CONTRIBUTIONS TO THE THEORY OF DIRICHLET PROCESSES¹

By Ramesh M. Korwar² and Myles Hollander³

Florida State University

Consider a sample X_1, \dots, X_n from a Dirichlet process P on an uncountable standard Borel space $(\mathscr{X}, \mathscr{X})$ where the parameter α of the process is assumed to be non-atomic and σ -additive. Let D(n) be the number of distinct observations in the sample and denote these distinct observations by $Y_1, \dots, Y_{D(n)}$. Our main results are (1) $D(n)/\log n \to_{a.s.} \alpha(\mathscr{X})$, $n \to \infty$, and (2) given $D(n), Y_1, \dots, Y_{D(n)}$ are independent and identically distributed according to $\alpha(\bullet)/\alpha(\mathscr{X})$. Result (1) shows that $\alpha(\mathscr{X})$ can be consistently estimated from the sample, and result (2) leads to a strong law for $\sum_{i=1}^{D(n)} Y_i/D(n)$.

- **0.** Summary. Ferguson (1973) has introduced the Dirichlet process (Definition 1.2) for generating random distribution functions. He uses the process as a prior on a set of probability measures in order to consider certain nonparametric problems from a Bayesian approach. Here we show that when the parameter α of the Dirichlet process is nonatomic and σ -additive, $\alpha(\mathscr{X})$ can be estimated from a sample from the process. Specifically, $D(n)/\log n \to_{a.s.} \alpha(\mathscr{X})$, $n \to \infty$, where D(n) is the number of distinct observations in the sample X_1, \dots, X_n . Furthermore, we show that in the nonatomic and σ -additive case, given D(n), the D(n) distinct sample values are independent and identically distributed (i.i.d.) with distribution $\alpha(\cdot)/\alpha(\mathscr{X})$. This yields a strong law of large numbers for samples from a Dirichlet process.
- 1. Preliminaries. In this section we list some basic definitions and results that will be used in the sequel.

DEFINITION 1.1 (Ferguson). Let Z_1, \dots, Z_k be independent random variables with Z_j having a gamma distribution with shape parameter $\alpha_j \geq 0$ and scale parameter $1, j = 1, \dots, k$. Let $\alpha_j > 0$ for some j. The Dirichlet distribution with parameter $(\alpha_1, \dots, \alpha_k)$, denoted by $\mathcal{D}(\alpha_1, \dots, \alpha_k)$, is defined as the distribution of (Y_1, \dots, Y_k) , where $Y_j = Z_j / \sum_{i=1}^k Z_i, j = 1, \dots, k$.

Definition 1.2 (Ferguson). Let $(\mathcal{X}, \mathcal{A})$ be a measurable space. Let α be a non-null finite measure (nonnegative and finitely additive) on $(\mathcal{X}, \mathcal{A})$. We say

The Annals of Probability.

www.jstor.org

Received October 15, 1971; revised October 13, 1972.

¹ Research supported by the Office of Naval Research Contract No. NONR-988(08) Task Order NR 042-004 and by Air Force of Scientific Research Grant No. AFOSR-71-2058. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.

^{2,3} Visiting Stanford University, 1972-73 academic year.

AMS 1970 subject classifications. Primary 60K99; Secondary 62G05.

Key words and phrases. Dirichlet process, consistent estimation, strong law of large numbers, distribution theory.

P is a Dirichlet process on $(\mathcal{X}, \mathcal{A})$ with parameter α if for every $k = 1, 2, \dots$, and measurable partition (B_1, \dots, B_k) of \mathcal{X} , the distribution of $(P(B_1), \dots, P(B_k))$ is Dirichlet with parameter $(\alpha(B_1), \dots, \alpha(B_k))$.

DEFINITION 1.3 (Ferguson). The \mathscr{X} -valued random variables X_1, \dots, X_n constitute a sample of size n from a Dirichlet process P on $(\mathscr{X}, \mathscr{X})$ with parameter α if for any $m=1,2,\cdots$ and measurable sets $A_1, \dots, A_m, C_1, \dots, C_n, Q\{X_1 \in C_1, \dots, X_n \in C_n \mid P(A_1), \dots, P(A_m), P(C_1), \dots, P(C_n)\} = \prod_{i=1}^n P(C_i)$ a.s., where Q denotes probability.

