Baxter) theorem { (dx;)? = 1
on Brownian motion, almost sure convergence holds for any sequence of
partitions of mesh o(1/log n). If partitions into measurable sets other than
intervals are allowed, the above is best possible: ¢?(1/log n) is insufficient.
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0. Introduction. This paper is an attempt to survey what is known about
sample functions of Gaussian processes. Emphasis is given to continuity and
boundedness properties, as in most of the literature, although other topics are
treated. On many topics, new results are presented.

The principal idea is to study one Gaussian process, defined as follows. A
sequence {X,} of random variables will be called orthogaussian iff they are inde-
pendent with mean 0 and variance 1, ~(X;) = N(0, 1). Now let H be a real,
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infinite-dimensional Hilbert space. A Gaussian process L on H will be called
isonormal iff L is a linear map from H into real Gaussian random variables with
EL(x) = 0 and EL(x)L(y) = (x, y) for all x, ye H. (The term “isonormal” is
due, I believe, to I. E. Segal, who originally called it the “normal distribution”
(Segal (1954)).) Specifically if {¢,} is any orthonormal basis of H so that for
xeH, x =3 x,¢,, let L(x) = ] x, Y, where the Y, are orthogaussian.

As elaborated later on, most of the study of sample function continuity and
boundedness of Gaussian processes reduces to the study of those sets C  H
on which the isonormal L has continuous or bounded sample functions, called
GC-sets and GB-sets respectively. One measure of the size of a set C in H is
the minimal number N(C, ¢) of sets of diameter < 2¢ which cover it. GC-sets
and GB-sets cannot quite be characterized in terms of N(C, ¢) (Dudley (1967)
Proposition 6.10), but it still seems that such conditions are the most convenient
general conditions now available. In Section 1 we give the weakest possible
sufficient condition and the strongest possible necessary conditions on N(C, ¢)
for the GC- and GB-properties. The best possible necessary condition for GB,
namely lim sup, ,¢* log N(C, ¢) < oo, is new. The example proving it best pos-
sible contradicts one statement in an announcement by Sudakov (1971) while,
on the other hand, the best possible necessary condition is proved by methods
suggested in Sudakov’s earlier note (1969), for which the inequality of Slepian
((1962) Lemma 1 page 468) is fundamental.

Section 2 treats moduli of continuity (Holder conditions) on sample functions.
If log N(C, ¢) is a reasonably smooth function of ¢ asymptotically as ¢ | 0 (of
course, it only changes by jumps!) we find uniform moduli of continuity which
are optimal within a constant factor (Theorem 2.6 below). N. Kdéno (1970)
earlier found some results on moduli of continuity in terms of N(C, ¢).

Section 3 treats processes with stationary increments, which are accessible
both by metric entropy methods (3.1) and by Fourier analytic methods (3.2).
For these methods, “stationary increments” is fundamentally no worse than
“stationary.” This is the main point of Section 3, which contains no new hard
results.

Given a measure space (X, ., p), the isonormal process L on L¥X, &, p) is
called p-noise. Section 4 treats these processes. If p is Lebesgue measure on R,
we have what is called white noise W. Sub-section 4.1 shows that if P(D) is an
elliptic operator with constant coefficients of order m, then there is a process x,,
t € R*, with continuous sample functions and P(D)[x,] = W (in the distribution
sense) iff m > k/2. In Sub-section 4.1 we restrict W to indicator functions y, of
sets 4 whose boundaries are a times differentiable, obtaining continuous sample
functions of the process 4 — W(y,)ifa > k — 1and not if &« < k — 1, conjectur-
ally also not if @ = k — 1. Here a is not necessarily an integer. In this respect
convex sets behave like sets with exactly twice differentiable boundaries. The
proofs of these results depend on another paper (Dudley (1972b)). They answer
questions raised by R. Pyke in Oberwolfach, March 1971.
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Our final result on noise processes is an extension of the “Lévy-Baxter” theo-
rem, on almost sure quadratic Brownian variation {j (dx,)* = 1, to partitions of
measurable sets with mesh o(1/logn). In P. Lévy’s original theorem the parti-
tions were formed by successive refinement, allowing the mesh to approach 0
arbitrarily slowly; thus our results are independent.

Most of the rest of the paper surveys the literature. In Section 7 are two pro-
positions showing that sample-continuity conditions for non-Gaussian processes
are much different from Gaussian ones; sufficient conditions for the non-Gaussian
case must be much stronger (7.1), while necessary conditions are weaker (7.2).

The bibliography at the end is no doubt uneven and incomplete. References
to it are made with the date after the author’s name. For a longer list, up to
1968, see J. Neveu (1968).

DEFINITION. A stochastic process {x,, € T} over a topological space T is
sample-continuous if there is a version of the process with continuous sample
functions, i.e., there is a countably additive probability measure on the space
of continuous functions on T with the same joint distributions as x, on finite
subsets of T.

A real-valued process {x,, t € T} will be called sample-bounded iff it has a ver-
sion with bounded sample functions, i.e., there is a countably additive probability
measure on the space of all bounded functions from T into X with the same joint
distributions as x, on finite subsets of T.

In this paper, we shall only consider real-valued Gaussian processes, although
the results would carry over to complex processes easily. Gaussian measures
can be defined on vector spaces, on locally compact Abelian groups (Urbanik
(1960), Corwin (1970)) and on suitable homogeneous spaces.

The isonormal process L can be regarded as the only real Gaussian process
in view of the theorem that Gaussian distributions are uniquely determined by
their means and covariances. Thus let {x,, € T} be any real Gaussian process
with mean Ex, = m,. Then L(x, — m,) + m, is another version of the same pro-
cess, where we take H as the Hilbert space L, P). We can “forget” the specific
joint distributions of x, — m, over (R, P) and remember only the abstract, geo-
metric Hilbert space structure of the function t — x, — m,e H. Then L will
“remember”’ the joint distributions for us.

A set C C H is called a GC-set iff L restricted to C is sample-continuous. C
is called a GB-set iff L on C is sample-bounded. The following theorems from
Dudley (1967) and Feldman (1971) show how these notions apply.

THEOREM 0.1. Let {x,, t € T} be a real Gaussian process over a metrizable space
T with Ex, = m,. Then the following are equivalent.

(a) x, is sample-continuous.

(b) t— L(x, — m,) + m, is sample-continuous.

(¢) t— m, is continuous and t — L(x, — m,) is sample-continuous which implies
t — x, — m, continuous T — H = L¥Q, P).
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THEOREM 0.2. Theorem 0.1 remains true if “continuous” is replaced by “‘bounded”
throughout, and “metrizable space” replaced by “set.” Also, L(x, — m,) is sample-
bounded if and only if {x, — m,: te T} is a GB-set. A set Bis GB iff its closed,
convex, symmetric hull in H is GB.

If B is GB then L(B) = sup {|L(x)|: x € A4}, for any countable dense subset 4
of B, is a finite random variable which changes only with 0 probability if A4 is
changed. Fernique (1970) and Landau and Shepp (1971) have shown that

Pr (L(B) > 1) £ Cexp{—1t/2a?

for some C < oo and & < oo, specifically for any @ > sup {||x||: x € B} (Marcus
and Shepp (1971), Fernique (1971)). The latter’s claim of an error in Landau-
Shepp (1971) has been retracted. In any case Fernique’s proofs are simpler.
An error in an earlier preprint by Shepp alone was found by D. Cohn. Sudakov
(1971) says his proof is based on a lemma in the preprint of Shepp. Thus
Sudakov’s theorem is open to doubt (see also the counter-example to a corollary,
Remark after Theorem 1.1 below).

Turning now to GC-sets, we have the following theorem, due in present
generality to J. Feldman (1971) with miscellaneous contributions by others
(Jain and Kallianpur (1970); Dudley (1967) Theorem 4.6).

THEOREM 0.3. Let T be a compact metric space and {x,, t € T} a real Gaussian
process with Ex,=0. Let C={x,:teT}cC L¥Q, P) = H. Assume t — x, is
continuous T — H. Then the following are equivalent:

(a) x, is sample-continuous.

(b) Cisa GC-set.

(¢) The closed, convex, symmetric hull of C is a GC-set.

(d) For every e > 0, P(L(C) < ¢) > 0.

(e) For every orthornomal basis {¢,} of the linear span of C, the series
> (x, ¢,)L(p,) converges uniformly for x € C with probability 1.

The Karhunen-Loéve expansion of a Gaussian process {x,,a < t < b} is a
special case of the orthogonal series in (¢). That expansion involves the eigen-
functions of the covariance kernel K(s, f) = Ex, x,, with respect to L* of Lebesgue
measure. But for processes without stationarity properties, Lebesgue measure
is not especially natural, and there is no good reason to single out the Karhunen-
Loé¢ve expansion from other orthogonal expansions.

Dudley, Feldman and LeCam (1971) have shown, among other things, that
the class of GC-sets is stable under vector sum (as is obvious for GB-sets, as
well as homothetic invariance of both classes). It is also known that the compact
GC-sets are precisely those compact GB-sets which are not “maximal” in a sense
defined by compact operators (J. Feldman (1971)).

Fernique (1971) has given rather sharp sufficient conditions for the GB- and
GC-properties, as follows. Let (K, 1) be a probability space. Let G(K, p) =
{f:3a >0, {4 exp(afi(x)) dp(x) < oo}. Then the p-equivalence classes of
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functions in G(K, p) form a Banach space for either of the norms

N(f) = sup,z: (P~ #[1 fll 2 »
N'(f) = inf{a > 0: § exp(f¥a®) — 1 dp < 1} .

Here N < N < 2N. Let G (K, ¢) be the closure of the bounded functions
in G(K, p), a proper closed linear subspace in general. Then the dual space
G *(K, p) consists of the p-equivalence classes of functions f such that

§ If|(max (0, log |f1)* dis < oo .
The following is a reformulation of Théoréme 5 of Fernique (1971).

THEOREM (Fernique). Suppose C — H and B is a compact subset of H. Let p
be a finite measure on B. Let f be a real-valued function on B X C such that the
map x — f(+, x) is bounded from C into G, *(B, p). Suppose that for all x, y € C,

(6 y) = §§ (5, (s, )[(s, y) dp(s) dpe(r) -
Then C is a GB-set. Furthermore if x — f(+, x) is continuous from C into G * with
weak-star topology, then C is a GC-set.

If in the original Théoréme 5 of Fernique (1971), one lets K =[0, 1], I'(s, 1) = 1
for s = rand O for s =+ ¢, then there are difficulties.

Fernique shows that his sufficient condition is also necessary in many cases,
but to find f and B still requires ingenuity in different cases.

1. Continuity and boundedness; metric entropy. Let C be a subset of a metric
space (S, d). Given e > 0, let N(C, ¢) be the smallest n such that there exist sets
Ay ooy A, CC Ui 4, and for each j, d(x, y) < 2¢ for all x,ye 4;. Let
H(C, ¢) = log N(C, ¢). H(C,¢) is called the metric entropy of C, following G. G.
Lorentz (1966). Kolmogorov (1956), who invented this notion, called it “e-
entropy,” as have most others who used it. On the other hand Posner, Rodemich
and Rumsey (1969) use “c-entropy” to mean infimum of information-theoretic
entropy of partitions of C into sets of diameter < ¢, for a probability measure
on C. Lorentz’s term metric entropy seems well adapted as a name for the purely
metric H(C, ¢) (there is no given or natural probability measure P on C here).

