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CONTRIBUTIONS TO THE THEORY
OF DIRICHLET PROCESSES!

By RaMESH M. KorRwAR? AND MYLES HOLLANDER?
Florida State University

Consider a sample Xj, - -+, X, from a Dirichlet process P on an un-
countable standard Borel space (2%, %) where the parameter a of the
process isassumed to be non-atomicand s-additive. Let D(n) be the number
of distinct observations in the sample and denote these distinct observa-
tions by Y1, -+-, ¥Ypn). Our main results are (1) D(n)/logn —a.s. a(Z),
n— oo, and (2) given D(n), Y3, - -+, Yp(n) are independent and identically
distributed according to a(+)/a(2°). Result (1) shows that a(:2") can be
consistently estimated from the sample, and result (2) leads to a strong law
for 22 Yi/D(n).

0. Summary. Ferguson (1973) has introduced the Dirichlet process (Definition
1.2) for generating random distribution functions. He uses the process as a prior
on a set of probability measures in order to consider certain nonparametric
problems from a Bayesian approach. Here we show that when the parameter
a of the Dirichlet process is nonatormic and g-additive, a(22”) can be estimated
from a sample from the process. Specifically, D(n)/logn —, , a(Z"), n — oo,
where D(n) is the number of distinct observations in the sample X, ..., X,.
Furthermore, we show that in the nonatomic and os-additive case, given D(n),
the D(n) distinct sample values are independent and identically distributed (i.i.d.)
with distribution a(.)/a(Z2”). This yields a strong law of large numbers for
samples from a Dirichlet process.

1. Preliminaries. In this section we list some basic definitions and results that
will be used in the sequel.

DEFINITION 1.1 (Ferguson). Let Z,, ..., Z, be independent random variables

with Z; having a gamma distribution with shape parameter a; > 0 and scale
parameter 1,j =1, ..., k. Let @; > 0 for some j. The Dirichlet distribution
with parameter (a,, - - -, a,), denoted by H(a,, - - -, a,), is defined as the distri-
bution of (Y, -+, Y}), where Y, = Z,/3 % Z,j=1, ... k.

J
DErINITION 1.2 (Ferguson). Let (&7, ") be a measurable space. Let a be a
non-null finite measure (nonnegative and finitely additive) on (2", 7). We say
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P is a Dirichlet process on (:Z°, ) with parameter « if for every k = 1,2, .- -,
and measurable partition (B,, - - -, B,) of 227, the distribution of (P(B,), - - -, P(B,))
is Dirichlet with parameter (a(B,), - - -, a(B,)).

DErINITION 1.3 (Ferguson). The Z%Zvalued random variablés X, .-, X,
constitute a sample of size n from a Dirichlet process P on (7, ) with para-
meter «a if for any m = 1, 2, - .. and measurable sets 4, - -+, 4,, C,---,C,,
QX,eCpy -+, X, € C,| P(A), -+, P(A,), P(C)), - -+, P(C)} = T3 P(C) 25,
where Q denotes probability.

THEOREM 1.1 (Ferguson). Let P be a Dirichlet process on (27, ) with para-
meter a, and let X be a sample of size 1 from P. Then for Ac 7, Q{X € A} =
a(A)|a(Z).

TueorREM 1.2 (Ferguson). Let P be a Dirichlet process on (27, %) with para-
meter «, and let X,, ---, X, be a sample of size n from P. Then the conditional
distribution of P given X, - - -, X, is a Dirichlet process on (27, ') with parameter
B=a+ 2%, 6Xi, where, for xe 25, Ae 7, 0,(A) = 1 if x € A, O otherwise.

The following representation (Theorem 1.3) of the Dirichlet process, also due
to Ferguson, will be used in the proof of Theorem 2.6. Let (27, %) be a
measurable space and a(-) a finite, non-null measure on (27, %). Denote
a(Z°)by B. Let N(x) = —B {2 e ¥y'dy,0 < x < oo, and letJ,, J,, - - -, be a se-
quence of random variables with distributions given by P{J; < x;} = exp(N(xy)),
x; >0, and P{J; < x;|J;_, = x;_p, -+, Jy = x;} = exp {N(x;) — N(x;_y)}, 0 <
x; < x;_,. Set Z, = Y., J;. Ferguson shows that Z, converges with probability
one and that the distribution of Z, is the gamma distribution with characteristic
function ¢(f) = (1 — in™¢. Let P, =J;/Z, j=1,2,.... Then P; =0 and
Ye,P; =1w.p.1. NowletV,, V,, - .. beasequence of i.i.d. variables taking
values in 2, independent of the sequence J,, J,, - -- each with distribution
a(+)|a(Z).

