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ON L, CHEBYSHEV-CRAMER ASYMPTOTIC EXPANSIONS

By R. V. ERICKSON
Michigan State University

An L;-smoothing lemma is used to prove an L version of the Chebyshev-
Cramér asymptotic expansion for independent (identically distributed) ran-
dom variables. The conditions imposed are exactly those demanded for the
L. version.

1. Introduction. We have shown recently [2] that an L, version of the Berry-
Esséen theorem can be proved exactly as the usual L, version if one uses an
appropriate L, smoothing lemma. We show here that the same holds for the
Chebyshev-Cramér asymptotic expansions.

2. Notation and results. Throughout we let X, X,, - .. be a sequence of inde-
pendent random variables with EX; = 0, EX;? = ¢ < oo, all i, with ¢; = 1 in
the identically distributed case. LetS, = X, 4+ -+ 4+ X, 5,2 =3d2 + -+ + 0,3,
F,(x) = P(S, < xs,),

REx) = Zan()dy,  n(y) = @r)texp(—)'/2),  eu(t) = Eexp (itX,).

We wish to examine the L, norm, with Lebesgue measure, of the expansion
error

€nu(¥) = Fio(x) — R(x) — n(x) L1 n7*7Q,(x)
where the Q, are appropriate polynomials. Write

En,k,p = ”en,kHP *

Consider first the case where the X;’s are independent and identically distributed
(i.i.d.). Under Cramér’s condition

©) lim sup,, ... [p,(5)] < 1.

Feller ([3] page 541) shows that ¢, , ., = o(n~*?) if the first k 4+ 2 moments of
X, are finite. Ibragimov [5] extends this result by giving necessary and sufficient
conditions for certain rates of convergence to zero of ¢, , ., (Theorems 1, 2 below
with p = c0). We extend this further to include the ¢, , ,case, 1 < p < .

To be more precise, let X;, X,, --- be i.i.d. F with characteristic function ¢,
and let @, = EXp, if this moment exists. Let {3;},” be a sequence of reals and
form the polynomials Q, in the usual way using the sequence of §’s. (See, for
example, Cramér [1] page 70, ff. Ibragimov [5], or Feller’s constructive approach
[3], page 535, which we essentially follow below.)
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THEOREM 1. Let X,, X,, - - be i.i.d. F. In order that
Cnkp = O(M7*%) I1<p=

it is necessary, and for distributions satisfying condition (C) also sufficient, that

1) the absolute moments of F up to order k + 1 inclusive are finite, and a, =
B+ o5 @y = Biias

@ §1a152 [X[*'F(dx) = o(z7) z—> 00,
3) lim,_, §2, x***F(dx) = B,,, -

THEOREM 2. Let X, X,, --- bei.i.d. F. Let 0 < 6 < 1. In order that

e — O(n—(k+6)/2) R 1 é P é o

nk,p
it is necessary, and for distributions satisfying condition (C) also sufficient, that

4) the absolute moment of order k + 2 be finiteand a; = B, - -+, a4, = Bpy0

5) §2152 [X|[¥T2F(dx) = O(z7%), zZ— o0,
and for 6 = 1 also
(6) {2, x¥3F(dx) = 0(1), z—o00.

It should be noted that the conditions (1) to (6) are independent of p,
1<p< oo ,

If X, X,, - -- are i.i.d. F with characteristic function ¢, Theorems 1 and 2
have an equivalent form in terms of ¢. The numbers y, below are related to the
B’s in the same way that the cumulants (semi-invariants) ’s are related to the
moments a,. (This relation isderived in our proof of equations (8) and (8')
below.) Under condition (4), 4, = p¢,, s =1, - -+, k 4+ 2.

THEOREM 1’. [In order that

€ = o(n*?), 1<p=< o,

n,k,p
it is necessary and for distributions satisfying condition (C) also sufficient that
() (1) = exp { D5 (in)' /st + o(|1]+)}
ast—0.

THEOREM 2. Let 0 be such that 0 < 0 < 1. In order that

€n sy = O(n=k+0)7%)

it is necessary and for distributions satisfying condition (C) also sufficient that
®) o(t) = exp {5+ (it) p,/s! + O(Jt]***+9)}
ast— 0.

In the case of non-identically distributed summands, Feller ([3) page 546, ff.)
gives a hint at what can be proved. For example, if condition

((eN) |@u(t) - - - @u(f)] = o(n~¥) uniformly for || >4d >0
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is satisfied and if there exists constants co > b6 > a > 0, M > 0 such that an <
5.} < bn, EX,* < M for all n, then ¢, , ., = o(n~?) with

n~Q,(x) = 11 (EX,}[6s,%)(1 — x?) .
To get an L, rate we also need

<)) -:-:; (1) -+ @,(1)| = o(n~¥) uniformly for |t >d>0.
THEOREM 3. Suppose X,, X,, - .- are independent, that EX,* < M < co, that
0<a<s?n<b< oo forall n, and that conditions (C,) and (C,) hold. Then
€1, = 0(n7Y), I<p= .