The exponent of entropy r(C) is defined by

r(C) = lim sup, ,, log H(C, ¢)/log (1/e) .

It is known that C is a GB-set in H if (C) < 2 and not if r(C) > 2 (Sudakov
(1969), Chevet (1970)). It is also known, however, (Dudley (1967) Proposition
6.10) that we may have H(E, ¢)/H(Oc, ¢) — 0 as ¢ | 0 where Oc is a GC-set and
GB-set while E is neither, r(E) = r(Oc) = 2. Thus inside r(C) = 2, there is an
ambiguous range where H(C, ¢) does not determine whether C isa GB-set. V. N.
Sudakov (1971) has recently announced a necessary and sufficient geometric
condition on C for the GB-property, but this condition seems difficult to apply
in practice, no proof is yet published, and the result is in doubt. Thus, despite
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the ambiguity at 7(C) = 2, the metric entropy conditions seem still the most
useful. Here is a summary of the best possible such conditions.

THEOREM 1.1. Let C be a compact set in H. Then

(@) Cisalways a GC-set if {} H(C, x)}dx < oo, in particular if for some > 0
and all small enough ¢, H(C,e) < 1/e*|log e[*[log |loge|]* - - - [log - - - log [log ¢]***.
(b) There are non-GB-sets C with

H(C, ¢) < 1/¢*|log ¢[*[log |log ¢|]* - - - [log - - - log |log ¢|]* .

(c) C isnevera GB-set if lim sup, ,e*H(C, ¢) = + oo, in particular if H(C, ¢) =
e7*log - .. log |log ¢| for a sequence of values of ¢ | 0.

(d) There is a GB-set C with lim sup, ,, eH(C, ¢) > 0.

(¢) There are GC-sets C such that sup,.,., eH(C, ¢) | O arbitrarily slowly as
60.

Proor. For (a) note that {§ H(C, x)*dx < oo iff 37, H(C, 27")}/2" < co. Then
the result is stated in Dudley ((1967) Theorem 3.1). (A small error in the proof,
noted by J. Neveu, is corrected in the proof of Theorem 2.1 below.) Sudakov
((1971) Theorem 5) has another approach to this fact. A related fact for pro-
cesses {x,, 0 < ¢+ < 1} is due to Delporte (1964) with a neater formulation by
Fernique (1964) and another recent proof by Garsia, Rodemich and Rumsey
(1970).

For (b) we apply the examples of Fernique ((1964) Théoréme 3, Remarque);
for a more detailed discussion see Marcus and Shepp (1970), (1971).

For (c) we shall apply Slepian’s inequality (1962) as in Sudakov’s proof (1969)
that r(C) > 2 implies C is not GB. I am grateful to S. Chevet, from whose
presentation (1970b) the following lemma and proof are adapted, and to E. Giné
who gave another exposition. Let ® be the standard normal distribution function

D(t) = )t (' exp(—x*2)dx =1 — F(1).

LemMA 1.2 (Sudakov-Chevet). Ler a, ---,a,e H, ] S M < 0, 0<ec< 1,
lla;|l = M for all j, and ||a; — a,|| = ¢ for i + j. Then
F()Pr{La;) < 1,j=1,...,n}

< 27 4 (27)7 iy exp(—12)D(Kt/e)" dt

where K = (2(M* + 1))}

Proor. Let {e;}5., be an orthonormal basis of H such thata,, - -, a, belong
to the linear span of e,, - - -, e,. Let H,,, be the linear span ofe,, ---,e,,,. Let
G be the standard Gaussian measure on H,,,,and b, =a;, —e,,,, i =1, --., n.
Then

F)Glz: (z,a) < 1,i=1, .-, n)
=G{z: (z,e,5) 21,(z,a) < 1,i=1, ..., n}
< Glz:(z,b) 0,i=1,.-,n}.
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Let b,; = (b;, b,)/||b;]| ||b,]|- Let 6 be the angle between b, and b, so that b,; =
cosf. Then b,; is largest for i + j when ||a;|| = ||a;|| = M. Hence

b;; =2cos’(360) — 1
S2MEP 41 — g4 MP 4 1) —1 =1 — /K2 < 1)1 + €/K?).

Let fi = eei/K — enns fis = (S NN = 1/(1 + €/K?) for i j, by =
fii = 1. Thus Slepian’s inequality ((1962) Lemma 1 page 468) can be applied to

bi/l|b:]| and fi/|| fil], giving
G{z: (z,6)<0,i=1,...,n}
LGz:(,f)£0,i=1,...,n}
= Glz: e(z, e)/K = (2 eyu)i =1, -+, )
= 2r)t§=.G{z: (z,e;) < tK|e,i =1, .- ., njexp(—1*/2) dt
= (2m)~t §=, D(Kt/e)" exp(—1*/2) dt
= (2m)~t {5 exp(—12/2)[D*(Kt[e) + D(—K1t/e)] dt

<277 4 2a) {7 exp(—22)P™(Kt/e) dt . 0
To prove (c) from the lemma, we choose ¢, | 0 such that ¢?H(C, ¢,) = k,
k=1,2,.... In the lemma let ¢ = ¢,, n = N(C,¢,). Let F(r) =1 — O(1).

Since (1 — F)* < e~ it is enough to prove that N(C, ¢,)F(s/e,) — 4 co as k — oo
for each s > 0 (then we apply the dominated convergence theorem). We have
F(x) = [exp(—4xP)]/6x for x> 1.
Thus it is enough to prove that
lim,_ [H(C, ¢,) — |loge,| — ce,*] = + o0

for any ¢ > 0, which is clear since H(C, ¢,) = ke, 2.

For (d) and (e), * let C, be a cube of dimension n and side 2/n centered at 0. Let
n = n(k) = k* and let the cubes C,,, lie in orthogonal subspaces for k =1, 2, - - ..

Let X, = sup{|L(x)|: xe C,} = 3}7.,|G;|/n where G are orthogaussian. Then
since E|G,;| = (2/7)! < 1, EX, < 1 and ¢*(X,) < 1/n. Thus by Chebyshev’s in-
equality, Pr{X, = 2} < 1/n. Hence };, Pr (X,,, = 2) < co. If C is the closed
convex hull of the C,,,, then C is a GB-set.

If ¢ = ¢, = (5n(k))~* then

N(C, ) = N(C,), €) = e"*/8 = exp(1/40¢?)

by Lemma 3.6 of Dudley (1972b). Thus (d) is proved. This C is not a GC-set.

Let a, be any sequence of positive numbers with a, | 0. Then the convex hull
of the sets a,C, ,, is a GC-set, being a non-maximal GB-set (J. Feldman (1971)).
Letting a, | 0 slowly, we can make ¢?H(C, ¢) — 0 as slowly as desired. []

REMARK. Sudakov ((1971) Theorem $5) asserts that if {J¢?dH(C,e) = —o0
then C is not a GB-set. The set C constructed in the proof of part (d) above is
a counter-example to Sudakov’s claim.

* Note added in proof: J. Neveu suggests a simpler example: C = {¢a(log ntn=2, gn
orthonormal.
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There isan M < oo such that H(C, ¢) < M/e?for 0 < ¢ < 1, by part (c). Then
{5 ?dH(C, ¢) = — oo by integration by parts, or as follows.
Let e(j) = 1/5%ji for j=1,2, ..., and m = 1/5¢(j)? an integer. Then
= —e(J + DH(C,, e(J + 1)) — H(C, ¢()))]
< —e(j + 1)[407%(j + 1)~ — Me(j)™"]
< —1/50 for j large enough.

§:9,, e dH(C, ¢)

Hence () e?dH(C, ¢) = — oo while C is a GB-set.

AppLICATION. P. T. Strait (1966) considered Gaussian processes {x,, € B}
where B is a rectangular solid of sides 2~ in Hilbert space, showing that if

Elx, — x,[* = K]|log ||s — #]|[***

for some d > 0, K < oo, then {x,, t € B} is sample-continuous. Here 4 + 4 can
be improved to 2 + ¢ using Theorem 1.1 above, since

H(B, ¢) = J(|log ¢|*), €l 0.
Note that if C is a bounded set in a finite-dimensional Euclidean space then
H(C, ¢) = (|log ¢|) so that the exponent 2 4 § can be replaced by 1 4 4. Con-

versely for sets larger than B in the metric entropy sense, the bound on E|x, —
x,|* would have to be correspondingly smaller to assure sample continuity.

2. Moduli of continuity.

DEeFINITION. A function % from [0, oo) into [0, co) is called a modulus (of
continuity) iff both the following hold:

(a) h is continuous and A(0) = 0;

(b) A(x) < h(x + y) < h(x) + h(y) for all x,y = 0.

If is easily seen that 4 is a modulus iff there is a uniformly continuous func-

tion g with A(r) = sup{|g(x + 5) — g(x)|: xe R, |s| < ¢} for all r = 0. If x is
restricted to lie in a bounded interval I = [a, b], then there isa continuous g with

h(r) = sup{lg(x) — g(Y)I: [x =yl = 1. x, y e 1}
for 0 <t < b — a; namely g(x) = h(x — a).
2.1. Uniform moduli.

DerinITION. Given a stochastic process {x,; t € T} over a metric space (7, d),
a modulus # will be called a (uniform) sample modulus for {x,} iff (for a suitable
version of the process) for almost w there is a K, < oo such that for all 5, ¢ T,
Ix(@) — x(@)| < K, h(d(s, 1)).

Since & o d is a metric, one can say that the process x is a.s. Lipschitzian for
hod.

Now suppose x, is a Gaussian process with mean 0. Then # is a sample modulus
for x, iff {(x, — x,)/A(|]|x, — x,]|): 5, € T} is a GB-set in H, the Hilbert space
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L*¥Q, P) with usual covariance inner product. For the isonormal process L on
a set C C H, a sample modulus will be called simply a modulus.

The following theorem, perphaps the main result of this paper, will be proved
by the method used for Theorem 3.1 of Dudley (1967). I thank J. Neveu for
pointing out an error in that proof requiring some changes to prove the stronger
result here. Rather surprisingly, the difficulties concern the case of “‘small” sets
C such as a sequence converging rapidly to a point. For connected or convex
sets the earlier proof essentially suffices. A slightly weaker bound was proved
by C. Preston (1972).

THEOREM 2.1. Suppose C C H. Let f(h) = (¢ H(C, x)t*dx. Then fis a modulus
for L on C.

Proof. If f(1) = + oo there is nothing to show, so we assume f(1) < oo. Also
we may assume C is infinite. Then H(C,¢) — 4o ase | 0. Let H(C, x) = H(x).

We define sequences 9, | 0, ¢, | O inductively as follows. Let ¢, = 1. Given
€y 00y €y, et

3, = 2inf {e: H(e) < 2H(e,)},

€,41 = min(¢,/3,0,) .

