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ON A CLASS OF SECRETARY PROBLEMS

By ANTHONY G. Muccrt
University of Maryland

Asymptotic forms for the optimal expected payoffs (minimal costs) for
a generalized class of “‘Secretary’’ problems are investigated by an analysis
of a related family of differential equations. A class of unbounded payoff
functions with bounded expected payoffs is determined and methods for
generating the expected payoffs are developed.

1. Introduction. The stopping rule problems to be considered in this paper
are generalizations of the “secretary problem” for increasing unbounded payoffs.
An example of such a problem is found in [2].

Let .o~ denote the class of functions with domain the positive integers such
that ¢ € % implies ¢(1) = 1 and g(k + 1) = g(k). We will call such functions
payoffs. Let a probability (N!)~* be attached to each permutation ¢ of the first
N integers and let {X,}, kK = 1, 2, - - -, N be the sequence of independent random
variables where X, is the rank of ¢(k) among ¢(1), o(2), - - -, o(k). Note that
P(X,=k)y=1/r for k=1,2, ---,r. The stopping rule problem consists in
determining
(1.1) vy = min, Eq(a(t))
where ¢ runs through stopping rules on the sequence X, X;, - .-, Xj. In this
paper we investigate lim,., v, for a class of payoffs g € % such that

(1.2) g(k) 1 o0
1 q(k)AF < oo for 0<21<1.
Let us set

Q(r, k) = E(q(o(r)| X, = k) = L¥~"* q(l) G= 1()15)

Our objective is to find asymptotic forms and estimates for the values v,.

We have
v, = min, Eq(s(f)) = min, EQ(¢, X)) .

We call v, the optimal payoff. We sometimes call vy a utility. A recursive
technique for generating v, is the following. Set

0y(N) = Eglo(V) = - ¥ 4()
vu(N, k) = q(k) , k=1,2,--,N,
vy(r, k) = min (Q(r, k), EvN(r + 1, X,,1) »

vy(r) = Evy(r, X,) = 7 221 va(rs k)
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418 ANTHONY G. MUCCI

We then have
Vy(r) = Emin (Q(r, X,), vy(r + 1))

= -i_ ¥ min (Q(r, k), vy(r + 1)) .

Since vy(r) = inf,,, Eq(a(1)), we see that vy(r) < vy(r + 1) and v, = v,(1).
This recursive technique, called a “backwards recursion,” defines the optimal
stopping rule, 7., by the prescription that one stop with the observation X, = k
unless v, (r, k) < Q(r, k), i.e., unless it costs less to continue. It is easily
shown that
o(r, k) < Q(r, k + 1)
O+ 1,k) < O(r, k) .

We can therefore characterize our optimal stopping rule t,, (which is the col-

lection of pairs (r, k) such that Q(r, k) < vy(r + 1)) as a tuple (r, ry, - -+, ry)
wherer; < r, < ... < ryand where one stops with observation X, = k provided
r=r,
The procedure outlined above is a rewording of the procedures found in [4],
[2] and [6].
We now define
1
(1.3) f() = < 28 ()
1 . 1
o) = 5 zemin (0 0.1 (7))

We extend f), to all of [0, 1] by linear interpolation. Then f is a non-decreasing
continuous function on [0, 1] such that

fi () = min,., Eq(a(s)
with

o =10 = £ ()

For fixed N, the value v, is achieved for the stopping rule ¢, defined as the N-
tuple of fractions

IA

r, r r .
<—‘,i,~--,~;\"—,> with rn<r,... ry=N

N N
such that one stops on the observation X, = k if and only if r > r, where
r, is the minimal r satisfying Q(r, k) < fy(r + 1/N). In effect, f, carries all
the information necessary to determine v, and t,. We will call f,, the N-utility
of g. Suppose now that ¢ is bounded with g, = lim,_, g(k). Set R,(a) =
e 9(DG)a (1 — a)* for a € (0, 1]. Then we can translate directly from our
major results in [9] to obtain
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THEOREM 1.1. There exists a unique g on [0, 1] such that

@) ¢ = (1/a) X (9 — R)*; 9(1) = gany

(b) fy — g uniformly on [0, 1], kence v, — g(0),

(¢) r/N— a, where &, uniquely satisfies g(a,) = R,(a,) provided R, is strictly
decreasing.