THEOREM 1.1 (Ferguson). Let P be a Dirichlet process on $(\mathcal{X}, \mathcal{A})$ with parameter α , and let X be a sample of size 1 from P. Then for $A \in \mathcal{A}$, $Q\{X \in A\} = \alpha(A)/\alpha(\mathcal{X})$.

THEOREM 1.2 (Ferguson). Let P be a Dirichlet process on $(\mathcal{X}, \mathcal{A})$ with parameter α , and let X_1, \dots, X_n be a sample of size n from P. Then the conditional distribution of P given X_1, \dots, X_n is a Dirichlet process on $(\mathcal{X}, \mathcal{A})$ with parameter $\beta = \alpha + \sum_{i=1}^{n} \delta_{X_i}$, where, for $x \in \mathcal{X}$, $A \in \mathcal{A}$, $\delta_x(A) = 1$ if $x \in A$, 0 otherwise.

The following representation (Theorem 1.3) of the Dirichlet process, also due to Ferguson, will be used in the proof of Theorem 2.6. Let $(\mathscr{C},\mathscr{A})$ be a measurable space and $\alpha(\cdot)$ a finite, non-null measure on $(\mathscr{C},\mathscr{A})$. Denote $\alpha(\mathscr{C})$ by β . Let $N(x) = -\beta \int_x^\infty e^{-y}y^{-1}dy$, $0 < x < \infty$, and let J_1, J_2, \cdots , be a sequence of random variables with distributions given by $P\{J_1 \le x_1\} = \exp(N(x_1))$, $x_1 > 0$, and $P\{J_j \le x_j | J_{j-1} = x_{j-1}, \cdots, J_1 = x_1\} = \exp\{N(x_j) - N(x_{j-1})\}$, $0 < x_j < x_{j-1}$. Set $Z_1 = \sum_{j=1}^\infty J_j$. Ferguson shows that Z_1 converges with probability one and that the distribution of Z_1 is the gamma distribution with characteristic function $\varphi(t) = (1-it)^{-\beta}$. Let $P_j = J_j/Z_1$, $j = 1, 2, \cdots$. Then $P_j \ge 0$ and $\sum_{j=1}^\infty P_j = 1$ w.p. 1. Now let V_1, V_2, \cdots be a sequence of i.i.d. variables taking values in \mathscr{X} , independent of the sequence J_1, J_2, \cdots each with distribution $\alpha(\cdot)/\alpha(\mathscr{Z})$.

THEOREM 1.3 (Ferguson). The random measure P on $(\mathcal{X}, \mathcal{A})$, given by, for $A \in \mathcal{A}$, $P(A) = \sum_{j=1}^{\infty} P_j \delta_{V,j}(A)$, is a Dirichlet process with parameter α .

In the sequel we find it necessary to restrict various spaces to be standard Borel spaces so that certain conditional distributions exist.

2. A consistent estimator of $\alpha(\mathcal{X})$ and a strong law for the sample mean of the distinct observations. Let X_1, \dots, X_n be a sample of size n from a Dirichlet process on an uncountable standard Borel space [cf. Parthasarathy (1967) page 133 for the definition of a standard Borel space] (\mathcal{X} , \mathcal{X}) with parameter α . Throughout this section we assume α is σ -additive and nonatomic. We can view the observations X_1, \dots, X_n as being obtained sequentially as follows: Let X_1 be a sample of size 1 from P; having obtained X_1 , let X_2 be a sample of size 1 from the conditional distribution of P (see Theorem 1.2) given X_1 ; and so on until X_1, \dots, X_n are obtained. Set $D_1 = 1$ and for $i = 2, \dots, n$, set $D_i = 0$ if $X_i = X_j$ for some

 $j=1, \dots, i-1$ and 1 otherwise, and let $D(n)=\sum_{i=1}^n D_i$. Let $Y_1, \dots, Y_{D(n)}$ denote the distinct observations among X_1, \dots, X_n . (Since the distribution chosen by a Dirichlet process is discrete with probability one (cf. Ferguson (1973), Blackwell (1973)), the sample values need not be distinct.) Lemma 2.1 is basic to our development.