THEOREM 1.3 (Ferguson). The random measure P on (27, &), given by, for
Ae S, P(A) = X7, P;6, (A), is a Dirichlet process with parameter a.

In the sequel we find it necessary to restrict various spaces to be standard
Borel spaces so that certain conditional distributions exist.

2. A consistent estimator of a(-Z2”) and a strong law for the sample mean of the
distinct observations. Let X, - - ., X, be a sample of size n from a Dirichlet pro-
cess on an uncountable standard Borel space [cf. Parthasarathy (1967) page 133
for the definition of a standard Borel space] (27, %) with parameter «. Through-
out this section we assume « is g-additive and nonatomic. We can view the obser-
vations X, - - -, X, as being obtained sequentially as follows: Let X, be a sample
of size 1 from P; having obtained X, let X, be a sample of size 1 from the con-
ditional distribution of P (see Theorem 1.2) given X;; and so on until X;, - - -, X,

n

are obtained. Set D, = 1and fori =2, ...,n, set D, = 0 if X; = X, for some
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j=1,..-,i—1 and 1 otherwise, and let D(n) = >?_, D,. LetY,, --.,Y,,,
denote the distinct observations among X, ---, X,. (Since the distribution

n

chosen by a Dirichlet process is discrete with probability one (cf. Ferguson

(1973), Blackwell (1973)), the sample values need not be distinct.) Lemma 2.1

is basic to our development.

LemmA 2.1. Q{D; = 1} = a(Z)[{a(Z") + i — 1},i=1, -+, n, and the D;’s
are independent.

Proor. We have

Q{Di: 1|Xj:xj,j= 1, N 1}
=0(X;eZL—{x, -, x, X, =x,,j=1, .-, i — 1}

(2.1) ={a(Z — {x;, - -+, x;,_1})

+ im0 = e @ 2) +i = 1) as,
= a(Z)fa(Z) + i — 1} a.s.

Here A — B denotes AB°, the second equality of (2.1) follows from Theorems 1.2

and 1.1, and the final equality uses the nonatomicity of «. Taking expectations

on both sides of (2.1) yields the desired expression for Q{D, = 1}. To show

D,, ..., D, are independent, it suffices to show that Q{D, = 1|D,,j=1, ...,

k—1}=Q{D, =1} as., for 1 < k £ n. Now

oD, =1|D;,j=1, .-,k —1}

(2.2) =EQD,=1|X;,j=1,k—1}|D;,j=1,---,k —1} as.
= Ea(Z)((Z) +k —1)|D;,j=1,...,k —1} aus.
=Q{D, =1} as.,

where the middle equality of (2.2) follows from (2.1). []

One consequence of Lemma 2.1 is that D(n) has a generalized binominal
distribution with parameters (1, p;, - - -, p,) where p, = a(2){a(Z) + i — 1},
i =1, ..., n The distribution of D(n) could be obtained from Proposition ¥
of Antoniak (1969). Antoniak obtains an expression for the probability that
simultaneously there are m, observations in the sample which repeat exactly i
times, i = 1, ..., n, and Q{D(n) = m} could then be obtained by summing this
expression over all m; subject to m = 7., m;,, 0 < m, < m. However, the fine
structure (and in particular, the independence) of the D,’s, as given in Lemma
2.1, is not available via Antoniak’s result. We use this structure repeatedly in
the sequel.

CoroLLARY 2.2. Q{D, =11i.0.} =1 and D(n) —,, +o0, n— .
ProofF. From Lemma 2.1 we have
(2.3) 20D, = 1} = a(F) Tin () + i — 1)
ga(%)zz‘ﬂ(k—l-i)“l-eoo, n— oo,

where k is the greatest integer in @(-2”). Since the events {D, = 1} are indepen-
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dent, from (2.3) and the Borel-Cantelli lemma we obtain Q{D, = 1 i.0.} = 1.
Since 7., Q{D; = 1} diverges to +oco we also have D(n) —, ; oo. []

Since Q{D, = 1i.0.} = 1, we are assured of an infinite number of distinct
observations. Theorem 2.3 shows how these observations can be used to obtain
a strongly consistent estimator of a(2).

THEOREM 2.3. D(n)flogn —, , a(Z), n — co.
To prove Theorem 2.3, we use the following lemma.