The boundedness of g plays a major role in establishing these results. We are
concerned in the present paper with extending these results in the following way:

THEOREM 1.2. Let ge .57, q(k) 1 oo, q(k) < k* fixed A > 0. Then
(@) vyTv< oo,
(b) v = g(0) where g is the unique solution on [0, 1] of

1

Note that the differential equation in both theorems is the continuous analogue
of (1.3) rewritten as

() =5 (3) = 5 2 (5 () - ewi)

2. The functions g and R,. Let o7, consist of payoffs ¢ satisfying (1.2). In
particular,

Rya) = Zxq(OH(H)a*(l — a)* < oo for a€e(0,1].
We define

2.1) o =q) i 1<M,
= q(M) if I=M,
(2.2) Vyu = SUPigy Eqy(a(2)) .

We define fy ,,Qy (7, k), R, , in an analogous manner. Since g, is bounded,
we can define g, with g ,, = lim f, , uniformly on [0, 1] and we have g, as
the unique solution to

, 1
(2.3) Jon = « 2 Gon — Rew)™s Ion(1) = g, -

These are immediate consequences of Theorem 1.1. Let us note some properties
of the functions R,.

(@) R/ =k X% (q() — ¢ + DH()a" (1 — a)'~*
= l(“ (Rk —Rip1) .
(44
(b) R, is strictly decreasing on (0, 1].

(¢) R,y > R, on[0,1).
(d) Ry(0*) = oo.
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(e) Ry(1) = q(k); R/(1) = k(q(k) — g(k + 1)).

(f) lim, . Ry(a) = co, all a € (0, 1].

(g) R,y 1R, uniformly on (a, 1], each a > 0.

(h) R, is a polynomial, hence is either constant or is strictly decreasmg In
fact, R, , is constant only if for all / > k we have ¢(I) = g(m). Since g(l) 1 co,
we have

(1) For all k, there exists M, such that M > M, implies R, , is a strictly
decreasing polynomial, and R, , is a strictly increasing (in M) sequence of
polynomials.

All these properties follow easily from (a), which is a straightforward calcu-
lation. Property (g) follows from (h), (i), and Dini’s theorem:
The following lemma is crucial:

LeEmMMA 2.1.

Vy = Vpyyr -

ProofF. A proof can be found in [8], Remarks (2.3D) and (2.3E).
Let us note now that Theorem (1.1) implies lim,_,,, v, = ¢,,(0) = v,
Further

Von = Gun(0) = lim £y ,(0) < 1im £y 12(0) = Gr41)(0) = Vigrps, -
We use these inequalities in
ProposiTION 2.1. Let
v = lim 7T v, U =1im 1 v, .
Then v = 0.
Proor. From the lemma and the inequalities above, both v and ¥ are well
defined. Using the lemma and the fact that ¢ > ¢,, we have, for N > M, that

Vy = Uy = SUy=v.

Letting N -» co, we have v,, < v, so ¥ < v. On the other hand, v,, < v, ,
implies v, < vy, 30 v, < U, therefore v < 7. [J

REMARK 2.1.

(1) Our objective is to determine v = lim 7 v,. We see that v = lim ] v,
where v, = ¢.,(0). So our approach will be to investigate the functions g ,,
satisfying (2.3).

Since g, = lim f ,, £ lim f}; 4,1 = 41y, We can define
g =1m7gy,.
Clearly, v = lim 1 g,,(0).

(2) Property (i) above, in conjunction with Theorem (1.1) implies that for

given k and large enough M there exists a unique a,, , satisfying

Ry (@) = Jiar Qi) -

Our next theorem establishes the limiting behavior of the series {a, ,} and
relates the results to the optimal stopping problem:
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THEOREM 2.1.