LEMMA 2.1. $Q\{D_i = 1\} = \alpha(\mathcal{X})/\{\alpha(\mathcal{X}) + i - 1\}, i = 1, \dots, n$, and the D_i 's are independent.

PROOF. We have

$$\begin{aligned} Q\{D_{i} = 1 \,|\, X_{j} = x_{j}, j = 1, \, \cdots, i - 1\} \\ &= Q\{X_{i} \in \mathscr{X} - \{x_{1}, \, \cdots, \, x_{i-1}\} \,|\, X_{j} = x_{j}, j = 1, \, \cdots, i - 1\} \\ &= \{\alpha(\mathscr{X} - \{x_{1}, \, \cdots, \, x_{i-1}\}) \\ &+ \sum_{j=1}^{i-1} \delta_{x_{j}} (\mathscr{X} - \{x_{1}, \, \cdots, \, x_{i-1}\})\} / \{\alpha(\mathscr{X}) + i - 1\} \quad \text{a.s.} \\ &= \alpha(\mathscr{X}) / \{\alpha(\mathscr{X}) + i - 1\} \quad \text{a.s.} \end{aligned}$$

Here A=B denotes AB^c , the second equality of (2.1) follows from Theorems 1.2 and 1.1, and the final equality uses the nonatomicity of α . Taking expectations on both sides of (2.1) yields the desired expression for $Q\{D_i=1\}$. To show D_1, \dots, D_n are independent, it suffices to show that $Q\{D_k=1 \mid D_j, j=1, \dots, k-1\} = Q\{D_k=1\}$ a.s., for $1 < k \le n$. Now

$$Q\{D_{k} = 1 \mid D_{j}, j = 1, \dots, k - 1\}$$

$$= E\{Q\{D_{k} = 1 \mid X_{j}, j = 1, k - 1\} \mid D_{j}, j = 1, \dots, k - 1\} \quad \text{a.s.}$$

$$= E\{\alpha(\mathcal{X})/(\alpha(\mathcal{X}) + k - 1) \mid D_{j}, j = 1, \dots, k - 1\} \quad \text{a.s.}$$

$$= Q\{D_{k} = 1\} \quad \text{a.s.},$$

where the middle equality of (2.2) follows from (2.1). \square

One consequence of Lemma 2.1 is that D(n) has a generalized binominal distribution with parameters (n, p_1, \dots, p_n) where $p_i = \alpha(\mathcal{X})/\{\alpha(\mathcal{X}) + i - 1\}$, $i = 1, \dots, n$. The distribution of D(n) could be obtained from Proposition V of Antoniak (1969). Antoniak obtains an expression for the probability that simultaneously there are m_i observations in the sample which repeat exactly i times, $i = 1, \dots, n$, and $Q\{D(n) = m\}$ could then be obtained by summing this expression over all m_i subject to $m = \sum_{i=1}^n m_i$, $0 \le m_i \le m$. However, the fine structure (and in particular, the independence) of the D_i 's, as given in Lemma 2.1, is not available via Antoniak's result. We use this structure repeatedly in the sequel.