Then ¢, < 3(¢, — ¢,,,)/2. Also if ¢,,, =4,, then {i» H(x)'dx < 2H(s,)t,,
while otherwise ¢, ,, = ¢,/3 and §i»  H(x)*dx < 2¢,,, H(¢,,,)!. Thus we have

% Z:=n H(em)éem é Z:=n (sm - €m+l)‘[{(s'm)é éf(en)
<4 n-.enHe)t

So the convergence of the above integrals and sums is equivalent and they all
converge.

Now for each n we can choose a set A, C C such that for any x € C there is a
ye A, with ||x — y|| < 24,, and card (4,) < exp(2H(e,)). Let G, = {x — y: x,
yeA,, U A,}. Thencard (G,) < 4exp(4H(e,)). Let

P, = Pr (max {|L(2)|/|l2l]: € G} = 3H(=,)'}

Now we use the standard Gaussian tail estimate; for 7 > 0, 1 — O(T) <
exp(—4T?/T. Then for n large enough so that 3H(e,)! > 1, we have

P, = 4 exp{4H(e,) — 9H(c,)/2} = 4 exp{—}H(e)} -

Since H(e,,,) = H(3,/3) = 2H(s,), X P, is dominated by a geometric series and
hence converges. So for almost all @ there is an ny(w) such that for all n > n(w)
we have
|L(2)| < 3||z||H(e,)* forall zeG,.
Now for any x e C choose A,(x) with ||x — A4,(x)|| < 26,. Then for almost
all w, L(A,(x))(w) is a Cauchy sequence for all xe C. We choose a version of L
such that whenever ny(w) is defined, L(A4,(x))(w) converges to L(x)(w) as p — oo
for all xe C.
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Now if n > ny(w)ande,,, < ||s — t|| < ¢,, 5, te C, we have ||4,(5) — 4,(0)]| <
||s — t|| + 44,, and

IL(s) — L(N|(@) = [L(AL(5)) — L(A(DN(@) + Z7=n (L(An(3)) — L(Apa(9))]
+ [L(An(1) — L(Ap1o(1))])(@)
< (lIs — 1] + 49,)3H(e,)t + 27-, 80, - 3H(e, 1)
Now note that §,, < 6¢,,,,, SO

IL(s) = L(nl(@) = T5]ls — t]|H(|s — 1l + 144 T2 .11 e, Hen)?
= 291f(ls — ) -

A modulus valid for small distances, on a totally bounded set, is also valid
for all distances, possibly with a larger constant. []

ExXAMPLE 2.2 (Brownian motion). For the usual Wiener process x,, 0 <1 <1,
[|x, — x,]| = |s — t|*. Thus N(C, ¢) is asymptotic to 1/4:* as ¢ | 0. Hence L on
C has a modulus f(x) = x|log x|*. So x, has a sample modulus ¢(k) = (h|log h)}.
It is well known that, up to multiplicative constants which we are neglecting,
¢ is the best possible uniform sample modulus for Brownian motion (P. Lévy
(1937), (1954)). Note that y = o(f(y)) as y | 0, and x, is the convergent sum of
independent functions of ¢ with modulus g(f) = ¢+. Hence lim sup,,_, ,, |x, —
x,|/e(]|x, — x,||) is almost surely equal to a constant, which P. Lévy ((1954)
Théoréme 52.2 page 172) proved equal to 2%,

The following is also an easy consequence of Theorem 2.1.

CoRrOLLARY 2.3. Let {x,, t € K} be a Gaussian process with mean 0 where (K, d)
is @ compact metric space. Let g be a modulus such that for all s, te K, E(x, —
x)? < g(d(s, 1))’. Let C ={x,: te K} and assume that for some M, a < co,
N(C,¢) < Me*as ¢ | 0. Let f(h) = |log g(h)|*g(h). Then f is a sample modulus
for x,.

COROLLARY 2.4. Suppose for some r, 0 < r < 2, limsup, ,e"H(C, ¢) < co.
Then L on C has the modulus f(x) = x'~4.

Proor. For some K < oo, H(C, ¢) < Ke~ for all small enough ¢. Thus we
have the modulus

f(x) = §¢ rirdr = x‘"*’/(l — %l‘) . a

DEeFINITION. We say f is a weakly optimal sample modulus of a process iff for
any other modulus g of that process, g  o(f), ie.,

lim inf, |, f(x)/9(x) < co.

If the lim inf can be replaced by lim sup, we shall call f strongly optimal.

Even a strongly optimal modulus does not settle the finer question: for what
moduli f is there for almost all @ a d(w) > 0 such that for d(s, 1) < 9, |x,(@) —
x(@)| < f(d(s, 1)). Such a modulus f is said to belong to the (uniform) upper class
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77 of the process x,, while other moduli belong to the lower class . Usable,
necessary and sufficient conditions for fe 7/ have been found for certain pro-
cesses with stationary increments on a compact subset of R¥; see N. Kono ((1970)
Theorem 3).

DErINITION. Given 0 < 6 < 1, a function J is called d-slowly varyingas x | 0
iff lim, , J(0x)/J(x) = 1. Examples of d-slowly varying functions include J(x) =
c|llog x|*(log |log x|)? - - - (log - - - log |log x|)* for any constants ¢, a, B, - - -, (.

LemMa 2.5. If H(x) = x~"J(x) where ] 2 0, 0 < r < 2, J is d-slowly varying,
0<d <1, and H(x) = H(y) for 0 < x < y, then for some M < oo, tH()} <
§¢ H(x)t dx < MtH(t)} for all small enough t > 0.

Proor. We have tH(r)} < {i H! by the monotonicity of H. Conversely, given
¢ > Osuch that (1 + €)d'*" < 1, we choose y > 0 such that J(5x) < (1 + ¢)J(x)
for0 < x < y. Thenfor:t < ¢

S(t» Ht = Z:=o g:tﬂt H?
< (1 — 3yl + 3~ H(t)t Do [(1 + €)3*4]" < MrH(r)}
for some M < oo. [J

We abbreviate H(C, x) to H(x) or H below, so long as the set C intended is
clear.

THEOREM. 2.6. Let C C H. Assume that r(C) > 0, {{ H} < oo, and for some
M < oo,
flt)y = §§ H < MiH(n)
for t small enough. Then f is a weakly optimal modulus for L on C. If for some
6 > 0, H(e) < (1 — 0)H(d¢) for € small enough, then f is strongly optimal.

Before proving the above theorem, note that its hypotheses follow from those
of Lemma 2.5 if r > 0.

DEFINITION. A set C C H is called a GL-set iff the function I(r) =t is a
modulus for L on C.

ProrosiTiON 2.7. If lim sup,,, H(C, x)/|log x| = + oo, then C is not a GL-set.

Proor. Iclaim that limsup, , N(C, $x)/N(C, x) = + 0. Otherwise, for some
M < oo, N(C,2-") £ M* for all n, and for some k, K < oo, N(C, ¢) < Ke™* for
0 < ¢ £ 1, contrary to hypothesis. Given ¢ > 0, we choose a covering of C by
a minimal number of sets 4,, - - -, Ay..)» €ach of diameter < 2¢. Letx, ---, x,
be a maximal number of points such that ||x; — x;|| > ¢ for i # j. Then
N(C, ¢) < k = k(e) since the balls of radius ¢ and centers x; cover C. One of
the A; contains at least k(¢)/N(C, 2¢) of the x;. Hence, forn=1,2, ..., there
exist ¢, > 0 and a set B, c C with card(B,) = n and ¢, < ||x — y|| < 4e, for
x # ye B,. Thus the union of the sets {(x — y)/4¢,: x, y€ B,} is not totally
bounded and hence not GB. Thus, C, = {(x — y)/||x — y||: x, y € C} is not GB
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since if it were, the convex hull of C, U {0} would be GB. Thus C is not a
GL-set. (]

After this proof a little more will be said about GL-sets.

ProOF OF THEOREM 2.6. By Theorem 2.1, f is a modulus of L on C. Suppose
there is another modulus g = o(f). Then g(r) = o(tH(t)*) as ¢t | 0.
We have two cases:

Case 1. limsup,,,x/g(x) > 0, i.e., 8 = liminf, ,g(x)/x < co. Then, since g
is a modulus, if (n — 1)x < y < nx, n an integer, then g(y) < g(nx) < ng(x),
and g(y)/y < ng(x)/(n — 1)x. Letting x | 0, n — oo, gives g(y)/y < B, so that
the function I(x) = x is a modulus for L on C, contradicting Proposition 2.7
since r(C) > 0.

Case II. lim,,, x/g(x) = 0. Then x/g(x) extends to a continuous function on
[0, o).

If lim,,, H(¢)/H(}¢) = 1, then for 0 < a < I there is a K < oo such that
H22 ") < K/(1 — a)*forall n. Thenfor1 > ¢ > 0,2 "' < e < 27" for some
n, and

H(e) < K exp{Jlog (1 — a)][log ¢|/log 2} ,

a contradiction for |log (1 — a)|/log2 < r. Thus for some a > 0,
liminf, H2e)/H(E) < 1| — .
Choose ¢, | 0 such that
H(2¢,)/H(e,) <1 — a.
As in the proof of Proposition 2.7, choose sets B,  C such thate, < ||x — y|| <
4¢, for x + ye B, and
card (B,) = N(C, ¢,)/N(C, 2¢,) = exp{H(C, ¢,) — H(C, 2¢,)}
= exp{aH(C,¢,)}.
Let D, = {(x — »)/9(¢,): x, y€ B,}. Then
N(D,, ¢,/20(z,)) Z exp{aH(C, ,)}
For any K < co we have for n large enough H(C, ¢,) = Kg(e,)*/ac,’. Letting
£, = €,/29(¢c,) we have
H(D,, ,) = K,

Thus by Theorem 1.1(c), the union of all D, is not a GB-set. ThusC, = {(x —
»/9(llx — y|): x, y € C} is not a GB-set, since the convex hull of 4C; includes
each D,. Thus g cannot be a modulus of L on C.

The above argument goes through as well for ¢ in place of $ if 0 < < 1. Then
if lim sup, ,, H(¢)/H(d¢) < 1, we could choose ¢, | 0tosatisfy g(e,)/e, H(C, ¢,)t | O
and the same proof shows that f is a strongly optimal modulus. []

In one sense, Proposition 2.7 is best possible since any bounded open set C in
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a k-dimensional linear subspace is a GL-set with lim sup, , H(C, ¢)/[log ¢| = k.
On the other hand if C = {x,: 0 < ¢ < 1} for the usual Wiener process x,, then
the lim sup is 2 while C is not GL (cf. Example 2.2 above). Thus, the behavior
of N(C, ¢) does not determine whether C is GL. More relevant is N(D, ¢), where
D = {(x — y)/llx — y||: x, ye C}. If Cis convex and infinite dimensional, then
D is not totally bounded and not GB. But the GL-property (unlike the GB- or
compact GC-property) is not preserved by taking the convex hull. Here are
some infinite-dimensional GL-sets.

PROPOSITION 2.8. Suppose {x,,0 < t < 1} is a Gaussian process with mean 0,
and x, = \!y,ds, where y, is another such process and the integral is a Bochner
integral in H. Assume that for some a > 0 and M < oo, ||y, — y,|| £ MJ|log|s —
t||#*= for 0 < s, t < 1. Finally assume that for some 6 > 0, ||x, — x,|| = d|s — 1.
Let C = {x,: 0 <t £ 1}. Then Cis a GL-set.