LemMA 2.4. (cf. Loéve (1963) page 238). If U,, U,, - - - are independent integra-
ble random variables, then Y, Var (U,)[b}? < oo where b, 1 co implies

(Sm - ESn)/bu a.s. O’
where S, = Y7, U,.
Proor oF THEOREM 2.3. By Lemmas 2.4 and 2.1, it is enough to show
(i) X1, Var (D,)/(logi)* is bounded, and
(ii) E(D(n)[log n) — a(Z").
Now, by Lemma 2.1,
(2.4) i Var (Dy)/(log i) = a(Z7) Xt (i — D[(a(2) + i — 1)logi]™
< a(Z) D[ — D)(log i)']™
<{(log 2)~* + X% [i(log iy']"}Ja(2")
and the term on right-hand side of (2.4) is bounded since )3, [i(logi)*]™* is
convergent. Again, by Lemma 2.1,
E(D(n)flog n) = (log n)'a(Z") Sy () + i — 1)
= (logn)™ + a(Z) + a,a(Z),
where a, =, (logn)™{[ X7, (a(Z") + i — 1)7'] — logn}. The proof will be
complete when we show a, — 0. Now, since
«(Z7) > 0,a, < (logm) ™[, (F — 1)7"] — log n} <5, ,
where s, =, (logn)~. {[Xi,i'] — logn}. Now s, — 0 since s,log n—7y,
Euler’s constant. Furthermore, a, = (log n)"Y{[ X7, (k + i)7'] — log n} =4.¢ ¢,»
where k is the greatest integer in @(22”). Rewriting c, as

¢, = (logn)™{[ X1 i7"] — log (n + k)}
— (log m)™ Xk, i~* + {log (n + k)flogn} — 1,
it is easily seen that ¢, — 0. ]

We note that Lemma 2.1 suggests a number of different estimators of a(2”).
For example, from Lemma 2.1 the likelihood of the D.’s is readily seen to be
L = I, p(1 — p,)~% with p; = () fa(Z) + i — 1},i =1, ..., n. Dif-
ferentiating log L with respect to a(-2”) and setting this derivative equal to zero
yields the estimator @(:2”) defined by the solution to the equation D(n) =
1 a(Z2){a(Z7) + i — 1}. Tables for this estimator can be found in Ewens

=1
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(1972); Ewens was led to the estimator via a sampling model arising in genetics.
Another possibility is (assume that n is even so that n = 2N, say) to randomly
divide the sample into N sets of pairs and let N, denote the number of pairs in
which the two observations are distinct. Since Q{D, = 1} = a(2)/{a(Z°) + 1},
we could estimate a(2”) by @(2”), the solution of the equation N;/N =
W(Z)W[e(Z) + 1).

A virtue of Theorem 2.3 is that it shows that a(-2”) can be estimated using a
finite sample from the Dirichlet process. This result is new. (Antoniak (1969)
showed that a(22”) could be estimated using (essentially) an infinite sample from
the process.) We have not compared the efficiency properties of various estima-
tors of a(Z”) but note that D(n)/logn and &(2”), for example, will have the
same asymptotic properties (though @(Z2”) may be preferred in small samples).

Theorem 2.5, which follows from Ferguson’s gamma process definition of the
Dirichlet process, leads to a strong law for samples from a Dirichlet process.

THEOREM 2.5. Given D(n), Y,, - -, Y, are i.i.d. with distribution a(+)/a(Z°).

ProoF. We will in fact prove a stronger result. Let D(k) = Y%, D,,
k=1,...,n. We will show that given D(k),k =1, ---,n, Y, ..., Y, are
i.i.d. with distribution a(.)/a(ZZ"). Let d(k),k =1, ..., n be a realization of
the D(k)’s. Since D, = D(k) — D(k — 1), these values of D(k) uniquely deter-
mine values for the D,’s. Let these latter values be D; = 1L,k=1,...,d(n),
and D; = O otherwise, where 1 =i < --. < iy, = n. Then from Theorem 1.3
we have for 4, ¢ &7, k =1, -- ., d(n),

O(X, €A, D, =1,D; =0,

(2.5) k=1,.--.,dn),j=2,---,i,—1,i,+1,-..,n}

=E an le e Pjnani](Al) e 5Vfid(m(Adm))

= ({1 a(A)/a(Z0)} Zin ) E(Pyy - -+ Py)
where in the summation 3. =~ we allow positive integer values for j, - -, j,
such that (i) the j; ’s are distinct and (ii) for ¢ other than i, - - -, i, j, is equal
to one of the j; ’s for which i, < r. The interchange of }] and E is justified by
the monotone convergence theorem and the final equality of (2.5) uses the mutual

independence of the V,’s and the fact that the V/,’s are independent of the P;’s.
Setting 4, = 25k =1, -- -, d(n), in (2.5) yields