Corollary 2.2.
$$Q\{D_n = 1 \text{ i.o.}\} = 1 \text{ and } D(n) \rightarrow_{a.s.} +\infty, n \rightarrow \infty.$$

Proof. From Lemma 2.1 we have

(2.3)
$$\sum_{i=1}^{n} Q\{D_i = 1\} = \alpha(\mathcal{X}) \sum_{i=1}^{n} (\alpha(\mathcal{X}) + i - 1)^{-1}$$

$$\geq \alpha(\mathcal{X}) \sum_{i=1}^{n} (k+i)^{-1} \to \infty, \qquad n \to \infty$$

where k is the greatest integer in $\alpha(\mathcal{X})$. Since the events $\{D_i = 1\}$ are indepen-

dent, from (2.3) and the Borel-Cantelli lemma we obtain $Q\{D_n = 1 \text{ i.o.}\} = 1$. Since $\sum_{i=1}^n Q\{D_i = 1\}$ diverges to $+\infty$ we also have $D(n) \to_{a.s.} \infty$. \square

Since $Q\{D_n = 1 \text{ i.o.}\} = 1$, we are assured of an infinite number of distinct observations. Theorem 2.3 shows how these observations can be used to obtain a strongly consistent estimator of $\alpha(\mathcal{X})$.

THEOREM 2.3. $D(n)/\log n \to_{a.s.} \alpha(\mathcal{X}), n \to \infty$.

To prove Theorem 2.3, we use the following lemma.

LEMMA 2.4. (cf. Loève (1963) page 238). If U_1, U_2, \cdots are independent integrable random variables, then $\sum \text{Var}(U_i)/b_i^2 < \infty$ where $b_i \uparrow \infty$ implies

$$(S_n - ES_n)/b_n \rightarrow_{a.s.} 0,$$

where $S_n = \sum_{i=1}^n U_i$.

PROOF OF THEOREM 2.3. By Lemmas 2.4 and 2.1, it is enough to show

- (i) $\sum_{i=2}^{n} \text{Var}(D_i)/(\log i)^2$ is bounded, and
- (ii) $E(D(n)/\log n) \to \alpha(\mathcal{X})$.

Now, by Lemma 2.1,

(2.4)
$$\sum_{i=2}^{n} \operatorname{Var}(D_{i}) / (\log i)^{2} = \alpha(\mathcal{X}) \sum_{i=2}^{n} (i-1) [(\alpha(\mathcal{X}) + i-1) \log i]^{-2}$$

$$< \alpha(\mathcal{X}) \sum_{i=2}^{n} [(i-1) (\log i)^{2}]^{-1}$$

$$< \{(\log 2)^{-2} + \sum_{i=2}^{n-1} [i(\log i)^{2}]^{-1} \} \alpha(\mathcal{X})$$

and the term on right-hand side of (2.4) is bounded since $\sum_{i=2}^{\infty} [i(\log i)^2]^{-1}$ is convergent. Again, by Lemma 2.1,

$$E(D(n)/\log n) = (\log n)^{-1}\alpha(\mathcal{X}) \sum_{i=1}^{n} (\alpha(\mathcal{X}) + i - 1)^{-1}$$

= $(\log n)^{-1} + \alpha(\mathcal{X}) + a_n \alpha(\mathcal{X}),$

where $a_n =_{\text{def}} (\log n)^{-1} \{ [\sum_{i=2}^n (\alpha(\mathcal{X}) + i - 1)^{-1}] - \log n \}$. The proof will be complete when we show $a_n \to 0$. Now, since

$$\alpha(\mathcal{X}) > 0, a_n < (\log n)^{-1} \{ [\sum_{i=2}^n (i-1)^{-1}] - \log n \} < s_n$$

where $s_n =_{\text{def}} (\log n)^{-1}$. $\{ [\sum_{i=1}^n i^{-1}] - \log n \}$. Now $s_n \to 0$ since $s_n \log n \to \gamma$, Euler's constant. Furthermore, $a_n \ge (\log n)^{-1} \{ [\sum_{i=2}^n (k+i)^{-1}] - \log n \} =_{\text{def}} c_n$, where k is the greatest integer in $\alpha(\mathscr{X})$. Rewriting c_n as