Proor. Since r — x, is a bi-Lipschitz map it suffices to prove that I(f) = ¢ is
a sample modulus for x, on [0, 1]. The hypothesis implies that y, is sample-
continuous. Then we can write

x(w) = {ty(0)ds
and the result follows. []

Clearly, it is not enough for r —y, to be continuous T — H. The above
proposition could be extended, replacing [0, 1] by finite-dimensional sets and
using Fréchet derivatives; the condition |[x, — x,|| = d|s — ¢| need only hold
locally, and no doubt further improvements are possible.

2.2. Processes on Rt. Let {x,, t ¢ K} be a Gaussian process where K is a com-
pact set in R*. Let C = {x,: te K} c L¥Q, P). Fore, h > 0 let
(2.9) W(h) = sup (Elx, — x': |s — 1] < A},

n(e) = sup{h > 0: ¥(h) < ¢} .
Then ¥ will be called the (uniform) QM modulus of {x,, te¢ K}. We assume x,
is continuous in quadratic mean (CQM), i.e., (k) | O as A | 0. Unless ¥ = 0,
7(¢) is defined and non-decreasing for ¢ > 0 and small enough.

For some M < co we have N(K, §/2) < M/d*for 0 < d < 1. Hence N(C, ¥(d)) <
M/d*, N(C, €) < M/n(¢)*. For k = 1 the following was shown by other methods

in Garsia, Rodemich and Rumsey (1970), as far as 3 is concerned, and later
extended to kK > 1 by A. Garsia (1971).

THEOREM 2.10. Let {x,, t€ K} be any CQM Gaussian process on a compact
K c R*, with QM modulus ¥, mean 0, and 5 from (2.9). Let
a(h) = {g» |log n(x)|t dx ,
B(h) = s llog yl* d¥(y) ,
r(k) = §s W(y) dy/yllog y|* ,
x(h) = W(h)|log A|*.
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Then a, B and y + & are always sample moduli of x,; « is a modulus if log n(x) =
x~"J(x) where 0 < r < 2 and for some 6, 0 < 6 < 1, J is d-slowly varying.

ProoF. We represent ¢ — x,(w) by the composition ¢ — x,(+) — L(x,(+))(®),
L isonormal. If fis a modulus for L on C, then f o ¥ is a sample modulus for
x,. Thus by Theorem 2.1, « is a sample modulus for x,.

To get 8 we substitute x = ¥(y). Note that »(¥(y)) =y, so as y |0,
llog 7(¥(y))|} < [log . |

Then to get £ + y we use (Riemann-Stieltjes) integration by parts, yielding

B(h) < k() + 1(h) .
Lemma 2.5 proves the final statement. ]

The modulus £ (with appropriate best possible constant multiples for the upper
class, which we do not consider here) was first found for Brownian motion by
P. Lévy ((1937), (1954) pages 168-172) and then for increasingly more general
processes by Z. Ciesielski (1961), M. Marcus (1968 ff.) and N. Kdno (1970).
The latter authors have also found other moduli under other conditions and
further information not described here. The moduli in Theorem 2.10 are not
always optimal (Marcus (1972)), but Theorem 2.6 says « is optimal under the
conditions on 7 stated at the end of Theorem 2.10 if r > O.

M. Marcus ((1971) (4.4)) gives examples of Gaussian processes X, Y, and Y,
such that

E(Y(t + k) — Y,(1))*
< E(X(t + ) — X)) S E(Y(t + k) — Y, ()

where Y, and Y, have the same weakly optimal sample modulus [A|log 4|]* and
X has the weakly optimal modulus [4log|log A|]t. Thus the modulus of the
covariance map t — x, € H does not determine the optimal sample moduli. This
is not surprising since we have seen that metric entropy does not determine the
GL-, GB or GC-properties. See also Sub-section 3.1 below.

2.3. Local moduli. Now we consider |x, — x,| as t approaches a fixed point s.
A modulus f will be called a local sample modulus for x, as s iff for almost all @
there is a K, < oo such that |x,(w) — x,(0)| £ K, f(s — ¢|) for all ¢ (in some
neighborhood of s, hence for any compact set M, where K, also may depend
on M).

Clearly any uniform sample modulus is also a local one everywhere. A modu-
lus fis a local sample modulus of x, at s iff {(x, — x,)/f(|s — t]): te U} is a GB-
set for some open set U 5 s.

The proof of Theorem 2.6 above will show that the function f(x) = uH(C, u)?
is an optimal local as well as uniform modulus for L on C, if in addition to the
hypotheses of Theorem 2.6, we can choose a fixed point x ¢ B, for all large
enough n (then the set D,, also in that proof, can be formed using the fixed x).
For C = {x,: t € U} for example, where x, has stationary increments (see Section
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3)and U is open in R*, local behavior at all points is the same so we can choose
such an x.

In Theorem 2.6 we have r(C) > 0. For r(C) = 0 it is well known that we
may have a local modulus smaller than the uniform one, with |log 4|* replaced
by (log |log 4|)t. This is classical (due to Khinchin) for Brownian motion and has
been extended to many other processes with stationary increments (see Section
3 below) by several workers including M. Marcus (1968 ff.), Sirao and H. Wata-
nabe (1970), and N. Kdno (1970).

Sample behavior of x, as 7 — co comes under the same rubric as behavior for
t — 0 for general processes, although not necessarily for processes with station-
ary increments.

For certain processes such that E|x, — x,|* behaves like [s — 7]%,0 < @ < 2, as
|s — ¢ | 0, and Ex, x, — O fast enough as |s — t| — co, H. Watanabe (1970) found
a necessary and sufficient condition on an increasing f so that lim sup, ., x,/f(f) <
1. (In his case the smallest such f are of the form (Ex,’|log 7|)* + terms of lower
order of growth.) Such complete criteria have not yet been found for sets C in
H, but it should be possible to get them for sets satisfying some good enough
conditions. Such criteria cannot follow from Theorem 1.1 above although they
might include conditions on metric entropy.

One can also consider local behavior along a given sequence 7, — s and ask
how slowly ¢, should converge to s for an optimal local modulus to be optimal
also along that sequence. Here there are results for Brownian motion (Dudley
(1972 b)) with possibilities for generalization.

2.4. Peano curves. Consideration of stochastic processes with second moments
as curves in Hilbert space goes back at least to Kolmogorov (1940). It is known
that any suitably connected compact metric space is a continuous image of the
unit interval. I shall give a specific construction for a compact, convex subset
C of a Banach space, so that any compact convex GC-set or GB-set is represented
as the range of a Gaussian process continuous in probability on [0, 1], with some
bound on the rate at which E|x, — x,|* > 0 as |s — ¢| — 0.

We construct a Peano curve C inductively. Choose pe C and let f(r) = p,
0 <t < 1. At the nth stage we shall have a continuous function f, from [0, 1]
into C. Here [0, 1] is divided into k, subintervals I(n, 1), - .., I(n, k,). These
will be either “finished” or ‘“‘unfinished” as defined below. On the closure of
each interval I(n, j), f, will be linear. Let A(n) be a set of minimal cardinality
such that for each xe C, ||x — y|| < 2!-* for some y € A(n). Then card A(n) <
N(C,27"). The values of f, at the endpoints of the I(n, j) will be precisely
Uisrsa A(7).

Given f, and an interval I(n, j) = [a, b], we let f,,, = f, on I(n, j) if I(n, j)
is finished; it then becomes one of the finished intervals I(n 4 1, k). If I(n, j)
is unfinished, we let f,,.(a) = f,,.((a@ + b)/2) = f,(a), fo..(b) = f,(b) and call
[(@ + b)/2, b] a finished interval I(n + 1, r). At the first step, [0, 1] is unfinished.
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We divide [a, (a + b)/2] into at most N(C, 2-*") 4 1 equal unfinished subinter-
vals I(n + 1, 5). At the endpoints of these intervals, except for a and (a + b5)/2,
the values of f,,, will include all points x of 4,,, such that ||x — f,(a)|| < 2-".
This completes the inductive construction. Clearly the f, converge uniformly
to a continuous function f from [0, 1] onto C, with ||f — f,|| < 2*.

The intervals /(n, j) have length at least 1/2" []~,[N(C,2~*) + 1] =4,. On
each unfinished or newly finished interval, the value of f changes by at most
2¢-», By induction, for s, r in a previously finished interval

If(s) = fO)lf|s — 1] = 2+-*2[6,_, < 2776, .

Thus whenever |s — ¢| < d,, we have |f(5) — f(r)] < 2°".

For example, if H(C, ¢) is asymptotic to ¢~" for some r > 0, then for some
constant K, 0, = exp(—K - 2"), and a modulus of continuity of f is k(9) =
[log 6|~*7, which is best possible in this case.

3. Stationary increments. A process x,, t € R¥, is said to have stationary incre-
ments iff the joint distributions of the random variables {x,2 — Xy ey Xy, —
x,,_,} are unchanged if some vector ¢ € R* is simultaneously added to all the ¢,
for any ¢,, - - -, t,, € R*.

The additive group R has many automorphisms which are highly pathological.
Thus the assumption of stationarity (of increments) can be expected to yield
convenient results only under further conditions.

We call a process {x,} continuous in quadratic mean (CQM) iff for all s,

lim, , E|x, — x, = 0.

A Gaussian process is CQM iff it is continuous in probability, as is well known.

If a stationary Gaussian process {x,(w)} is measurable jointly in ¢t and w, then
its characteristic function ¢, with Ex,x, = ¢(k), is measurable and hence con-
tinuous (Loéve (1963) page 209) so that x, is CQM. Since joint measurability
is a rather minimal regularity assumption, we consider only CQM processes in
this section. Then the variance ¢*(h) = E|x,,, — x,|*) >0as h — 0,

3.1. Moduli of continuity. If x, is any Gaussian process and C = {x,} C L¥Q, P),
then a sample modulus f for L on C and the QM modulus ¥ of x, always give a
sample modulus fo ¥ for x, (cf. Sub-section 2.2 above). In general, however,
¥ may reflect local rather than uniform behavior of {x,}, so that f o ¥ may well
not be optimal even if f is optimal for L on C. For processes with stationary
increments the QM modulus ¥ is the same at all ¢ so that there seems a better
chance for f o ¥ to be optimal, especially if ¢ is non-decreasing for small .

In fact, the modulus « in Theorem 2.10, (k) = a(h)|log k| both as a uniform
and for r(C) > 0 as a local modulus, has been found for many processes with
stationary increments by M. Marcus (1968 ff.), Sirao and Watanabe (1970), and
N. Kono (1970), all of whom got further, more precise results which will not

be restated here.
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Khinchin’s local law
lim sup,_, x,/a(t)[2loglog ]t =1 a.s.

has been extended from Brownian motion to certain other processes with sta-
tionary increments; see S. Orey (1971), who used estimates of J. Pickands III
(1967). T. Sirao (1960) found the upper and lower classes for Lévy’s Brownian
motion on R* with E|x, — x,|* = |s — #|, locally at 0 and co.