(2.6) Q{DikZI,Dj:(),k:1,'--,d(n),j:Z,...,i2_],i2+1,...,n}

= Q{D(k) = d(k),k =1, ---,n} = 5., E(P; -+ P; ).
From (2.5) and (2.6) we obtain
(2.7) o{Y,ed, -, Y, €Ap,, | DKk) =dk), k=1, -..,n}

= LS {a(4)/a(Z)} as.
The theorem follows by noting that Q{Y, e 4, - - -, Y, € A, | D(n) = d(n)} =
E{Q{Yie 4y, -+, Yo € Ap | D(k) = d(k), k = 1, - - -, n}| D(n) = d(m)] a.s. []
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Note also that (2.7) yields the following result. Let m < n, then given
D) =dk),k=1,---,n, Y, --., Y, arei.i.d. with distribution a(.)/a(Z).
This result is obtained by setting 4, = 2° for ke {1, - - -, d(n)} — {1, - - -, d(m)}.

COROLLARY 2.6. Let (7, ') = (&, &), where 2 is the real line and B
is the o-field of Borel sets, and assume that p =, \ xda(x)|a(ZZ) exists. Then
Z?;;” Yz/D(n) a5 M5 B —> OO,

Proor. We can, without loss of generality, take 4 = 0. Letm < M < N be
arbitrary positive integers and let S, = 212» Y,. Then, if ¢ > 0,

Ofmax, c,cy Sy /D(n)| = €}
= Ofmax, oy [Spim/D(n)| Z &, D(M) = m} + Q{D(M) < m}
(2.8) = Soanzm QiMaxy <,y 1S, /D(n)|
= ¢|D(k), k = 1, ---, N}dQ + Q[D(M) < m})
= Sianzm QAMaXy,cuoy [Sh/D(n)| Z €}dQ + Q{D(M) < m}
< Qfmax, ...y |S,'/n| = ¢} + Q{D(M) < m}.
In (2.8), S, = X%, Z, where Z,, Z,, ... is a sequence of i.i.d. random vari-
ables, with distribution a(+)/a(Z7), that are defined on (2=, ££~). The second

equality of (2.8) follows from Theorem 2.5 (see the comment following the
proof of Theorem 2.5). Letting N — oo in (2.8), we obtain

(2.9)  OfSUPazu [Sp/D(M)] Z €} < QSUP,zm IS:/0] = €} + Q{D(M) < m} .
Now let 6 > 0 be given. Choose m sufficiently large so that the first term on
the right of (2.9) is less than /2; this is possible by Kolmogorov’s strong law.
Then for this value of m, choose M sufficiently large so that the second term on
the right of (2.9) is less than 4/2; this can be done since D(n) —, , + oo. Thus,
for large M, Q{sup,sx |Spm)/P(n)| = ¢} < 0. [

A stronger result than Theorem 2.5 is true. Define the sequence Y,, Y,, - - -
of random variables as follows: Y, = X, and for j = 2, 3, ..., Y, = X,, where
k is the smallest positive integer for which D(k) =j. Note that Y, ..., Y,
are none other than the D(n) distinct observations in a sample of size n. Then
we have

THEOREM 2.7. Y,,Y,, -.. are independently and identically distributed with
common distribution a(s)}a(Z°).

Proor. Let ¢ be a fixed positive 'integer. Then, for n > ¢, and A4;e¢ %,
i=1,...,1,

Q{YleAla ) YteAt} == Z?:t Q{YleAh M) YteAu D(H) =]}
(2.10) + O{Yie 4, -+, Y, e 4, D(n) < 1}
= (Iiz a(4)[a(Z7)QAD(n) = 1}
+ QY e 4, ---, Y, €4, D(n) < 1},

the last equality following from Theorem 2.5. Let n — oo in (2.10) and note
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that the left-hand side of (2.10) does not depend on n. By (2.10) and Corollary
2.2, it follows that

Q{Yl € Al’ Tt Yt € At} = 5:1 [a(Ai)/a(%)] R D

Note that a different proof of Corollary 2.6 can be obtained by utilizing
Theorem 2.7 in conjunction with Kolmogorov’s strong law, the result
D(n) — + oo a.s., n — oo, and Theorem 1 of Richter (1965).
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