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The life distribution H(#) of a device subject to shocks governed by a
Poisson process is considered as a function of the probabilities P, of not
surviving the first k shocks. Various properties of the discrete failure distri-
bution Py are shown to be reflected in corresponding properties of the con-
tinuous life distribution H(¢). Asanexample, if P; has discrete increasing
hazard rate, then H(f) has continuous increasing hazard rate. Properties
of P, are obtained from various physically motivated models, including
that in which damage resulting from shocks accumulates until exceedance
of a threshold results in failure. We extend our results to continuous wear
processes. Applications of interest in renewal theory are obtained. Total
positivity theory is used in deriving many of the results.

1. Introduction. In this paper we study some models for the life distribution
of a device subjected to a sequence of shocks occurring randomly in time as events
in a Poisson process. If the device has a probability P, of surviving the first k
shocks, k = 0,1,2,...,then the probability H(r) that the device survives beyond
time ¢ can be represented in the form

(1.1) H(t) = Xz, Poe () /k! t=0,

for some 2 > 0. Shock models of this kind have been considered by a number
of authors, e.g., by Esary (1957), Epstein (1958) and by Gaver (1963).
Survival functions with the form of A have a number of pleasant properties
which are noted in Section 2 for later reference. In Section 3 we see how some
properties of the shock survival probabilities P, natural in reliability models are
reflected as properties of H. These results are useful in conjunction with the
results of Sections 4 and 6, where we obtain properties of the P, from physically
motivated models. Thus, our overall aim is to obtain properties of the survival
function of a device from models for the stochastic mechanism leading to failure.
The simplest model for the shock survival probabilities P, assumes that each
shock causes a random damage, that damages on successive shocks are independent
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and identically distributed, and that failure occurs when the accumulated dam-
age exceeds a specified threshold x. Thus, P, = F*(x) where F** is the kth
convolution of the distrbution F of damage sustained from any given shock.
References to several earlier treatments of this model are given in Section 4.
Our principal tool is the result that [F*(x)]/* is decreasing in k = 1,2, .- s0
long as F(z) = 0 for z < 0 (damages are never negative). From results in Sec-
tion 3, this yields the conclusion that A has an increasing hazard rate average,
a property of interest in the reliability context. (See Birnbaum, Esary, and
Marshall (1966).) The monotonicity of [F*(x)]'* also has some applications in
renewal theory. In addition to wear or damage that is accumulated in positive
increments at isolated time points, we consider some hypotheses for continuous
wear processes. The results there may be of some independent interest; we show
that a certain kind of Markov process has first passage time distributions with
increasing hazard rate averages.

There are several obvious directions for extending the models of this paper,
some of which have already received attention in the literature. Although we
have limited ourselves to the case that shocks are governed by a homogeneous
Poisson process, interesting new results can be obtained by dropping the con-
dition of homogeneity, or by replacing the Poisson process with some other
renewal process.

In what follows we use the term ‘“‘increasing” to mean ‘“‘non-decreasing” and
“decreasing” to mean ‘“‘non-increasing.”

2. Preliminary definitions and calculations. We collect here some basic facts
which are required in later sections. The reader may proceed to Section 3 and
refer to these results as needed.

Let us suppose that A is a survival function of the form

(2.1) H() = Y5, P e (Ar)t/k! t=>0,
=1, t<O0.

If P, is interpreted as the probability of “surviving k shocks,” then

(2.2) 1>P =P = -,

and the probability of “failure on the kth shock” is given by
Po = 1 - PO s
P =P, — P, k=1,2,....

Since A is a survival function, i.e., 1 — H = H is a distribution function, it
must be that P, — 0 as k — co. It may happen that (2.1) is a survival function
even though (2.2) is violated, but we assume that (2.2) holds.

Except for the nonnegative mass 1 — P, at the origin, we easily compute that
H has a density 4 given by

(2.3) h(t) = 2 T pee (a0 (k — DI, £>0.
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Moreover, the hazard rate r is given by

(2.4) r(1) = h(¢)/H(f)

= A1 — [0 P (A0 R Sio PuAOHK}, © 1> 0.
Notice from (2.4) that
2.5) r@f) £ 4, t>0.