S. M. Berman (1964) proved that if X, is a stationary Gaussian sequence with
EX, =0, EX,’ =1, and lim,_, (logn)EX, X, = 0, then max (X,, ---, X,) —
(2 log n)* — 0in probability. For orthogaussian X; this is a theorem of Gnedenko.
Berman (1962), in a closing remark, says that stationarity can be replaced by

lim, _ ., nEX; X, =0 for all i.

n—00

Cramér (1962) proved the analogous conclusion for real continuous-parameter
stationary processes with a spectral density f of bounded variation with

7 #(log (1 + A)f(A)dR < oo

for some @ > 1. Such processes have a.s. continuously differentiable sample
functions. M. G. Shur (1965) improved “in probability” to “with probability
one.”

More refined properties of sample functions, such as the Hausdorff dimension
of level sets and local times, have been treated first for Brownian motion (see
1t6 and McKean (1965)) and later for other processes with E(X, — X,)* ~ Cl¢|*,
0 < a < 2 (S. M. Berman (1970), S. Orey (1970)).

3.2. Fourier analysis. A measure g = 0 on R¥ ~ {0} will be called a Levy-
Khinchin (LK) measure iff

§ oz X2 dp(x) + pllx] =2 1} < oo,

where |x] = (x> + --- + x,’)}. (LK measures arise in the well-known formula
for infinitely divisible characteristic functions.)

The following theorem was first stated by Kolmogorov (1940) for k = 1. In
higher dimensions I do not know an explicit reference for it, although it is at
least close to known results, e.g., A. M. Yaglom (1957), (1962).

THEOREM 3.1 (Kolmogorov-Yaglom et al.). For any CQM complex-valued
process {x,, t € R¥} with mean O and stationary increments there is a unique LK
measure p on R* ~ [0} and a nonnegative definite real symmetric operator A on R*
such that for any s, t e R,

(3.2) E(x, — x)(x, — x;)~ = § (e*** — 1)(e~*** — 1)dp(A) + As-t.

If x, is real-valued, then i is symmetric: p(B) = p(— B). Conversely given any such
p and A there is a complex Gaussian CQM process x, with stationary increments
such that (3.2) holds. If p is symmetric then there is such a real Gaussian x,. For
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any random variable y such that x, + y is a Gaussian process, x, 4 y will also satisfy
(3.2), but no other Gaussian processes will satisfy (3.2) for a given p and A.

Proor. Since {x,} is CQM, it has a jointly measurable version for which by
Fubini’s theorem { |x,(w)|dt < oo almost surely for any compact K. Thus x,
defines a random Schwartz distribution X = [x,] which has a gradient in the
distribution sense grad X = (0X/ot,, - - -, 0X/ot,), a stationary (also called homo-
geneous) Gaussian generalized random field as treated by K. It6 (1956) and
A. M. Yaglom (1957). (Note that § x, df/ot; dt is a limit of linear combinations
of increments of x,.)

Let 7 denote the space of C= complex-valued functions on R* with compact
support. We need the following known fact which I'shall prove for completeness.

LEMMA. Iffe Zand § i fdt =0 then for somef,,- - -,f, € Z,f= 3 15;5:f;/0;

Proor. We use induction on k. For k = 1let fy(x) = {*., f(r) dt. In general,
fix a function a € &Z(R') with {*_a = 1. Let g = {=, f(r) dt,. Then by induc-
tion assumption g = 3] 09,/0t; in <7 (R¥-). Now f(t) — g(t), - -+, ti_)a(t,) =
of,/ot, for some f, € <7, and let f,(t) = g,(t;, - - -, t,_,)a(t,) for j < k. [J

Thus we know that X restricted to =, = {p € &': { ¢ = 0} is stationary. We
apply A. M. Yaglom ((1957) Theorems 6, 6’) to obtain a unique measure z > 0
on R¥, tempered at co, §,; , |4|*du(4) < oo, and a unique nonnegative Hermitian
matrix J such that for all o, ¥ e &7,

(3-3) EX(9)X(¥)™ = § (F o)W ENA)™ du(2)

+ Jgrad 5 (0) - grad (= ¥)~(0),
where " denotes Fourier transform. (Itd (1956) Theorem 4.1 could also be
applied to grad X to yield this result.)

Now let a,e Z(RY), §a, =1, a,(u) = na,(nu). Let B,e < (RY), § B, =1,
|B.(0)| £ 2¢7%, and lim,,_,, 8,(u) = e~*"* for all u.

X is a tempered random distribution since sup,, <, E|x,|* = &(M?) as M — oco.
Let ¥ (1) = [Tisj<i [@a(t;) — B.(1;)]. Then E|X(¥,)|* remains bounded while
W, (A) > lasn, A — oco. Hence pf|4] = 1} < co.

Now let 7n(ul’ ] uk) = Hl§j§k an(uj)‘ In (33) let (p(u) = Tn(u - S) - Tn(u)’
Y(u) = r,(u—t)— r(u)and let n — co. Then grad ..< ¢(0) — is, grad ¥ ¥(0) —
it. Thus we obtain (3.2) by letting 4 be the real part of J.

If x, is real, then the change dy(4) — dp(— 2) does not change the covariance,
so p is symmetric.

For the converse, we need only apply existence theorems for Gaussian pro-
cesses with given covariance (Doob (1953) Chapter II, Section 3), since the
covariances are clearly nonnegative definite, and real if x is symmetric. The
distributions of increments x, — x, are uniquely determined, so that all distri-
butions of x, are determined given x,. Hence x, is unique in law up to an addi-
tive random variable y. []
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Now suppose x, is a stationary CQM process on R*. Then, as is well known,
there is a finite measure ¢ > 0 on R* called the spectral measure of x,, such that
Ex,x, = § =" dp(2). Clearly x, also has stationary increments. Its LK meas-
ure is the same p.

Conversely suppose x, is Gaussian with mean 0 and that its LK measure p is
finite. Let y, be a stationary Gaussian process with g as spectral measure. Let
L be the isonormal process on H = L*y), or p-noise process. Then versions of
x, and y, are

Ve = L(A— e, x, = LA—>ett — 1) =y, — L(1).

Since the increments of x, and y, have the same distributions, x, and y, have the
same continuity properties, moduli etc. In other words, for any set 4, {x,: t¢
A} is a GB- or GC-set iff {y,: t ¢ A} is one.

Now let x, be any CQM Gaussian process with stationary increments, mean
0, and LK measure p. Let y,, z, be other such processes with LK measures
#1211 and p| 5, respectively.

Let y, and z, be independent. Then y, + z, — y, — z, is a version of x, — x,.
grad [y,] is a stationary random field. Its components have spectral measures
with compact support. Thus (cf. Belyaev (1959)), grad[y,] and hence [ y,] are pro-
cesses whose sample functions can be written as entire functions of exponential
type, by the Paley-Wiener-Schwartz (1950), (1966a) theorem. Also z, has
continuity properties equivalent to those of the stationary process with spectral
measure |, ,,. The following has been proved.

THEOREM 3.4. Let & be a linear space of functions on R* including all entire
functions of exponential type 1. Let x, be a Gaussian process CQM with stationary
increments and LK measure . Let y, be the stationary process with spectral measure
1151+ If y, has a version with sample functions in &, then so does x,.

For stationary Gaussian processes x,, t € R, Fourier methods have been in
general use. Nearly best possible conditions for sample continuity in terms of
spectral measure were found by Hunt (1951). Periodic processes, e.g., with
X, = X,,, have simpler Fourier series rather than Fourier transforms, yet the
dependence of sample properties on spectral asymptotics seems to be very simi-
lar. So, suppose we have a random Fourier series

3.5) x, =a, Y, + Yiw.,a,(Y,cosnt + Z, sin nt)
where the Y, and Z, are all orthogaussian and a, > 0. Let
s, = [ XD {a?: 2" < k < 2"}t

Kahane (1960) proved that }; s, < oo is a necessary condition for sample-
continuity of x,, while s, <, r, decreasing, and }} ¢, < oo is a sufficient
condition. M. Nisio (1969) extended these results to nonperiodic stationary
processes, replacing the discrete set {2 + 1, ..., 2"*!} by the interval (2", 2"+']
in Fourier transform space. Her condition E sup, ;| X(f)| < oo is equivalent
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to sample-boundedness by the Fernique-Landau-Shepp theorem and then to
sample-continuity in view of stationarity (Belyaev (1961)). By Theorem 3.4
above, these results carry over to processes with stationary increments.

Marcus and Shepp ((1970) Section 5) showed that }7 s, < oo is not sufficient
for sample-continuity of (3.5) in general.

Lacunary random Fourier series, where in (3.5) a, = 0 except for n = n,,
n;/n; = g > 1, have been a useful source of examples for Gaussian processes
(Fernique (1964), Marcus (1971)).

3.3. Boundednesson R. Yu. K. Belyaev (1958) proved that for every stationary
Gaussian process {x,, t € R} whose spectral measure g is not purely atomic,

sup {|x,|: t€ R} = oo almost surely.

Suppose then that x is purely atomic with masses g, at points 4,, k = 1,2,---.
Belyaev (1958) discovered that if 3] g} < co then the sample functions are
bounded on R, while if ¥} g} = co and the 2, are all incommensurable then the
sample functions are unbounded a.s. The reason is that for X, orthogaussian,
2. b X,| converges a.s. iff 3 b, < oco. If 3] p,t < oo then 3 p,tX, exp(id,1)
a.s. converges uniformly on R. If )] p,} = + oo and the 4, are incommensur-
able, we can find ¢ such that exp(id, t) @=sgn X,, k =1, ..., n, n > co.

For the 2, all multiples of a fixed number, we have the random Fourier series
of Kahane (1960) as discussed above; good necessary conditions and good suffi-
cient conditions for boundedness are known but are not yet equivalent. If the 1,
are commensurable in a more complicated way, less seems to be known.

Let x, be Gaussian continuous in probability with stationary increments and
LK measure p. If the sample functions of x, are bounded on R, then for every
¢ > 0 so are the sample functions of the process with LK measure ¢/ ;,,, which
is equivalent to sample-boundedness of the stationary process with spectral
measure |, ... Hence p is purely atomic, with masses y, at points 2,. Again,
> .} < oo is sufficient for sample-boundedness on all of R, and necessary if
the 2, are incommensurable.

4. Noise processes. The isonormal linear process L will be called a noise pro-
cess (for p) in case the Hilbert space H is L*(u) for some measure p. If p is
Lebesgue measure on a Euclidean space, the process is called white noise.

A linear process G on L*(y) will be called p-bounded iff there is an M < oo
such that EG(f)* < M § |f|*dp for all fe L*. If G is Gaussian with mean 0 and
p-bounded, then we can write G = L o 4 where A4 is a bounded linear operator.
It is known that if L has continuous or bounded sample functions on a set
C C H, then so does G (Dudley (1967) Proposition 4.1, Theorem 4.6; L. Gross
(1962) Theorem 5).

A special case of interest is the “centered noise” L, for p where p is a prob-
ability measure. Here

EL(fy = §|f1dp — |\fdpl =§If = §fdpldp.
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In this case the operator A is projection onto the orthogonal complement of
the constant functions. Since A differs from the identity only by the one-
dimensional projection f— § fdp onto constants, the asymptotic properties of
L and L, are essentially the same.