$$c_n = (\log n)^{-1} \{ [\sum_{i=1}^{n+k} i^{-1}] - \log (n+k) \}$$

$$- (\log n)^{-1} \sum_{i=1}^{k} i^{-1} + \{ \log (n+k) / \log n \} - 1 ,$$

it is easily seen that $c_n \to 0$. \square

We note that Lemma 2.1 suggests a number of different estimators of $\alpha(\mathscr{X})$. For example, from Lemma 2.1 the likelihood of the D_i 's is readily seen to be $L = \prod_{i=1}^n p_i^{D_i} (1-p_i)^{1-D_i}$ with $p_i = \alpha(\mathscr{X})/\{\alpha(\mathscr{X})+i-1\}$, $i=1,\dots,n$. Differentiating $\log L$ with respect to $\alpha(\mathscr{X})$ and setting this derivative equal to zero yields the estimator $\hat{\alpha}(\mathscr{X})$ defined by the solution to the equation $D(n) = \sum_{i=1}^n \alpha(\mathscr{X})/\{\alpha(\mathscr{X})+i-1\}$. Tables for this estimator can be found in Ewens

(1972); Ewens was led to the estimator via a sampling model arising in genetics. Another possibility is (assume that n is even so that n=2N, say) to randomly divide the sample into N sets of pairs and let N_d denote the number of pairs in which the two observations are distinct. Since $Q\{D_2=1\}=\alpha(\mathscr{L})/\{\alpha(\mathscr{X})+1\}$, we could estimate $\alpha(\mathscr{X})$ by $\tilde{\alpha}(\mathscr{X})$, the solution of the equation $N_d/N=\alpha(\mathscr{X})/\{\alpha(\mathscr{X})+1\}$.

A virtue of Theorem 2.3 is that it shows that $\alpha(\mathcal{X})$ can be estimated using a finite sample from the Dirichlet process. This result is new. (Antoniak (1969) showed that $\alpha(\mathcal{X})$ could be estimated using (essentially) an infinite sample from the process.) We have not compared the efficiency properties of various estimators of $\alpha(\mathcal{X})$ but note that $D(n)/\log n$ and $\hat{\alpha}(\mathcal{X})$, for example, will have the same asymptotic properties (though $\hat{\alpha}(\mathcal{X})$ may be preferred in small samples).

Theorem 2.5, which follows from Ferguson's gamma process definition of the Dirichlet process, leads to a strong law for samples from a Dirichlet process.

THEOREM 2.5. Given D(n), $Y_1, \dots, Y_{D(n)}$ are i.i.d. with distribution $\alpha(\cdot)/\alpha(\mathscr{X})$.

PROOF. We will in fact prove a stronger result. Let $D(k) = \sum_{i=1}^k D_i$, $k=1,\cdots,n$. We will show that given D(k), $k=1,\cdots,n$, $Y_1,\cdots,Y_{D(n)}$ are i.i.d. with distribution $\alpha(\cdot)/\alpha(\mathscr{E})$. Let d(k), $k=1,\cdots,n$ be a realization of the D(k)'s. Since $D_k = D(k) - D(k-1)$, these values of D(k) uniquely determine values for the D_k 's. Let these latter values be $D_{i_k} = 1$, $k=1,\cdots,d(n)$, and $D_j = 0$ otherwise, where $1 = i_1 < \cdots < i_{d(n)} \le n$. Then from Theorem 1.3 we have for $A_k \in \mathscr{A}$, $k=1,\cdots,d(n)$,

$$Q\{X_{i_k} \in A_k, D_{i_k} = 1, D_j = 0,$$

$$(2.5) \qquad k = 1, \dots, d(n), j = 2, \dots, i_2 - 1, i_2 + 1, \dots, n\}$$

$$= E \sum_{\pi(J)} P_{j_1} \dots P_{j_n} \delta_{V_{j_{i_1}}}(A_1) \dots \delta_{V_{j_{i_d(n)}}}(A_{d(n)})$$

$$= \{ \prod_{k=1}^{d(n)} \alpha(A_k) / \alpha(\mathcal{X}) \} \sum_{\pi(J)} E(P_{j_1} \dots P_{j_n}),$$

where in the summation $\sum_{\pi(J)}$ we allow positive integer values for j_1, \dots, j_n such that (i) the j_{i_k} 's are distinct and (ii) for t other than i_1, \dots, i_k, j_t is equal to one of the j_{i_k} 's for which $i_k < t$. The interchange of \sum and E is justified by the monotone convergence theorem and the final equality of (2.5) uses the mutual independence of the V_j 's and the fact that the V_j 's are independent of the P_j 's. Setting $A_k = \mathcal{X}, k = 1, \dots, d(n)$, in (2.5) yields