(1) lim,_, ay,, = a, exists for all k. )
(2) If a;, > 0, then 0 < a; < a, < - -+ with a, = lim a, satisfying a, < 1.
(3) If a, > 0, then the sequence {a,} uniquely satisfies g(a,) = R(a,). Further

g < oo on [0, a,) and lim,_, g(a) = co.

(4) v < oo if and only if a; > 0, in which case g is the unique solution on {0, a.,)
for the differential equation:

10 =v (@)= 5 @) — R@)*

The proofs of all these statements can be found in [8].

3. A subclass of unbounded payoffs. Our objective in this section is to deter-
mine a subclass of unbounded payoffs ¢ for which a,, = 1, or equivalently, for
which g < oo on [0, 1).

Let ¢, be ¢ truncated at M, i.e., g,([) =q(M) for I= M. Fix 0< 4 =
2; £ -+« £ 4, = 1 and consider the stopping rule
Sy = (['le]’ [XzN]’ Tt [ZNN])
where
=1 for I=M.

This is the stopping rule which prescribes that one stops on observation X, =/
where [4,N] < r < [4,,,N] provided I < k. Since 4, = 1 for [ = M, one never
stops on the observation X, = [ for / > M unless r = N. Thus, we may as well
write S, in the abbreviated form:

SN = ([le]’ ] [XM—IN]’ N) .

For example, if N =10, M =3 and AN =35, ,N =8, ;N = 10, then our
stopping rule S = (5, 8, 10) prescribes that we let four observations pass, then
stop for 5 < r < 7 if X, = 1; otherwise we stop for 8 < r <9 if X, <2. If
neither situation arises, we stop on observation X,.

Set

3.1) Uy = Eqy(a(Sy)) -
We will obtain an explicit formula for lim,_,, v,.

REMARK 3.1. In the analysis up to and including Remark 3.3 we will be dealing
with ¢, for some unbounded q. We suppress the M for notational convenience.
Set

Pl = 1 )
Priv = P(X; > for [A4AN]=Zt<[4uN),
P =111 Prysy where kK > 1,

w, = LT S P(X, = 1, X, > k for [A,N]<s< 1) Q1)
k<M-—1.
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As usual, Qu(t, ) = E(q(a(1))| X, = [). Further, weset u, = N~' 3;¥ q(/). Then

Uy = 20 Pl -
Now
[2;41N]-1 l 21 l N
P = IL:25m 1 — ——> - as — 0.
t 1+1
Thus
. k-1 )
lim,_. p, = Ig:k_l !
Similar calculations, carried out in detail in [8], give us
1

; _ kg2
limy_o u, = 2,* §ie1

¢ Ry(2) d2 .

2k+1
This, together with (12.2) yields

PROPOSITION 3.1. Let q be an increasing payoff truncated at M. Let 0 < 2, =
23 - £ Ay = 1be fixed and set Sy = ([A,N], [A;N], - - -, [A4 N]). Then setting
Uy = Eq(a(Sy)), we have

— . _ 1
(3-2) Voo = limy_, Uy = DL 4) §her = 201 R(2) d4

2k+1

+ (II7 4) - 9(M) -

ProoF. Only the last term needs to be explained. Clearly, u,, = 1/N 37 q(0),
and since g(I) = g(M) for | = M, we have lim,_ u,, = q(M). []

REMARK 3.2. Recall that g, = lim f, , uniformly on [0, 1]. Thus

i : AN
Iun(A) = limy_ o fy w(4) = limy_ fy <[1ﬂ]\r]>

= limy_,, {infzvgtg[xlzv] Eq(a())}
é lil‘nN_,°° (D_N = 'D_(M) .

In order to call attention to the dependence of 7,, on 1, 1, etc., we will some-
times write ¥ ,,, = ¥ 4,(4,). We have

PROPOSITION 3.2. For any 2, > 0, g,,(4) < Uia(4)-

REMARK 3.3. A series of calculations (carried out in detail in [9]) using the
equality 1/2¥+* 3% R)(2) = 1/k — 1[1/2* 3%~ R,(2)]’, k = 2 leads directly to the
inequality

_ k2
(3.3) T = z A Ry
k

We can arrive at this inequality by a direct argument. Simply note that

k
limN—»oo pk = %ki!

k
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and that u, < Q,([4,N], k) - R,(4,). Now if, for R, we used ¢ instead of q,,
then we would strengthen inequality (3.3). Likewise if 1,, < 1. Thus, for any
sequence 0 > 2, < 2, < - -+ we have T,,(4) < X7 (TT¥ 4/A5)Ru(4).

