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THE RATE OF CONVERGENCE OF A RANDOM WALK
TO BROWNIAN MOTION

By DaviD F. FRASER
Worcester Polytechnic Institute

This paper establishes a rate of convergence of a random walk to
Brownian motion which is nearly best possible. The Skorokhod represen-
tation is employed in the proof.

1. Introduction and summary. Let x; be a sequence of independent random
variables with mean O and variance 1. Let s5,(f) = X !*4 x;/n?, and w(¢) be the
standard Brownian motion.

THEOREM. Suppose E(exp |x,|°) < M < co. Then
(1.1) P(maxog,g, [s,(1) — w(0)] > a(log n)y’n~*) = O(n~?)
for all q, where a = a(c, q) and 8 = ¢ + 3.
Rosencrantz (1967) proves that
|F.(3) — F(D)| < Alog nyin-tw-vi+n

where F,(2) = P(max, ., | i, x;/n}| < 2), and F(2) = P(max,,, [w(t)] < 4),
if E(|x;") < 00,2 < p<4, and gets a Lévy rate-of-convergence theorem.
Heyde (1969) obtains a rate of convergence A(log n)*n=?/**+\ for p > 4, but his
estimates are not sufficient for (1.1). By Theorem 2 of Sawyer (1972),

P(ls,(1) — w(D)| < ¢jnt) = G(3),

it is clear that the rate O(n~*) cannot be improved, so a result like (1.1) is of
value, since often the variables with which one is involved satisfy the hypothesis.
From (1.1) one can draw the usual conclusions, namely

(i) If @(x) is any functional on C[O0, 1] such that P(®(w) < 2) has a bounded
density and |®(x) — @(y)| < Cl||x — y|| then

sup, [P(®(s,(1)) < 4) — P@(w(1)) < 2)| = O((log nyPn~+)

(ii) By Lemma 1.2 of Prokhorov (1956), if P, = P(s,(+) € A), L(P,, W) =
O((log n)’n-t), where L( , ) is the Prohorov metric.

2. Establishing the result. By means of the Skorokhod (1965) representation,
we can find independent random variables 7, such that w(} %, z;) and 3%, x;/n?

i=1""4
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have the same joint distribution. Then
P(max,g,<, |5.(f) — w(t)| > 2¢)
< P(max, g, [W(Xizi 7)) — w(l/n)] > €) )
+ P(maX,g, ., MaXog, gy (W) — w(lfn + 1) > ¢)

— A+ B.
Now
A < P(max,g,c, MAX, <5.1/m4az0 (WM + 5) — w(l[n)| > ¢)
+ P(max,g,q, |2t — Ifn] > 0)
=C+ D,
where

C < 4nP(supyg,<; W(s5) > ¢) < 4nexp (—¢*/20)
and by a submartingale inequality
D = P(max, g, | 2io (n7; — 1) > nd)
= (no)PE((Xia (nr: — 1)) forall p=1.

Let y, = nt, — 1. The y, are independent with mean 0.

2p)!
B(Z2000) = Dt oy P EOS 2 040).
1s Qge oo e ne

If any a; = 1, E(y*) = 0, and so
E((Z:;l yi)zp) = Z|a|=2p,noai=1 (?)E()’“) )
where
E(y®) = EOn® - - yu™)
< (i) - (EQp ).
Using the estimate of Sawyer (1967, (2.6)) we get
E(y) = 2771(2(2p)! E(x*) + 1)
< 2%((2p)! 4pMc=T(4p[c) + 1) .
Let P(j, k) be the number of ways of putting j envelopes into k slots such that

each slot gets at least two envelopes. From the trivial estimate P(2p, k) < k*»
we estimate

2 ia1=tp,moa;=1 () = prop*[p!
Using the above estimate, we obtain
D < D' = o7n""M(2p)**(4p/ce)*’ .
We now set D’ = Mn~? and solve for 4, with ¢ > 1.
0 = 4p*(4p/ce)*en—trair
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Then set C' = 4ne~**/*% = 4n'~7 and, with p = log n, solve for ¢
¢ = (290 log n)}
— 2igieri(4ceyon(log n) . ,

Term C dominates term B since § > 1/n. The proof of the result is now con-
cluded. (For an alternate approach to this see Dudley (1972).)
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