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This paper considers ergodic behavior of those non-stationary Markov
processes which can be represented by a sequence of stochastic kernels,
{Pn(x, y)}, defined on a g-finite measure space (S, &, p). In particular, the
convergence of the superpositions, Py Pz Ps - - - Py, of these kernels is related
to the convergence of their corresponding left eigenfunctions, ¢, where

¢n(y) = § Pn(x)Pu(x, p)p(dx) and § gu(y)p(dy) = 1.
It is then shown how these results can easily be extended to the general
case where densities are not assumed.

0. Introduction and summary. It is well known that under certain conditions,
powers of a stochastic matrix P will converge to a matrix, say Q, which has all
of its rows the same. (See, for example, Feller [4].) Such a matrix is called
ergodic. It is also true that the rows of Q are left eigenvectors of P correspond-
ing to the eigenvalue 1. Hence, in the stationary matrix case, there is a relation-
ship between ergodic behavior and left eigenvectors.

In generalizing from the stationary case of ergodic behavior to the non-station-
ary case, new questions arise. First of all we must distinguish between weak and
strong ergodicity, (Definitions 1.2 and 1.3). Secondly, since each P, in a non-
stationary sequence of stochastic matrices has its own left eigenvector, ¢,, cor-
responding to 4 = 1, we ask whether or not the convergence of the {¢,} is related
to strong ergodicity of the sequence. Rather than restricting this discussion to
stochastic matrices and eigenvectors we will give all results in terms of stochastic
kernels and eigenfunctions (see [6]). We give conditions under which conver-
gence of the left eigenfunctions implies strong ergodicity. We also give conditions
under which strong ergodicity implies convergence of the left eigenfunctions.
Finally we show how these results can easily be extended to the case where
densities may not exist.

1. Assumptions and basic definitions. We consider a ¢-finite measure space
(S, &, p) and a sequence of stochastic kernels {P,(x, y)} defined on S x S which
are sufficiently well-behaved so that superpositions defined by

Ppim(*5 ) = Vs v 00 Vs Pu(Xs 20) Poys(205 23) + + + Pry(Zms Y)e(dzy) - - - p(dz,,)

exist for all m and n. We assume the above to be true throughout this paper.
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We will use the following norm for arbitrary integrable kernels defined on

S x S:
[IKI| = sup, § [K(x, y)la(@y) »

in which we introduce the notation that if the range of integration is unspecified,
we take it to be S.

For two kernels K and L we define their superposition, “KL,” by KL(x, y) =
§ K(x, 2)L(z, y)e(d2).

In our case, where we assume the existence of kernels, the ergodic coefficient
of Dobrushin [3] takes the following form.

DeriniTION 1.1, If P(x, y) is a stochastic kernel, then

a(P) =1 —sup,, § [P(x,y) — Pz, y)]* ()
=1 —gsup,, § |P(x,)) = P(z, y)|p(@y) -

For convenience we define 6(P) = 1 — a(P). For properties of §(P) and the
norm || ||, the reader is referred to [6]. The following definitions of weakly and
strongly ergodic behavior are also given in [5], but are given here for convenience.

DEeFINITION 1.2. A sequence of stochastic kernels {P,} is said to be weakly
ergodic if o(P,, ,) —, 0 for all m.

DEerINITION 1.3. A sequence of stochastic kernels {P,} is said to be strongly
ergodic if there exists a kernel Q(x, y) with the property that Q(x, y) = Q(z, y)
for all x, y and z and ||P,, , — Q|| —, O for all m.

We now state two lemmas which follow from two inequalities of Blum and
Reichaw [1].

LemMma 1. If § R(x, y)u(dy) = O for all x and if P is stochastic, then ||RP|| <
|IR[[0(P)-

LEMMA 2. If P and Q are stochastic kernels, then 6(PQ) < d(P)d(Q). (This is
also done by Dobrushin [3].)

The final definition of this section is given for notational purposes.

DerINITION 1.4. Let % denote the class of kernels, P, for which the eigen-
value 1 has a nonnegative, integrable left eigenfunction, ¢. Take ¢ to be nor-
malized so that § ¢(y)u(dy) = 1.

Given a stochastic kernel, P, in .9 we will take such a left eigenfunction as
the left eigenfunction associated with P.

2. Conditions for strongly ergodic behavior. The following theorems give con-
ditions under which convergence of left eigenfunctions implies strongly ergodic
behavior.

THEOREM 2.1. Let {P,(x, y)} be a weakly ergodic sequence of stochastic kernels in
7. If the corresponding left eigenfunctions, ¢,, satisfy

(2.1) 251 11950() — €00l < o0
then {P,(x, y)} is strongly ergodic.
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Proof. Since L,(¢) is complete, let [|¢,(y) — ¢(p)|| — 0 as n — co. Define
Q(x, y) = ¢(y) for all x. Then

2.2)  ||Ppa — QI S [P — $all + 190 — ¢l
é ”Pm,k—lPk,n - ¢kPk,n|| + ||¢kPk,n - ¢n|| + ||¢n - ¢|| .