Furthermore, r(f) = 2 for some ¢t > 0 if and only if P, = 0 for all kK > 0 and

then r(r) = 2 for all t > 0. (If P, =1, this means H is exponential.) Since

H(r) = H(0) exp{— {; r(x) dx}, it follows from (2.5) that

(2.6) H(t) = H(0)e* forall +=0.
When a survival function can be written in the form (2.1), the P, can be

calculated from successive derivatives of H evaluated at 0: Denoting the jth
derivative of H by H;, we have

2.7)  Po= i (OH0)/F  and  po= — T, (DH0)/47 .

A survival function which can be written in the form (2.1) can, for any v > 0,
also be written in the form

A(t) = X5 Gpe i)k 120,
where
(2.8) O, = vt 3k (H(v — )F-92P, .
Trivially, P, = 1 implies 0, = 1. Furthermore, if v > 1, then (2.2) implies that
0, is decreasing in k.
It is important to realize that any survival function A on [0, co) can be approxi-
mated by survival probabilities of the form (2.1) with 2 sufficiently large. If

Hy(t) = Zigeo H(k| e (A0) k!, tz0,
then
(2.9) lim,_,, H,(t) = H(?)
at continuity points of H. See (1.5) of Feller (1966) page 219.
The jth moment y; of the distribution given by (2.1) can be obtained as
(2.10) pi= 1 S (P j=1,2,..

Of course these moments are finite only if the relevant series converge.

ExaMPLE 2.1. A particularly interesting example of (2.1) occurs with P, =
0*. 1In this case H(f) = e~*1-%" is exponential. One special case is § = 0, i.e.,
P,=1, P, =0for k > 1. Itisnot difficult to see from (2.7) that H is exponential
only if P, = 6* for some 6 < 1.

EXAMPLE 2.2. An interesting extension of Example 2.1 is obtained if we begin
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with P, = 1,k =0,1, ..-,n, P, = 0, k > n. Then (2.3) becomes the density
of a gamma distribution of order n 4 1, i.e.,
(2.11) h(t) = A(At)y"e=*/n! .
Using (2.8), we see more generally that H given by (2.1) has a gamma density of
the form (2.11) if
5 k\ (1 — 6V
2= 035 (0) (F5) - ksn,
W (KN (1 — 8V
—en ()5

where § < 1.
The ideas behind (2.1)—a Poisson source of shocks and probabilities P, of

surviving k shocks—can be extended in the following way. Suppose that there
are in fact several independent Poisson sources of shocks, and shocks from vari-
ous sources may have different effects when combined in different ways. Thus,
the probabilities P, are replaced by probabilities P,.Piz,...,il of surviving i, shocks
of the first kind, i, shocks of the second kind, etc. Here, (2.1) is replaced by the
survival probability

7 oo oo oo —A; 2 7 t i

@12) ()= Do T+ Tiwo Mime st G028 0 120,
;!

Ifweletk =i, + - - + i, A= 2402, q; =44 j=1,2,.--,1,(2.12) can
be written as (2.1) where
(2.13) P, = Diij20, 5j=k Gy 5) 5= q;'ijpil,.--,i, .
Thus, the simple model first introduced does in fact include the apparently more
general one.

We make constant use of the methods of total positivivity in studying distribu-
tions of the form (2.1). Consequently, we record here some relevant definitions.

DEFINITION 2.3. Let 4 and B be subsets of the real line. A function K on
A x B is said to be sign consistent of order n (SC,) with sign ¢ = +1 if
e det |[K(x;, y;)|i jer2....n = O whenever each x;e 4, y; € B, and x; < x, < -+ <
Xpy V1 < Yo < o+ - <y, K is said to be totally positive of order n (TP,) if it is
SC, form =1,2, -..,nwithe = 1. A function ¢ defined on the real line (the
integers) is said to be a Pélya frequency function (sequence) of order n (PF,) if
#(x — y) is TP, in real (integer) x and y.