We leave it to the reader to formulate the L, conditions for other expansions
whose L., version is known. See Cramér [1] and Feller [3].

3. Proofs. Theorems 2 and 2’ are proved in the following way:

(a) conditions (4), (5) [and (6)] imply (8) and (8’) below for 0 < d < 1 [for
0=1],
(b) conditions (8), (8’) and (C) imply

Enkp = O(n_(k+5)/a) , all 4 in [1, o],

(c) if the rate given in (b) holds for some p in [1, oo] then conditions (4) and
(5) [and (6)] hold for 0 < é < 1 [for 6 = 1].

We now consider each of these implications.

(@) This is independent of p, and the proof of the implication of (8) is in
Ibragimov [5]. We adapt his arguments to prove a statement concerning the
logarithmic derivative of ¢ [see (8’)] and this in turn implies (8).

LEMMA. (i) Suppose the random variable X, has a finite absolute moment of order
k = 2. Then there exist constants ry, ry, - - -, r, such that ast — 0

d%log o(1) — Xg (yrfst = §= (€% — L (itx)’[s)ixF(dx) + O(|1|**") -

The semi-invariants are now defined by i, =r,_,, s =1, ---, k.
(ii) Conditions (4) and (5) [and (6)] imply

®) % log (f) = i TE+ (iry e, /(s — 1)! 4 O(]++%)
ast—0, for0 <o <1 [foro=1].

PrROOF. E|X)|* < co implies
o(1) — D (i) afst = §Zo (6 — T (itx)[s)F(dx) = o(|1*)

and

O'(t) — i JE (it a, . fs! = §2, (677 — Tk (itx)*[s!)ixF(dx) = o(|t]*™) .
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Choose » > 0 so that || < 5 implies |1 — ¢(r)] < 4. Then for |t] < » we have
d ’ ’ 0o 8
27108 e() = ¢'O)e() = ¢'() T [1 — ()]

= ¢/ + Zt (=1)(Z5 @)ty + o (1) + O(|t*+)]
= ¢'(f) — i L5 (itya,,./s!
+ [ 267 iy a,a/sZs (— 123 (@0)ia,/jt)]
+ o(7*+") + O(jr**?) .
Take v as the smallest integer for which 2y + 3 > k + 2 and define r,, ---, 1,
so that the product of the terms in the square brackets is Y} (ir)'r,/s! + O(|t]**?).
This gives (i). Integration of this shows thatii, =r,_,,s =1, -- -, k, for the 2’s
are defined by the relation
log (1) = Xt (i)°2;[j! + o(Jt[*) -
To prove (ii) notice that (i) and (4) imply ¢, = 2,, s =1, ---,k + 2 and

9 og p(t) — 1 24 (ity=uf(s — 1!

= |§2, (" — L& (irx)[sh)ixF(dx)| + O(|¢[***)
2|t|k+1 tk+2xk+3

= m §ne1>1 | X[ +2F (dx) + Sltz|slm F(dx)
]t|k+3 b »
T (o 3y Ve P E@) + O

Now argue exactly as in Ibragimov ([5] page 462): By (5) the first term in the
right-hand side is O(|r]*+1+%), 0 < 6 < 1. If 6 = 1, the second term is also
O(|t|*+*+%) by (6). If d < 1 the second term may be handled by introducing
R(4) = 415 |¥[*** dF(x). Then
|54 § ey X[ dF(x) = —|e*** §5/1 x dR(x)
< [AHRAJe]) + Jr]* 5 R(x) dx = O(Jef+1+7) .
Notice this argument fails for § = 1. The third term is handled in the same way
since, for0 <0 < 1,
— |t]+2 §411) x2 dR(x) = O(Je]<+1+%) .
Thus (4), (5) [and (6)] imply (8’) which in turn implies (8).

(c) We must now show that if ¢, , , = O(n~*+>/) for some p in [1, o], then
(4) and (5) [and (6)] hold when 0 < é < 1[when d = 1]. The proof of this given
by Ibragimov for the case p = co was designed to work for the general case.
The proof is by induction on k. In [4] the first step is proved for k = 0 and p
in [1, o0]. In [5] (page 463 ff.) the induction step is proved, but only for p = .
Here a certain function A4~ with ||4~]|, < o0, ||47]|. < oo is introduced and one

considers
§e e, k+1(¥)A™(x)] dx .
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Using Holder’s inequality we see this is O(n=*+1+97) if ¢ ., = O(n~*+1+0/2),
any p in [1, co]. The rest of Ibragimov’s argument is independent of p, and we
will not reproduce it as it is rather intricate. This completes the proof of (c).