By choosing n > N,(¢), the third term of (2.2) can be made less than ¢/3. Now
consider the second term of (2.2). Since

D Pk,n = ¢, P, Pk+l,n = (¢k Pk+1,n - ‘/’k+1Pk+1,n) + D Pk+l,n
== (‘/’k - ¢k+1)Pk+1,n + (¢k+1 - ¢k+z)Pk+z,n + o+ 9,P,,
it follows that

195 Presn — ull = (12320 (@5 — €500 Pinall = D350 1195 — ¢51all0(Pjsn,0)
= 2i5kgs — dinll = Dk llgs — @il -
It follows from (2.1) that for k > K(e), this last expression can be made less than
¢/3.
Finally, since § P, ,_,(x, y)u(dy) = § ¢.(»)p(dy) = 1 for all x and k, Lemma 1
implies that

||Pm,k—1Pk,n - ¢kPk,‘n|| é IIPm,k—l - ¢k||5(Pk,n)

which for fixed k can be made less than ¢/3 for n > N,(¢) by the assumption of
weak ergodicity. Hence (2.2) can be made less than ¢ for all n sufficiently
large. []

THEOREM 2.2. Let {P,(x, y)} be a sequence of stochastic kernels in &7, If the
eigenfunctions converge in the sense that ||, — ¢|| — 0, and if there exists a constant

D such that
17.10(P; ) =D forall n

then {P,(x, y)} is strongly ergodic.

Proor. First note that for all m, 332_, 6(P;,) < 3., 6(P;,) < D. Itis not
hard to show that this implies that §(P,, ,) —, O for all m.

We now show that for all n sufficiently large, ||P,,, — Q|| < e, where Q(x, y) =
¢(y) for all x. Now

(23) 1Pnn = Qll = [Pmin — Pull + 1900 — ¢l
and clearly ||¢, — ¢|| can be made less than ¢/2 for n > N,(¢). Next note that
Lemma 1 can be applied in the following.
1Pun = Qull = [1Prns Pr — P P
S Pun-1Pn = Pucs Pull 4 [[($nos — a) Pl
S 1Pun-aPusin = PuosPacsall + 190y — ¢ull0(P) -

Continuing in this way we can show that

24 |[Pan — Gall S N1Pm — Pullo(Prssn) + Diemes 052 — $5ll0(P;,0) -
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Since §(P,11,.) —, 0, the first term of the right-hand side of (2.4) can be made
less than ¢/4 for n = N,y(e).

Nowsince ||¢;_, — ¢,]| — 0, givene > 0, there exists M(e) such that for j > M,
|51 — ¢,ll < ¢/(8D) = . Assume M > m. (The case where M < m is easier.)
Then, for all n,

Dieunrll9ior — Gllo(P;) < 7 Diewia 0(P;,) < /8.

Finally, since ||¢;,_, — ¢;|| < 2, and since given M, there exists N;(¢) such that
for n > Nyand all j < M,

0(P;4) < 3(Py,a) < ¢/[16(M — m)] .

Hence 310L,.., (19,2 — ¢,l16(P;,) <2 X X,..10(P;.,) < ¢/8. Therefore, for n >
max {Nl’ Nz’ Ns}’ HPm,n - Q” < €. D

CoRroLLARY 2.1. If {P,} in .57 is stationary weakly ergodic, then {P,} is strongly
ergodic.

Proor. This follows immediately from Theorem 2.1. Also since stationary
weakly ergodic implies that for some 8, 3(P") < 8 > 1 for some r = 1, this co-
rollary follows from Theorem 2.2 as well.

COROLLARY 2.2. Let{P,} be a sequence of stochastic kernels in 57. If ||, — || —
0 as n — oo and if for some B, 5(P,) < B < 1 for all n, then {P,} is strongly ergodic.

Proor. Straightforward using Lemma 2 and Theorem 2.2.

3. Conditions for convergence of left eigenfunctions. The following theorem gives
conditions under which strongly ergodic behavior implies convergence of left
eigenfunctions.

THEOREM 3.1. Let {P,(x, y)} be a strongly ergodic sequence of stochastic kernels
in 7. If there exists an integer, k, and a real number, 3, such that

Py =B <1
for all n, then ¢,(y) converges (in norm) to Q(x, y) = lim,_,,, P, .(x,)).

Note: 4(P,*) < 1 implies P, has a unique left eigenfunction corresponding to
A= 1 with § ¢,(y)p(dy) = 1

ProOF. Define
Eu(x, ) = Pyo(x, ) — Pyaa(x, )

A,,,'(X, .y) = ¢n(.y) - Pl,n—l(x’ .y) .
It follows by strong ergodicity that ||E,|| —, 0.

Since [|P,,,_, — Q|| —, 0 by strong ergodicity, it suffices for us to show that
I¢n — Prpill = [|4,]] —, 0.
First note that

and

S A”(X, .y)P'n(.y’ Z)#(d.y) = (/J”(Z) - l,n(x’ Z) = A”(X, Z) - En(x’ Z) ’
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and

§ [§ An(x, w)Py(w, y)p(dw) + E,(x, y)IPu(y, 2)i(dy) + En(x, 2) = A,(x, 2),
ie.
A,(x, 2) = E\(x, 2) + § Ey(X, y)Pu(y> 2)p2(dy)
+ §§ Au(x, WP, (W, y)P,(y, 2)p(@w)(dy) .