The function K,(x,y) = e is totally positive of all finite orders (7P.) in
x, y € (— oo, co) (Karlin (1968) page 15), so that Ky(r, t) = ¢"is TP, in t € (0, o)
and r € (— o0, o).

3. Properties of A from properties of the P,. Certain kinds of properties, when
imposed on the P, in (2.1), are reflected as analogous properties of H. For exam-
ple, we have already seen that if P, is decreasing in k, then H(r) is decreasing in
t. Below, various other properties of the P, of interest in reliability are shown to
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carry over to H; some definitions are convenient for stating these results. In these
definitions, we assume that the distribution F satisfies F(z) = 0 for z < 0 because
we are concerned in this paper with life distributions. It is also tacitly assumed
in these definitions that variables are restricted to avoid zero denominators.

A distribution F or survival function F is said to be or to have: °

(i) a PF, density if F has a density f such that f(x + ¢)/f(¢) is decreasing in ¢
whenever x > 0.
One can easily check that this definition is equivalent to the one
given in Definition 2.3. The conditions that log f'is concave and that
f is strongly unimodal are also equivalent.
(ii) increasing hazard rate (IHR) if F(x + r)/F(¢) is decreasing in ¢ whenever
x> 0.
When F has a density, this is equivalent to the condition that for
some version f of the density, the hazard rate r(r) = f(r)/F(¢) is in-
creasing in ¢. Also, F is IHR if and only if log F is concave, and F
isIHR if and only if F is PF,. To say that the life distribution F of
an item is IHR is to say that the residual life length of an unfailed
item of age ¢ is stochastically decreasing in ¢.
(iii) decreasing mean residual life (DMRL) if ¢ F(x + t) dx/F(z) is decreasing
in 1.
To say that the life distribution F of an item is DMRL is equiva-
lent to saying that the residual life of an unfailed item of age ¢ has a
mean that is decreasing in ¢.
(iv) increasing hazard rate average (IHRA) if [F(r)]* is decreasing in ¢ > 0.
When a hazard rate r exists, this is equivalent to the condition that
the hazard rate average (1/¢) {} r(u) du is increaing in ¢. In another
formulation, this condition says that (1/f)[ —log F(r)] is increasing in
t > 0 (—log F(r) is a starshaped function).
(v) new better than used (NBU) if F(x) > F(t + x)/F(¢) for all x, t > 0.
To say that the life distribution F of an item is NBU is equivalent
to saying that the life length of a new item is stochastically greater
than the residual life length of an unfailed item of age ¢, r > 0.
(vi) new better than wused in expectation (NBUE) if (¢ F(x)dx =
o F(t + x)dx/F(¢) for all t > 0.
To say that the life distribution F of an item is NBUE is equiva-
lent to saying that the expected life length of a new item is greater
than the expected residual life length of an unfailed item of age 7 > 0.

The strongest of these properties, that f is PF,, is possessed by many of the
commonly encountered densities, such as uniform densities and gamma densities
of order @ = 1. Such densities have found diverse applications in reliability
theory, inventory theory, statistical decision theory, etc., and have been dis-
cussed extensively by Karlin (1968).
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The THR property is basic to a considerable amount of reliability theory, and
is discussed by Barlow and Proschan (1965). Statistical procedures based on a
generalization of this property have been developed by Barlow (1968) and by
Barlow and van Zwet (1970), who cite a series of earlier papers on the subject.

The class of IHRA distributions was characterized by Birnbaunll, Esary and
Marshall (1966) as the smallest class of distributions containing the exponential
distributions which is closed under both formation of coherent systems and
limits in distribution. These distributions have been subsequently studied, e.g.,
by Barlow and Marshall (1967), Barlow (1968), and Doksum (1969a, b).

The NBU and NBUE distributions have recently been encountered by Marshall
and Proschan (1970) in conjection with studies of replacement policies. They
show that the NBU property must be present if replacement policies are to be
beneficial in a certain sense.