THEOREM 3.1. Let qe .57,. Then for any sequence 0 < 2, < 4, < ... <1
we have

(3.4) g(h) < T (I1EA) - ( s

—"

Let us note again that as in Remark 3.3 this inequality can be achieved directly.
The possible advantage in our more detailed approach is that we arrive at an
explicit formula for ¥ ,,(4,) which may lead to a stronger inequality.

Our objective in the next section will be to isolate a class of payoffs, ¢, such
that for any 4, (0, 1), we will be able to determine 2,, 4, - - - etc., so that the
right-hand side in (3.4) is finite.

4. Payoffs that grow like polynomials. We will assume

gk + 1) 1
@.1) =1t <k>

This assumption merely asserts that ¢(K) grows at most like a fixed power of k.
We will now derive some properties for payoffs satisfying (4.1). Our intention
is to show that such payoffs lead to functions g which are finite on [0, 1), which
will surely be the case if the summation in Theorem (3.1) is finite.

Clearly there must exist M > 0 such that M is an integer, and g(k + 1)/g(k) <
1 4 2M/(k + 1). But then, a straightforward calculation yields g(/) < (I/k)*q(k)
for | = k.
Further: R,(2) < e*°A~*g(k). Let us restate this result as:

ProrosiTioN 4.1. If gq(k + 1)/q(k) < 1 4+ 2M]k, then R,(2) < €2~ q(k).
In particular, if q(k + 1)/p(k) = 1 4 O(1/k), then there exists a constant C and a
positive integer M such that Theorem 3.1 can be written:

(4.2) gy < & y= (Hl 4) (k)

_22M

for each fixed sequence 0 < 4, < .-+ < 2;, 1.

IA
IA

REMARK 4.1. We want to choose a sequence {1,} with fixed 2, such that
v (T1F A1)/ q(k) < oo. We require further that 2, < 1 for all N, hence, that
V=1 (A44/A) £ 1/2,, so that

P 1
~3 [ 1+1 S o
@ mr (%) = 4
Let us set
(4.4) Ay _ [q(l +m+ 1) <l +m+ 1>2]1N+m
A q(l + m) I +m
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with m as yet undetermined. Then

log TIY ( l:rl) = 57 log {‘I(lqzil—_r:;-) 1) (1 41_—,:’_:’_ 1)2}1,(”,,.)‘

L, gt 1) 1
TR log (14 L
= T log CHD o 2 TR og( +)
i i i
oo __1 = oo el el
< Dfn 0g<1+ 1 )+22m+l 1 log<1+ 1>
1
12
o 1 Lds
=2(M+1)ZMHF§2(M+1)SMF:

1
é 2M Z:+IF + 2 Z:+l
UM + 1)
S,

So TIY (A+a/A) < e+0/™. Thus, if m, is so large that m = m, = 2(M + 1)/m <
log 1/2,, we will have condition (4.3) satisfied. For any such m, we have

T4 g(m + 1) (m + 1y 1
BE T gm k) (m o+ R A

Thus
Hl (k) < (m + 1)’q(m + 1) 1 .
" m( + ky?
But then
o Hl q(k) < (m + 1) q(m + 1) Zm+1 1
sm+wwwn,
- m A
Hence
" (m4 g(m 1) _
(4.5) g(z)g% - <

THeOREM 4.1. Let q(k + 1)/q(k) = 1 4+ O(1/k). Then g < oo on [0, 1),
hence a, = 1.