(2.6)
$$Q\{D_{i_k} = 1, D_j = 0, k = 1, \dots, d(n), j = 2, \dots, i_2 - 1, i_2 + 1, \dots, n\}$$
$$= Q\{D(k) = d(k), k = 1, \dots, n\} = \sum_{\pi(J)} E(P_{j_1} \dots P_{j_n}).$$

From (2.5) and (2.6) we obtain

(2.7)
$$Q\{Y_1 \in A_1, \dots, Y_{D(n)} \in A_{D(n)} \mid D(k) = d(k), k = 1, \dots, n\} = \prod_{k=1}^{d(n)} \{\alpha(A_k) \mid \alpha(\mathcal{X})\} \quad \text{a.s.}$$

The theorem follows by noting that $Q\{Y_1 \in A_1, \dots, Y_{D(n)} \in A_{D(n)} \mid D(n) = d(n)\} = E\{Q\{Y_1 \in A_1, \dots, Y_{D(n)} \in A_{D(n)} \mid D(k) = d(k), k = 1, \dots, n\} \mid D(n) = d(n)\}$ a.s. \Box

Note also that (2.7) yields the following result. Let $m \le n$, then given D(k) = d(k), $k = 1, \dots, n$, $Y_1, \dots, Y_{D(m)}$ are i.i.d. with distribution $\alpha(\cdot)/\alpha(\mathcal{X})$. This result is obtained by setting $A_k = \mathcal{X}$ for $k \in \{1, \dots, d(n)\} - \{1, \dots, d(m)\}$.

COROLLARY 2.6. Let $(\mathcal{X}, \mathcal{A}) = (\mathcal{R}, \mathcal{B})$, where \mathcal{R} is the real line and \mathcal{B} is the σ -field of Borel sets, and assume that $\mu = _{\text{def}} \int x d\alpha(x)/\alpha(\mathcal{R})$ exists. Then $\sum_{i=1}^{D(n)} Y_i/D(n) \to_{\text{a.s.}} \mu, n \to \infty$.

PROOF. We can, without loss of generality, take $\mu = 0$. Let $m \le M \le N$ be arbitrary positive integers and let $S_{D(n)} = \sum_{i=1}^{D(n)} Y_i$. Then, if $\varepsilon > 0$,

$$Q\{\max_{M \le n \le N} |S_{D(n)}/D(n)| \ge \varepsilon\}$$

$$\le Q\{\max_{M \le n \le N} |S_{D(n)}/D(n)| \ge \varepsilon, D(M) \ge m\} + Q\{D(M) < m\}$$

$$= \int_{\{D(M) \ge m\}} Q\{\max_{M \le n \le N} |S_{D(n)}/D(n)|$$

$$\ge \varepsilon |D(k), k = 1, \dots, N\} dQ + Q\{D(M) < m\}$$

$$= \int_{\{D(M) \ge m\}} Q\{\max_{M \le n \le N} |S'_{D(n)}/D(n)| \ge \varepsilon\} dQ + Q\{D(M) < m\}$$

$$\le Q\{\max_{m \le n \le N} |S'_{n}/n| \ge \varepsilon\} + Q\{D(M) < m\}.$$

In (2.8), $S_n' = \sum_{i=1}^n Z_i$ where Z_1, Z_2, \cdots is a sequence of i.i.d. random variables, with distribution $\alpha(\cdot)/\alpha(\mathcal{R})$, that are defined on $(\mathcal{R}^{\infty}, \mathcal{R}^{\infty})$. The second equality of (2.8) follows from Theorem 2.5 (see the comment following the proof of Theorem 2.5). Letting $N \to \infty$ in (2.8), we obtain

$$(2.9) Q\{\sup_{n\geq M}|S_{D(n)}/D(n)|\geq \varepsilon\}\leq Q\{\sup_{n\geq m}|S_n'/n|\geq \varepsilon\}+Q\{D(M)< m\}.$$