L, arises as a limit (in some weak sense) of normalized empirical measures
n¥(p, — p) where p, has mass 1/n at each of n points chosen independently with
distribution x.—If we can prove continuity of L and hence of L, on some classes of
function or sets, then we can hope to prove some stronger central limit theorems.

If p(A4) < oo then we define L(A4) = L(x,), L.(A) = L(x,)-

4.1. 2-bounded noise on R*. If p is Lebesgue measure 1 on R¥, then L(A) has
been studied mainly when A4 is a rectangle
A, =[0,]x --- x[0,1,].

Then L(A,) is a standard Wiener process for k = 1 and a generalized Brownian
motion for k > 1 (Chentsov (1956)). The processes, of course, have sample
functions continuous in r with probability 1. Here, at the suggestion of R. Pyke,

more general sets will be considered. Let Co(x) = Co(x,, - - -, x,,) be the con-
vex hull of the points x,, - - ., x,, € R*.
THEOREM 4.1. For a fixed k and m > k, let g(x,, - - -, x,,, ®) = G(Co(x), w),

where G is a A-bounded Gaussian process of mean 0. Then g has continuous sample

functions on R™ and, when restricted to x in a bounded set, has the sample modulus
h(u) = (u|log ul)}.

Proor. See Theorem 2.1 and Corollary 2.3 above. Note that if |x; — y;| < ¢
forj=1, ..., m and x and y lie in a fixed bounded set B, then the Lebesgue
measure of the symmetric difference, 2(C(x) A C(y)), is £ (¢) uniformly in x,
ye Base | 0. The total surface area of the faces of C(x) is bounded uniformly
for x e B. Now E|G(C(x)) — G(C(y))|* = ¢ (¢) so the proof in Example 2.2 above
applies to give the modulus, which incidentally is best possible. (Simple conti-
nuity was proved earlier, in Dudley (1965) Section 5.)

Now let I(k, a, M) be the class of all (indicator functions of) subsets of R*
with boundary functions having all derivatives of orders < a bounded by M,
as defined in Dudley (1972b).

THEOREM 4.2. I(k, a, M) is a GC-set in L¥A) if a > k — 1 = 1, and not a
GB-setifl fa<k—-1lor0<azgl<k—1and M> 0.

Proor. This is a corollary of Theorems 1.1 above and 3.1 of Dudley (1972b).
Note that the exponent of entropy of I(k, @, M) in H is twice its exponent of
entropy in the d, metric, d;(4, B) = A(A A B), since the metric induced from
Hisd}. []

REMARKs. If @« < 1 and kK = 2 I conjecture that /(2, a, M) is not a GB-set
for M > 0, based on the conjecture of equality in Dudley ((1972b) 3.4).
If @ = k — 1 I conjecture that I(k, Kk — 1, M) is not a GB-set.
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Let C(U) be the class of all (indicator functions of) convex subsets of a given
bounded open set U c R*. An earlier investigation of A-bounded processes on
C(U) was made by A. de Hoyos (1972), incorrectly.

THeoReM 4.3. C(U) is a GB-set in L*(2) for k = 1, 2 and not GB for k = 4.

Proor. This is a corollary of the Sudakov-Strassen theorem (1.1 above) and
Dudley ((1972b) Theorem 4.1), with the same note as in the previous proof.

ReMARK. For k = 3, I claim that C(U) is not a GB-set. Although the theo-
rems proved above do not apply directly, we can consider the spherical caps
C, at the end of the proof of Theorem 4.1 of Dudley (1972b). Then };,., |L(C,)]
does not approach 0 as ¢ | 0, so C(U) is not a GC-set. To prove it is not a GB-
set, we could successively adjoin suitable unions of small caps (depending on w)
to a given convex set.

4.2. Elliptic operators and white noise. We know that the white noise process
W on R* can be written as W = 6*[f]/dt, - - - 9t, in the Schwartz distribution
sense, where f is a process with continuous sample functions (Chentsov (1956),
Dudley (1965)). It turns out that if we use elliptic operators a degree less than
k will suffice.

For any polynomial P in k variables we let, as usual,

P(D) = P(—id/ot,, - - -, —id]dt,) .

THEOREM 4.4. Let P(D) be an elliptic operator of degree m in k variables with
constant coefficients. Let W be the white noise generalized random process on R*.
Then the following are equivalent:

(i) For almost all w, the distribution solutions T of P(D)T = W, on any open
set U C R*, are continuous functions on U;

(ii) There is a process T(t, w) with continuous sample functions on some open
U c R* with P(D)T = W in U,

(iii) Replace “continuous” by “L*’ in (ii);

(iv) k < 2m.

Proof. Let ZZ(U) be the L. Schwartz space of test functions with support
in U, & = Z(R*¥) with usual topology and dual space 7’ of distributions
(Schwartz (1966a)). By Minlos’ theorem (Minlos (1959), Kolmogorov (1959)),
W has some distributions W, as realizations. Then P(D)T, = W has distribution
solutions 7, (Hormander (1964) Section 3.6). Thus

(i) implies (ii).

(ii) implies (iii) trivially.

(iify = (iv): we can assume U = {r: |t;| < 4,j =1, ..., k}. Let H, be the
inner product space of all ¢ € Z(U) with the norm

llell* = §u |P(=D)gl* -

Then W restricted to H, has a version with continuous sample functions for ||+ || .
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Hence, the identity from H, into L? must be a Hilbert-Schmidt operator (Minlos
(1959)).

Letne Z(U)and y = l onzU/4. Let ¢, (x) = n(x)e’™*, ne Z*. Then ||¢,||, =
Z(|n|")as n]* = n?+ ... + n2—oco. Hence 3, 7k .10 0|7 < 00,50 k < 2m.

(iv) = (i): ,All distribution solutions T of P(D)T = 0 on open sets are continu-
ous (in fact, real analytic) (see Hormander (1964)). Thus we need only get a
continuous solution process 7' in the cube V' = zU/4. Here we have

W= ,czt X,e"*

where the X, are orthogaussian. If ¢ is C=, all solutions S of P(D)S = ¢ are
C=. Also since P is elliptic, P(n) = 0 only for » in a finite set F. We assume
0 e F even if P(0) = 0.

Now we need only prove that the Gaussian process

Tp(x, 0) = Youczier Xn(w)einbz/P(”)

has continuous sample functions. For some ¢ > 0, |P(n)| = c|n|™ for all n¢ F.
Thus for any x, ye V,

EITe(x) = TrO)|* < ¢ Daer le™* — ™™ .
For some C, < oo, X .2y 072" < C/M for all M > 0, since k — 1 —2m <
—2. Also
einz ein~y 2
0<|n| <M '—Wl = Clex - ylz

for some C, < oo. Thus E|T (x) — TR(y)|* < C4|Jx — y|. Hence T, has continu-
ous sample functions. []

Theorem 4.4, as just proved, offers possibilities of extensions from R* to other
k-dimensional manifolds X with a p-noise process, where y is a measure which
on local coordinate patches has a sufficiently smooth density with respect to
Lebesgue measure. If X'is a Riemannian manifold, there is an invariantly defined
Laplace-Beltrami operator whose powers give elliptic operators of as high even
order as desired. In Theorem 4.4 presumably constant coefficients could be
replaced by sufficiently smooth, nonsingular coefficients.

4.3. Lévy-Baxter theorems. P. Lévy (1940) proved that if x(r) is a standard
Brownian motion, then with probability 1
lim, o, 250 [¥(k/2") — x((k — D)2 = 1.
This result was extended to some other Gaussian processes on [0, 1] by G.
Baxter (1956), E. G. Gladyshev (1961), and V. G. Alekseev (1963), and to
Lévy’s Brownian motion with multidimensional time by S. M. Berman (1967)
and P. T. Strait (1969). (R. Borges (1966) showed that the “generalization” by

F. Kozin (1957) only applies to Brownian motion.)
Here we give another extension. Let (X, & p) be any finite measure space:
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g =0, u(X) < co. A partition of X will be a finite collection = of disjoint
measurable sets whose union is X. The mesh of r is defined by

m(r) = max {u(A4): Aer}.

Let L be the p-noise. We consider the sums L(z)? = 3, L(4)*. Asm(x) — 0,
L(x)* — p(X) in law and hence in probability. P. Lévy ((1940) Section 4, Théo-
réme 5) proved that L(x,)? — p(X) almost surely if the z, are nested, i.e., for
all Aenr,,, thereisa Ber, with 4 ¢ B. F.Kozin (1957) proved L(r,)* — p(X)
almost surely if m(z,) = o(n~?), for interval partitions. Most other authors have
used m(r,) < 27", considering more general Gaussian processes. Here for p-
noise we prove m(r,) = o(1/log n) suffices for a.s. convergence, and that this is
best possible.

THEOREM 4.5. Let L be p-noise for a finite measure space (X, p). If {n,}is any
sequence of partitions with m(z,) = o(1/log n), then L(x,)* — p(X) almost surely.
If (X, p) = ([0, 1], Z) there exist partitions =, (not consisting of intervals) such that
m(x,) =< (1/log n) and L(x,)* does not converge a.s. to 1.

Proor. Given a partition = = {4,, - - -, 4.}, let a; = pu(4;). We can assume
#(X) = 1. Then J} a;* < m(x). We have L(4,)* = a; X;* where the X; are ortho-
gaussian. Hence by a theorem of D. L. Hanson and F. T. Wright (1971), there
are constants C, and C, such that for any ¢ > 0,

Pr{|X . e L(A)? — 1] = ¢} < 2 exp{—min (C,¢/m(n), C,&*/m(x))} .
Let m(x,) = ¢,/2 log k, where ¢, — 0. Then
Pri{lae, LA = 1] 2 &} = T,

so L(x,) — 1.

Now for Lebesgue measure 4 on [0, 1] we choose A-independent partitions «,
consisting of k, sets of equal measure where k, is the least integer > logn, n =
2,3, .... Thenk, L(z,)* has a y* distribution with k, degrees of freedom. Let-
ting k = k, we have for any fixed ¢ > 0

Pr{L(z,)! < | — ¢} = Pr{kL(z,)* < (1 — e)k}
= 20-0AT (k[2)~t {fa-0¥rk-1 exp (—r*/2) dr
g 2(2—)‘)/21‘([(/2)—1{[(1 — s)k]} _ l}k—le—(l—e)k/2 S

which by Stirling’s formula is asymptotic as k — oo to

(e(k — 2)) =22(zk) H[(1 — e)k]t — 1}k-te-0-0kn
~ ([l — €]t — k=411 — 2k-1)k-D/eekt > o1 — 2e)*

for some constants ¢, «, and k large. Letting ¢ = } and noting k ~ logn we
have 3, a(l — 2e)* = + 0.

Now let =, = {4,, ---, 4,} and 7, ={(B,, ---, B,}, r = k,,, be two of our
independent partitions, A(4; N B;) = A(A4;)A(B;) = 1/kr. Let Z = L([0, 1]). Then
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E(L(A;) — Z[k)(L(B;) — Z|r) = 0 for all i, j. Thus the set of random variables
{L(A4;) — Z/k} is independent of the set {L(B;) — Z/r}. Let

Q(n) = . [L(A) — ZIKT = L(z,)* — Z*/k .