5. A recursive technique for determining v. Let g ¢ %, Define

5.1) ) = R _ Zﬁ%ﬂ—w

Gy(a) = Hy(e) + ; (Ry(a) — Ry(a))
where s(k) = >3% q(l).
Since we have assumed that R,(a) has radius of convergence 1 around the point

1, and since s(k)/k < q(k), H, and G, are well defined. Let us further define
1
(3-2) Hy(a) = o 217 (R, — R)

1
Gila) = po 2 (Ryys — R)
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for k = 2. Clearly H, and G, are nonnegative for k = 2. Further since
H' = —H, and H/(1) = 1, we see that H, and G, are also nonnegative. Let us
list a number of properties of these functions. :

ProrosITION 5.1.

(a) Hy < Gy < Hy,, for N =z 2,

(b) H, <G,

(c) Hy and G are strictly decreasing for N > 1,

(d) Hy(0%) = Gy(0*) = 0 for N2 1,

() H = —(N — 1)H,, for N = 2,

(f) Gy < —(N— 1)H,,, for N =2,

(8) Hy(1) = (N — 1)g(N) — s(s — 1) for N 2 2,

(h) Gy(1) = (N — 1)g(N + 1) — s(N — 1) for N 2 2,
(i) H(1) =1, G1) = 4(2).

Proor. We will prove (d), the other parts being straightforward. Note that
(a) and (b) show that it suffices to prove H (0*) = H,(0") = oo in order to es-
tablish (d). Now

H@ z Tt gtk + ) = 0] (1 — ay
2 X lgtk + 1) — q(0))1 — a)*.
Letting « — 0F, we have, by monotone convergence: H,(0*) = lim | g(N) = oo.

REMARK 5.1. Let g < oo on [0,1). Then g uniquely satisfies g’ =
la 37 (9 — R,)™; 9(0) = v. Nowon [a,, a,,,) wehaveg' = 1/a 3¥ (g — R).
From this

IV 01 awe 1 (1 cunnV
(%) =~z T ko= = (Dt &)

provided M = 2.
Integrating between [a,, @),,), Wwe have

Ry(ays) — R(@u) _ capin (ﬂ_)' — 1 a1 (L M-1R )'
a%+1 OlMM N SaM a¥ M—1 o at Zl k(a)
1 1 _ 1 _
= M1 [aﬁﬂ 2T R(ays) — m h le(aM):| .
Equivalently:
(5.3) Hy(ay) = Gylay,,) .

This holds for M = 1 also. Now v = g(0) = g(a;) = Ry(a,), so v can be deter-
mined if the recursion (5.3), together with the condition «a, 1 1 leads to an
explicit determination of «,. Let us investigate a class of payoffs for which



426 ANTHONY G. MUCCI

the sequence {a,} can be determined. Set 8 > 1 and define

gs(k) = 1 if k=1
_BBAD, - (BEE=2) o psa
k — 1) =
Note
gok + 1) _ B—1_ !
G _1+T_1+0<7‘_>’
and
logq,s(k)=2f“log<1+ﬂ;,1>
i-1(B—1) 1
= 20
! 1_|_§__1
I
1
= —1 ’1‘_1—————-———_) H
AR FN (S

hence g,(k) 1 co. These observations establish that g € %, and g < oo on [0, 1),
consequently that a, — 1. It is a straightforward calculation to show: R,(a) =
af Rya) = g(k)a'? k 2 2. Alo Hy(a) = (8 — 1)p~(N — 1)g,(N)a—#-r-v
N=z22. Gy(a)= (8= )N = HINF)T(N + B)gs(N)a"*" (") N 2 2. Hya) =
(B=1)p"a? + 1/8; Gy(a) = (B — 1/B)a~? = 1/Bi.e., Gy(a) = (N + B)N"'Hy(a)

N = 2. Consequently
_ - (1 ﬁ —1/(B+1-1)
ay = JI%(1+ i

with

B—1(+1-1)
v = Rya,) = H;°<1 + 9) :

Note in particular that when 8 = 2, ¢,(k) = k, and we get

1(1+1)
(5:4) =T (1+ 27,

2 1(1+1)
v = IIfY (l, + T) .

Equations (5.4) were derived in [2] by a different method.
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