Now let $\delta > 0$ be given. Choose m sufficiently large so that the first term on the right of (2.9) is less than $\delta/2$; this is possible by Kolmogorov's strong law. Then for this value of m, choose M sufficiently large so that the second term on the right of (2.9) is less than $\delta/2$; this can be done since $D(n) \to_{a.s.} + \infty$. Thus, for large M, $Q\{\sup_{n\geq M} |S_{D(n)}/D(n)| \geq \varepsilon\} < \delta$. \square

A stronger result than Theorem 2.5 is true. Define the sequence Y_1, Y_2, \cdots of random variables as follows: $Y_1 = X_1$, and for $j = 2, 3, \cdots, Y_j = X_k$, where k is the smallest positive integer for which D(k) = j. Note that $Y_1, \cdots, Y_{D(n)}$ are none other than the D(n) distinct observations in a sample of size n. Then we have

Theorem 2.7. Y_1, Y_2, \cdots are independently and identically distributed with common distribution $\alpha(\cdot)/\alpha(\mathcal{X})$.

PROOF. Let t be a fixed positive integer. Then, for $n \ge t$, and $A_i \in \mathcal{A}$, $i = 1, \dots, t$,

$$Q\{Y_{1} \in A_{1}, \dots, Y_{t} \in A_{t}\} = \sum_{j=t}^{n} Q\{Y_{1} \in A_{1}, \dots, Y_{t} \in A_{t}, D(n) = j\}$$

$$+ Q\{Y_{1} \in A_{1}, \dots, Y_{t} \in A_{t}, D(n) < t\}$$

$$= (\prod_{i=1}^{t} \alpha(A_{i})/\alpha(\mathscr{X}))Q\{D(n) \ge t\}$$

$$+ Q\{Y_{1} \in A_{1}, \dots, Y_{t} \in A_{t}, D(n) < t\},$$

the last equality following from Theorem 2.5. Let $n \to \infty$ in (2.10) and note

that the left-hand side of (2.10) does not depend on n. By (2.10) and Corollary 2.2, it follows that

$$Q\{Y_1 \in A_1, \dots, Y_t \in A_t\} = \prod_{i=1}^t \left[\alpha(A_i)/\alpha(\mathscr{X})\right]. \quad \Box$$

Note that a different proof of Corollary 2.6 can be obtained by utilizing Theorem 2.7 in conjunction with Kolmogorov's strong law, the result $D(n) \to +\infty$ a.s., $n \to \infty$, and Theorem 1 of Richter (1965).

Acknowledgments. The authors are grateful to Professors T. S. Ferguson, F. Proschan, I. R. Savage, J. Sethuraman, and a referee for valuable comments. This paper is based on part of a dissertation written by R. M. Korwar, under the direction of M. Hollander, at The Florida State University.

REFERENCES

- [1] ANTONIAK, C. E. (1969). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ph. D. Dissertation. Univ. of California at Los Angeles.
- [2] BLACKWELL, D. (1973). Discreteness of Ferguson selections. Ann. Statist. 1 356-358.
- [3] EWENS, W. J. (1972). The sampling theory of selectively neutral alleles. *Theor. Pop. Biol.* 3 87-112.
- [4] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. *Ann. Statist*. 1 209-230.
- [5] LOEVE, M. (1963). Probability Theory, 3rd ed. Van Nostrand, Princeton.
- [6] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.
- [7] RICHTER, W. (1965). Limit theorems for sequences of random variables with sequences of random indices. *Theor. Probability Appl.* 10 73-84.

RAMESH M. KORWAR DEPARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305

MYLES HOLLANDER
DEPARTMENT OF COMMUNITY AND
PREVENTIVE MEDICINE
STANFORD UNIVERSITY
SCHOOL OF MEDICINE
STANFORD, CALIFORNIA 94305