(b) Since ||+]|,» < ||*]|»"""||*||;» We need prove (b) only for p = 1, the p = ©
case being given in [5]. We argue as in Feller [3] but replace the L, smoothing
lemma used there by the following

L,-SMOOTHING LEMMA. Let H be a (probability) distribution function, let G be a
function of bounded variation and let H* and G* be their Fourier-Stieltjes transforms.
If G(—0) = 0, G(+o0) = 1 and ||H — G||, < oo, then for all T > 0

||H — G|, < 4n(1 + Var G)/T + (% + 4/T* + o, + 4,

where
&= §T, A1) — G (O dr

02 = T, |H () — G~ (0)|*t~* dt

52 = {7, % (H(t) — G| 12 dr .
This lemma is due to Esséen and is proved in [6] page 25. (Var G = total vari-
ation of G.)

To apply thislemma, take H = F,andG =G, , = F, —¢, , =N +n 1 n*"Q,.
H and G meet all requirements: notice that Var G,, < Var G, < co, and that
[|[H — RN||, < oo by Chebyshev’s inequality.

The random variables X,, X,, - - - are i.i.d. with distribution function F and
¢ = F*. By equation (8)

G(t) = log o(1) + 12 = $(t) + O([t[*+*+%),
Gu(t) = 25T (@08
a = a(t) = ng(t/n’) and

B = B(t) = n¢,(t/n?)
and notice that if y > |a|, y > |8]| then

le* — 2 /st < er(ja — B + [B]**!/(k + 1))
and, writing ’ for differentiation,
dit(e“ — Zo P[] < le(@ — B)| + |F(e” — X B/s)]

= elfla’ — B + |Bl|a — Bl + 18] 18]*/k!} -
By the relation between the sequences {3,} and {y;} we know that

H~(t) — G(f) = e ?P(e* — Xk p°/s!)
(see Feller [3] page 535) and thus

9(HW) — GM0) = —(H 1) — G(0) + e & (e« — Tk pst)

where

Define
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with a and § as defined above. From (8) and (8') it follows that there exists
t,>0,0 < K < ooand p, 0 < p < 1,such that |f| < pn? implies

la@ = /4, |BO = alffnt =4, a=14|m,
la(r) — B(O)] < Klo|*+*on= k0
@) = FO) < (k +2 + OKpfrrisin e
1B()] < arn~t.
This entails, for 1] < pnt,
IHA(t) — G'\(t)l é e—t2/4(K|tlk+2+5n—(k+5)/2 -+ ak+1t3k+3n—(k+l)/2/(k + 1)!)
and, with K* = (k 4 2 + 0)K,

d
e—t2/2 Z (e® — k Bs/g!
(e — EABst)
< e—t3/4{K*|t|l;+1+6n—(k+a)/2 + aKIt]k+4+an—(k+2+b)/2 + ak+1|t|3k+2n—(k+l)/2/k!} .

Define T = t,n**+®”2, T, = pnt. The above reasoning shows that the contri-
bution to ¢, 4, and J, by the interval |¢| < T, is O(n~*+/). Considering 9, for
T, < |t| < T we have the bound

§7 <1050 RN (t/nt)e" (¢[nY)| dt + §1 <v<r
o o

d
—G*(1)|dt .
dt ()’

But condition (C) implies max,, ., |¢(f)] = € < 1and EX;* = 1 implies |¢'(7)] < 1,

and hence the first term is O(6"n*+'+%72), This goes to zero faster than any power

of n. Now G* = e */2P(r), P(t) a polynomial in ¢, so that the second term also

goes to zero faster than any power of n. The contributions to ¢ and J, over

T,<t=<Tare treated similarly. This completes the proof of Theorems 2, 2'.
Theorems 1 and 1’ are proved in the same way and will not be discussed here.
Theorem 3 is easily proved: Set v,(r) = n~! 3 7 log ¢,(?),

a(t) = nv,(t/s,) + /2,
B(t) = nv,'"(0)£/6s,? ,
T =as,, T,=ps,,a and 1/p sufficiently large.

Now use the L, smoothing lemma and the argument similar to those for the proof
of Theorems 2, 2’. )

The uniform bound on fourth moments implies that v,”’ is uniformly con-
tinuous near zero, and this guarantees appropriate bounds for () — B(¢) and

@(t) = B0 = T [0,/(1s.) = v/0) — v,"O)tfs, — v, (O)F[25,]

The (C,’) condition states that |(d/df)p,(?) - - - @,+1(f)] = o(n~?) uniformly for
|f] > 6 > 0, which is all that is needed for the rate corresponding to the con-
tributions to 9, given by the interval T, < t < T. The (C,) condition gives correct
rates for the outer portions of ¢ and d,. This completes the proof of Theorem 3.
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REMARK. Note that if X, X,, - . . are i.i.d., if condition (C) and (4) and (5)
[and (6)] hold for X, X,, - .-, and EX; = ER?,j =1, ...,k + 2,thenQ, = 0,
s=1,...,k, and a better rate holds for the Berry-Esséen theorem:

|1, — Y|, = O(u-a+om) l<p<o,
0<d<1[s=1].
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