Then Q(n) is independent of Q(m) for m # n. Since };, P(Q(n) < $) = + oo,
we have a.s. Q(n) < # ipfinitely often by Borel-Cantelli. Then since Z?/k — 0
a.s. as n — co, we have a.s. L(n,)’ < § infinitely often. []

Kozin (1957) attributes to Lévy (1940) the assertion that L(x,)? — 0 almost
surely if card (r,) — oo, # = 2 0n [0, 1] and =, consist of intervals. No doubt
Kozin meant to include the assumption m(x,) — 0. Even then, the mere assump-
tion that 7, consists of intervals cannot correctly replace Lévy’s assumption of
nested partitions, for reasons indicated later by Lévy ((1965) page 192).

Whether o(1/log n) is best possible for interval partitions seems to be an open
question. Also open, and perhaps not difficult, are questions of the best possible
assumptions on speed of m(x,) — 0 for the various generalizations of Lévy’s
work.

5. Discontinuous Gaussian processes. As we shall see in Section 7, conditions
for sample-continuity of Gaussian processes are relatively mild as compared
with conditions for general non-Gaussian processes. Nevertheless it is of some
interest to consider how the sample functions of Gaussian processes may behave
even when they are not continuous.

It may be asked whether, instead of restricting L to suitable subsets of H, we
can obtain a version of L with good properties defined on all of H. Certainly L
on H is not sample-continuous. If we take any particular finite Borel measure
w«on H, then L has a version which is jointly ¢ x P-measurable and is linear on
H for each fixed . However, we cannot replace p-measurability here by si-
multaneous measurability for all Borel measures y, or absolute measurability,
since every absolutely measurable linear form on H is continuous by a theorem
of Douady (Schwartz (1966b) Lemme 2).

By embedding the real line R in a compactification R, we can obtain a regular
Borel measure defining L on a compact Hausdorff space R* (Kakutani (1943),
E. Nelson (1959)) but, assuming the continuum hypothesis, this version of L is
not jointly measurable, and such a large, non-metrizable compact has other bad
properties (Dudley (1971a), (1972a)).

We have a probability measure P defining L on the algebraic dual space H®
of all linear forms on H, but this P has no extension regular for the weak topo-
logy o(H*, H) (A. de Acosta (1971)).

Precisely because L is a universal model for all Gaussian processes, it is per-
haps not surprising that L on the entire space H has the various pathological
properties mentioned in the last few paragraphs.

Suppose {X,, t € T} is a mean-zero Gaussian process, continuous in probability,
on a separable metric space 7. Then there exist orthogaussian random variables
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Y, and continuous functions f, with X,.= Y} Y, f,(r). Since finite partial sums
are all continuous, such continuity properties as continuity at a fixed point, con-
tinuity everywhere, and even the existence of discontinuities of oscillation > ¢
for fixed ¢ > 0 on a fixed open set, all are “zero-one” properties. If X, is not
sample-continuous, then there exists a point ¢ and an ¢ > 0 such that almost all
sample functions oscillate by > ¢ in every neighborhood of r. Thus, unlike
Markov processes with their isolated random jump discontinuities, Gaussian
processes are discontinuous at fixed points. In fact, K. It6 and M. Nisio (1968)
have proved given a Gaussian process x,, t € [0, 1], there is a fixed function «
such that almost every sample function x,(w) satisfies, for all ¢,
limsup, ,_, |x, — x,| = a(f) .

If a non-sample-continuous process on a separable metric T has probability
laws invariant under a transitive group of homeomorphisms of T, then almost
all sample functions oscillate by >¢ > 0 on every open set, since there is a
countable base for the topology. Thus the sample functions are everywhere dis-
continuous. Further, the ¢-oscillations pile up to produce infinite oscillations. On
such matters see Yu. Belyaev (1961), S. M. Berman (1968), D. M. Eaves (1967),
D. Cohn (1971), K. Itd and M. Nisio (1968), N. Jain and G. Kallianpur (1971).

Fernique (1971) proves that for any Gaussian process {x,, t € T} with mean 0
and bounded measurable covariance, and any separable probability measure z
on T, the process has a version with almost all sample functions in the Banach
space G.(p) (also defined in Section 1 above).

6. Infinitesimal g-algebras and O-1 laws. Let {x,, t € T'} be a mean-zero Gaussian
process, continuous in probability, on a separable metric space (7, d). Then we
can write x,(w) = 3 f,(1)X,(w), f, continuous, {X,} orthogaussian.

Suppose now that 7' is compact and C = {x,: te T} is GC. A modulus f will
be called a lim sup modulus for x, iff for almost all ,

lim sup {x,; f} = lim sup, ,sup {|x, — x,|: d(s, 1) < h}/f(h) = 1.

Clearly a lim sup modulus is a weakly optimal sample modulus as defined in
Section 2 above. It is not clear whether it is strongly optimal.

Suppose g, is a uniform modulus of continuity of f, and assume that
lim, , g,(h)/f(k) = O for all n. This holds, for example, in case T = C, t — x,
is the identity, and lim, , A4/f(h) = 0. Then limsup {x,, f} is almost surely a
constant (possibly infinite) by the zero-one law. If this constant is positive and
finite, then some positive multiple of f is a lim sup modulus. For many pro-
cesses, lim sup moduli are known, at least up to multiplicative constants. If f is
a lim sup modulus, so is f + o(f), but this apparently does not exhaust the class
of lim sup moduli of the process. On the other hand it seems unclear whether
lim sup moduli always exist in the cases we have been discussing:

QuUESTION. Let C be a compact GC-set in H which is not a GL-set. Then is
there always a lim sup modulus for L on C?
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Corresponding questions can be asked for processes on [0, 1] and for local
rather than uniform moduli, etc. For non-Gaussian processes it is known that
local lim sup moduli need not exist: Gnedenko (1943), Rogozin (1968).

Let {x,, 0 < ¢t < 1} be a Gaussian process with mean 0. Let :#(0) be the small-
est g-algebra for which {x,, 0 < r < 6} are all measurable, and let ..#(0%) =
Ns>o - 2(d). If almost all sample functions of x, have n derivatives at O then
these derivatives are ..#(0*)-measurable functions which in general are non-
trivial. Under assumptions of stationarity with spectral density behaving like an
inverse power at oo, Freidlin and Tutubalin (1962) showed that all ££(0%)-
measurable functions are measurable with respect to the derivatives which exist.
Thus if x, has non-differentiable sample functions then, under their conditions,
every asymptotic property of the increments x, — x, as s — ¢ has probability 0
or 1. It seems reasonable to expect this zero-one law to hold under less restric-
tive conditions than those of Tutubalin and Freidlin. However, examples of a
“gap” with #(0*) not generated by derivatives are given by Levinson and
McKean ((1964) pages 130-133) and Dym and McKean ((1970) page 1824).
These papers also contain further relevant information on ..£(0*).

At the other extreme, it may be asked which processes are entirely determined
by their behavior in the neighborhood of one point. This question, for T =
Lr(y), has been considered by Bretagnolle and Dacunha-Castelle (1969). Such
questions were also considered by P. Lévy (1948), (1965).

It is known rather generally that, given a Gaussian measure ¢ on a linear
space X, the support of 4 is a linear subspace of X (K. 1t6 (1970), G. Kallianpur
(1970), (1971)). Here the support is defined as the smallest closed set whose
complement has measure 0. There may also be some interest in considering
non-closed supports. Let S be a nuclear Fréchet space with topology defined
by a sequence of seminorms |.|, < ||, < ---. For example, S may be L.
Schwartz’s test function space .~ or £/(K), K compact. Let S’ be the dual space
of S, 8 =S,,, where S, ={fe§": f continuous for |.|,}. (Here §' is the
inductive limit of the §,’, but in general this inductive limit is not strict, i.e.,
the embedding §,” — §;,, is not a homeomorphism, contrary to an editorial
insertion in my review (1969).) As noted by D. M. Eaves (1968), if x is a
Gaussian measure on §’, then p(S,’) = 1 for some n. It happens often, for ex-
ample if § = /"or &/ (K), that S,’ is actually not closed and is dense in S, while
u#(S,") = 1 is more interesting than x(S’) = 1. For example, the smallest n such
that ¢(S,’) = 1 may be the smallest n for which the sample generalized functions
in S’ are derivatives of order n of continuous functions, as in Section 4 above.

Further, many theorems assert that Gaussian measures live on subsets which
are neither closed nor linear. For example, if {X,} are orthogaussian,
lim, ., >17., X;}/n = 1 a.s., and the set of sequences { X} satisfying the condition
is nonlinear. For an extension of this line of thought see, e.g., T. Hida and H.
Nomoto (1964).

A zero-one law for Borel subgroups was proved by N. C. Jain (1971).
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7. Non-Gaussian processes.

7.1. Some counterexamples. Let T be a bounded set in R*.” We know that if
{x,, t€ T} is a Gaussian process with

Elx, — x|’ < C/|log |s — t]|"+* for some 6 >0 and C < oo,

then x, is sample-continuous. The Gaussian property is strongly used.

H. Totoki (1962) proved that if x, is any process on T C R* (Gaussian or not)
such that for some « and p > 0, E|x, — x,|? < C|t — s|***, then x, is sample-
continuous. This condition is of course much stronger than the one stated above
for Gaussian processes.

P. Bernard (1970) weakened Totoki’s condition to

Elx,p — x| < Clh|¥/|log |A]|" , s>p+ 1.

Earlier, J. Delporte (1966) gave this sufficient condition for sample-continuity
if k=2and s > p.

Now here are examples where s = — 1 and we do not have sample-continuity,
so that the power k in |A|* is best possible. We still do not know the best possible
power of the logarithm, between —1 and p or p + 1.

ProrosiTION 7.1. Fork = 1,2, ..., there is a stochastic process x,, t € I*, where
I* is the unit cube in R*, I = [0, 1], such that

Elx, — x,F < |s — t]*(1 + |log|s — 1]))
and (every version of ) x, has almost all sample functions unbounded.

Proor. Foreachn =1,2, ..., we divide /* into 2" equal, parallel cubes
C,i»j=1,---,2". Let f,; be a function which is 1 at the center of C,;, 0
outside C,;, and linear on each line segment joining the center to the boundary
of C,;.

For each n let j(n) be a random variable with Pr (j(n) = j) =2-",j =1, ...,
2" Let the j(n) be independent for different n.

Let

x(w) = Z;’:,:lfn,j(n)(w)(t) > telk.

The series converges in L'(/*, 4), and for each w it converges for almost all z.
The cubes C, ;,, have accumulation points ¢ such that in every neighborhood
of such ¢, x, is unbounded. (Actually, such ¢ are almost surely dense in /¢.)
For k2" < |s — 1] < k¥/2", we have
Elx, — x,|F < 33m,2- (2UY]s — 1))k[29F + 3.0, 2/27%
é 2k+1nls - tlk + 2-nk—k+2

Dividing the process by a suitable constant we have the result. []

Most proofs of sample continuity of Gaussian processes use just upper bounds
on tail probabilities, Thus similar results do hold for non-Gaussian processes
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with tail bounds of Gaussian type, called “sub-Gaussian” processes; (see Kahane
(1960), (1968), KozacCenko (1968), Hanson and Wright (1971)).