Now Fubini’s theorem can be applied to this expression to give

Bo(%, 2) = Ey(x, 2) + § Ey(x, D)Po(y Da(dy) + § Ay(x, w)P(w, 2)p(dw) -

If iteration is continued in this way, we find

Bu(x, 2) = Eo(x, 2) + IS En(x, )Py, D)p(dy) + § Bo(x, Y)PM(p, 2)p(dy) -
Hence,
”An” é IIEnII + 2.11”=_11||EnPn]|| + ||AnPnM|| o

Now since § E,(x, y)u(dy) = § A,(x, y)p(dy) = 0, it follows from Lemma 1 that
||E, P,7|| < ||E,||6(P,?) and ||A, P,¥|| < 28(P,”). Hence

(3.1) 18] < [IEJI{1 + Z15'6(P.)} + 20(P,X) .
Now

;![;1 5(Pn’) é Z?:l B(Pn]) = ’;=1 B(Pnj) + Z‘j’k:k+l B(Pn’) + cte
Sk+ kBt =kj(1— ).

Therefore, since ||E,|| —, 0, the first term of the right-hand side of (3.1) can be
made less than ¢/2 for n > N,(¢). It is also true that §(P,) will be less than ¢/2
for M sufficiently large. []

COROLLARY 3.1. Let {P,} be any sequence of stochastic kernels in S such that
for some B, 6(P,) < B < 1. Then {P,} is strongly ergodic if and only if {¢.(»)}
converges.

Proor. Use the fact that Theorem 3.1 holds when &k = 1 and for the converse
use Corollary 2.2.

This corollary generalizes a result obtained by Conn [2] where she assumes
S=[a,bland 0 < m < P,(x,y) S M < oo.

4. The general case. The authors are grateful to the referee for pointing out
that the above results extend easily to the case where densities for the transition
probability functions do not exist. This type of extension is done in [5] and the
reader is referred to this article for some of the details. Rather than reprove
the above theorems, we will simply state them and mention some of the changes
needed to cover this more general situation. In this case we consider transition
probability functions, P(x, B) where P(x, ) is a probability on .& for each x
and P(+, B) isan % measurable function for each B¢ .%. There is no problem
defining the ergodic coefficient for such a transition function since this was done
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by Dobrushin [3]. In particular, a(P) = 1 — sup |P(x’, B) — P(x", B)| where
the sup is taken over all x’, x” € S and B e .. Rather than defining the norm
of a kernel as sup, § |k(x, y)|#(dy) we define the norm of a transition function,
k(x, B) to be ||k|| = sup,[total variation of k(x, .)]. The composition of
transition probability functions is given by P, .. .(x,B) = § --- § P,(x, dx,,,)
Pyii(Xei1s @Xpi) + o+ Pyym(Xpims B). Inthis case Lemma 1 saysif k(x, A)isa signed
transition function with k(x, §) = 0 for all x then ||kP|| < ||k|| - 6(P) where
kP(x, A) = {5 k(x, dy)P(y, A). Lemma 2 is the same and is given in [5] for this
case. We now consider the class, %7, of transition probability functions, P,,
which have an invariant probability measure, p,. (i.e., ¢,(S) = 1 and g, (B) =
§ ©.(dx)P,(x, B).) Now a sequence of transition probability functions, {P,} will
be called strongly ergodic if there exists a probability measure x such that
[|Pp,n — #|| — 0 as n— co for all m.

THEOREM 2.1'. Let {P,(x, B)} be a weakly ergodic sequence of transition proba-
bility functions in 7. If the corresponding invariant probability measures, 1, satisfy
Do |l — ]| < oo, then {P,(x, B)} is strongly ergodic.

Proor. The proof follows that of Theorem 2.1 except that in this case one
uses the completeness of the space of signed measures with variation norm.

THEOREM 2.2'. Let {P,(x, B)} be a sequence of transition probability functions in
7. If the invariant probability measures converge in the sense that ||y, — p|| — 0
and if there exists a constant D such that 3}%_, 6(P; ,) < D for all n, then {P,(x, B)}
is strongly ergodic.

ProoF. The proof follows that of Theorem 2.2 with measures replacing
eigenfunctions.

THEOREM 3.1'. Let {P,(x, B)} be a strongly ergodic sequence of transition proba-
bility functions in 7. If there exists an integer, k, and a real number, 3, such that
0(P,*) < B < 1 for all n, then p, converges in norm to p = lim,_, P, ,(x, *).

Proor. The proof follows that of Theorem 3.1. In order to show
§§ A, (x, dw)P,(w, dy)P,(y, B) = § A,(x, dw)P,*(w, B)

start with P,(y, B) an indicator function and then use the standard arguments to
get the result for any nonnegative measurable function P,(y, B).
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