For processes stationary in quadratic mean, the assumptions on the spectrum
for sample-continuity are again much stronger in general than they are for
Gaussian processes; see, e.g., Kawata and Kubo (1970).

7.2. Comparison of processes. Marcus and Shepp ((1971) Lemma 1.5) proved
that if X and Y are Gaussian processes with

E|Y(s) — Y(0)]* £ E|X(s) — X(1)|*, EX(r)y=0,

for 0 < s <t <1, and X is sample-continuous, then so is Y. Their proof uses
Slepian’s inequality (1962). It may be amusing to note that the above result
may fail for X non-Gaussian and Y Gaussian. Let H be the usual Hilbert space
with an orthonormal basis {¢,}. Let ¢ be a probability measure with mass 2"~
at 2%, and at —2"?p, forn =1,2, .... Let N(f) =(f, x) where x has distri-
bution x. Then N has the same means and covariances as the isonormal process
L: EN(f)=0, EN(f)N(g) = (f, 9). Clearly N is sample-continuous on H. Hence:

PRroPOSITION 7.2. For any stochastic process {x,, te T} with E|x,|* < co and
E|x, — x,|* > 0 as s —t, where T is any separable metric space, there is a process
y, with the same means and covariances as x, and with continuous sample functions,
namely y, = Ex, + N(x, — Ex,).

8. Miscellaneous topics on Gaussian sample functions. Several topics have not
been treated at length in this survey, partly for lack of time and space. Here
are brief remarks on a few of these topics.

8.1. Multidimensional range. Some questions arise for processes with multi-
dimensional range which may be trivial for sample-continuous real-valued pro-
cesses, such as the Hausdorff dimension or other measures of size of the range
or trajectory, or of its intersection with a given set. D. Ray (1963) and S. J.
Taylor (1964) proved sharp results for Brownian motion. See also Kahane (1968),
Chapter 13 and S. Orey (1970). F. Spitzer (1958) considered asymptotic behavior
of polar coordinates of plane-valued Brownian motion.

8.2. Level crossings. Let x, be Gaussian CQM stationary with mean 0, covari-
ance Ex,x, = r(s — 1), and spectral measure x. Let M(T, u) be the number of
values of r with x, = wand 0 < ¢+ < T. K. Itd (1964) proved that EM(T, u) <
oo is equivalent to finiteness of the symmetric second derivative r’(0) and hence
to § 22dp(2) < oo. Thussuch processes have first derivatives which are integrable
to any finite power, but these derivatives are not necessarily sample-continuous.
Itd proved rigorously a formula of S. O. Rice (1945) and V. Bunimovich (1951),

EM(T, u) = Tz~'(—r"(0)/r(0))* exp(—u*/2r(0)) .

Others, e.g., Bulinskaya (1961), had proved the formula in increasing generality
before It0’s final result.
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If EM(T, u) = 4 o0, can it happen that M(T, u) < co almost surely? This
question seems to be open.

As u — oo for fixed T, M(T, u) is asymptotically Poisson-distributed under
suitable hypotheses (a recent reference is S. M. Berman (1971 b)).

On the other hand for fixed u, as T — oo M(T, u) is asymptotically normal
(Malevich (1969)) under a list of conditions not reproduced here.

Yu. K. Belyaev and V. P. Nosko (1969) have several results on the asymptotic
distribution of lengths of excursions above level u for stationary Gaussian (and
other) processes. See also S. M. Berman (1971 a).

8.3. Geometric properties in Hilbert space. Let e, be an orthonormal sequence
in a Hilbert space H, 0 < p < oo, and {a,} a decreasing sequence of positive real
numbers. Let

Bla,} = {X x.e.: X |x/af = 1},
B.{a,} = (X x.ex: sup |x,/a,| < 1} .

Then for 1 < p < oo, B,{a,} is a GB-set iff }] |a,Y,|? < co almost surely, where
1/p + 1/¢g = 1and Y, are ortho-Gaussian. M. G. Sonis (1966) proved that this
holds iff 3] |a,|? < co. For p = ¢ = 2 this was classical.
Dudley (1967) proved B{a,} is a GB-set iff a, = </(log n)~* and a GC-set iff
a, = o(log n)~%. Sonis (1966) had related, but more complicated conditions.
Let C be a closed, convex set in H. Let V, (C) be the supremum of n-dimen-
sional Lebesgue measures of orthogonal projections of C into n-dimensional sub-

spaces. Let
EV(C) = limsup, _,, (log V,)/nlogn .

My 1967 paper proved that (C) = —2/(1 + 2EV(C)) if EV(C) < —4 and con-
jectured that if EV(C) < —1, then r(C) = —2/(1 4+ 2EV(C)). It would follow
that r(C) < 2, so that C is a GC-set. This conjecture remains open in general.
My 1967 paper proved it for B/fa,}, p = 1,2, co. S. Chevet (1969), (1970)
proved if for 1 < p<2and2 < p < co. Forl < p < oo, B, is a GC-set iff it
is a GB-set.

In my 1967 paper, Theorem 5.3 states that C is not a GB-set if

sup, [n~'log V,(C) + logn] = 4o,

in particular if EV(C) > —1. However, volumes, like N(C, ¢), cannot give a com-
plete characterization of GC-sets or GB-sets (Dudley (1967) Proposition 6.10).

Sudakov (1969) announced that an ellipsoid E = B,{a,} is a GB-set iff
1e?dH(E, ¢) > —oo. A proof of this can be based on Theorem 3 of B. S.
Mityagin (1961) page 71. As we saw in Section 1 above, not every GB-set C
satisfies {j¢*dH(C, ¢) > —oo. There exist GB-sets, such as B,{1/log (n 4 1)},
not included in any GB-ellipsoid.

8.4. Differentiability. A process has continuously differentiable sample func-
tions iff it is the indefinite integral of a process with continuous sample functions.
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For example, a Gaussian process with stationary increments and LK measure x
has m times continuously differentiable sample functions if for some a > 1,

§ 12120 Am|log 4]* dpp(2) < oo .

Yu. K. Belyaev (1959) proved that any stochastic process {x,, 0 < r < 1} with
mean 0 and analytic covariance function Ex, x, has a version with analytic sam-
ple functions. For Gaussian processes he proved that this sufficient condition
is also necessary. For stationary processes with spectral measure ¢ he showed
that sample functions x, are analytic for |7| < r iff {=_ e"* du(2) < co. Thus, for
example, if # has compact support or is itself Gaussian, then x, has entire analytic
sample functions. By Theorem 3.4 above these results on stationary processes
carry over to processes with stationary increments, if we integrate over |4 > 1.

8.5. Examples of sample functions. It may happen that almost all sample func-
tions of a process are proved to have a certain property, yet it is difficult to
construct any specific function with such a property. Thus, on the one hand,
sample function theory can provide existence proofs simpler than constructive
ones. On the other hand, construction of such functions is an interesting chal-
lenge; one such was met by K. Urbanik (1959).

8.6. Local maxima. Dvoretzky, Erdés and Kakutani (1961) proved that al-
most every Brownian path x, has no points of increase, while it does have local
maxima. In a side remark (page 105) inessential for their purposes, they state
that ““the set of points of maximum is, almost surely, of the power of the con-
tinuum in every open interval”. But actually local maxima are a.s. countable,
since strict local maxima form a countable union of discrete, hence countable
sets, and for any rational a < b < ¢, we have a.s.

max {x,:a <t < b} +#max{x,:b<t<c},

so a.s. all local maxima are strict. Also, a.s. the local maxima are dense. All
this was noted by G. J. Foschini and R. K. Mueller (1970) with one lemma by
L. Shepp.

Local behavior of Gaussian processes with smooth covariances near local
maxima has been considered in several works by G. Lindgren (1971).

As to the possible values at local maxima, we have the following result, essen-
tially due to D. Ylvisaker (1965), (1968).

THEOREM 8.1. Let K be a compact metric space and {Y,: t € K} any Gaussian
process on K with continuous sample functions and such that for all t € K,

oty = E(Y, — EY,} > 0.

Then the distribution of max {Y,: te K} is absolutely continuous with respect to
Lebesgue measure.

Proor. Ylvisaker (1965), (1968) proves that if in addition ¢*(r) = 1 then the
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law of max {Y,: re K} has a density f with respect to Lebesgue measure where

. f(x) = exp(—x*/2)G(x)
and G is non-decreasing and finite, so that f is bounded on bounded sets. Then
for a general Y, xe R, and 0 < ¢ < 1, we have

Prix —e<maxY, < x + ¢}
=Pr{—ec < max (¥, — x) < ¢}
< Pr{—¢/info(r) < max (Y, — x)/o(r) < ¢/inf a(2)},

noting that by sample continuity, ¢ is continuous so that inf ¢ > 0. Hence by
Ylvisaker’s results there is some K < oo, depending on Y, and x but not on ¢,
such that the above probabilities are less than Ke. This suffices to prove the abso-
lute continuity. []

Considering —Y,, we get the same result for [Y,|. If ¢*(t) = O for some ¢, let
F be the compact set {t: ¢’(f) = 0}, and « = max {EY,: te F}. Then P(maxY, =
«) may be positive, or may be 0. It seems plausible that the law of max Y, is
absolutely continuous except for a possible atom at its essential infimum.

Under the hypotheses of Theorem 8.1, if g is a fixed continuous real function
on K, there is probability O that there exists an open set U such that Y, = g(r)
for some r e U and Y, < g(¢) for all r e U (Ylvisaker (1968)), since we can take
a countable base for the open sets, and apply Theorem 8.1 to Y, — g(r). (This
allows some simplification of the proof of Lemma 5A of Dudley (1971b).)

Yuditskaya (1970) considers maxima of stationary isotropic processes on R*
over sets with some regularity conditions.

9. Relations to other major subjects.

9.1. Eguivalence and singularity. Study of sample function properties of pro-
cesses can be viewed as seeking sets in function space which contain almost all
the sample functions yet which are as small as possible. Thus, in principle,
sample function properties should help in proving equivalence or singularity of
Gaussian measures. But, in practice I. E. Segal ((1958) Theorem 3) and J.
Feldman (1959) solved the problem of equivalence and perpendicularity in terms
of covariances. Their condition in terms of Hilbert-Schmidt operators usually
seems easier to apply than sample function properties. In situations where their
theorem does not apply (e.g., only one of the measures is Gaussian) sample
function properties may be useful; see, e.g., my paper (1971Db).

9.2. Prediction. Again, in principle, knowledge of sample function behavior
of processes should help to predict the future of a given process, given all or
part of its past. But the existing prediction theory, both in the classical
Kolmogorov-Wiener-Masani form with infinite past, and in the prediction of
Gaussian processes from a finite segment of the past (Levinson and McKean
(1964), Dym and McKean (1970)), concerns itself with subspaces and projections
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and hence with covariances rather than with sample functions. Of course, there
are for example processes with analytic sample functions which can thus be
perfectly predicted, but this intersection of prediction and sample function be-
havior seems relatively small and the theories seem to develop with little relation
to each other.

9.3. Diffusion. Some interesting properties of Gaussian sample functions are
connected with non-Gaussian diffusion processes such as Brownian motion with
an absorbing or reflecting barrier, etc. There is an exposition by K. Itd and
H. P. McKean, Jr. (1965).
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