There is a corresponding set of analogous properties, obtained by reversing
the direction of monotonicity or the direction of the inequality in these defini-
tions. These properties are (i’) logarithmically convex density, (ii’) decreasing
hazard rate (DHR), (iii’) increasing mean residual life (IMRL), (iv’) decreasing
hazard rate average (DHRA), (v') new worse than used (NWU), and (vi’) new
worse than used in expectation (NWUE).

Among these properties, only the first two have received much attention.
Densities which are logarithmically convex arise in consideration of passage
times in birth-death processes (see Keilson (1971) who also cites earlier refer-
ences). The DHR distributions are discussed in reliability contexts by Barlow
and Proschan (1965).

With the above definitions, we are in a position to state the main result of
this section.

THEOREM 3.1. Suppose that
H(t) = Y, Pe (At k!, t=0
where | = P> P, > .... Then

(3.1) H has a PF, density if p,.,|p, is decreasing in k = 1,2, ..., i.e., if
{pe» k = 1} is a PF, sequence;

(3.2) HisTHR if 0, = P,|P,_, isdecreasingink = 1,2, - .., i.e., if {P,, k = 0}
is a PF, sequence;

(3.3) H is DMRL if >, P;/P, is decreasing ink = 0, 1, - . .;
(3.4) H is THRA if PV* is decreasing ink = 1,2, - - -;

(3.5) HisNBUif P,P, > P, ,,j,k=0,1,...;

(3.6) HisNBUEif P, 5, P, = Y7, P,,k=0,1, ...

Observe that the conditions of (3.1)—(3.6) on the P, are in every case discrete
analogues of the conditions concluded to hold for A.
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To prove (3.1)—(3.4), we use the variation diminishing property of the totally
positive kernel K(k, t) = e~*(At)¥/k!. See Karlin (1968) for a discussion of this

property.

Proor oF (3.1). Since p,,,/p, is decreasing in k =1,2, ..., the sequence
{log p,, k = 1,2, ...}isconcave. Thus, foranya > 0,{ > 0, p, — a(* changes
sign at most twice, in the order —, +, — if two sign changes occur. Because

h(t) — adle=1=93 = 2 D1 (pusy — alH e (A0 k!

we conclude from the variation diminishing property that for any ¢ > 0 and
any 6 < 4, h(t) — ce~’* has at most two sign changes, in the order —, +, — if
two sign changes occur.

Next, consider the case that § > 4; we shall show that here, A(f) — ce=?* has
at most one sign change. To do this, differentiate A() in (2.3) to verify that

h(t) = —Ah(r).
Suppose that for some #,, k(t,) = ce~?. Then

h'(t) = —Ace %

>
d

> —ce Pt — “ce—etltzt ,
dt 0

i.e., ce~’ crosses h(t) only from above, so that there can be at most one sign
change.

Combining these results, we see that for all ¢, # > 0, h(f) — ce~’" has at most
two sign changes, in the order —, 4, — if two sign changes occur. This means
that log A(f) is concave in ¢, i.e., &k is PF,. []

ProOF OF (3.2). One can prove (3.2) in the same way as (3.1) is proved above
but with P, in place of p,. Here, (2.5) is used in place of A'(t) = —h(f). []

A result similar to (3.1) and (3.2) but more general in several respects has
been given by Karlin (1968) page 107.

Proor oF (3.3). Here, we have the hypothesis that forany ¢ > 0,27 2, P, —
cP, has at most one sign change, from + to — if one occurs. Hence

§p H(x)dx — cH(t) = X, (A7 T P — cPye*(An)¥/k!

has at most one sign change, from + to — if one occurs. This means that
{= H(x) dx/H(t) is decreasing in ¢, i.e., H is DMRL. []

ProoF of (3.4). If P,/ is decreasing in k, P, — {* (0 < { < 1) has at most
one sign change, from + to — if one occurs. This means that H(r) — e~ =94 =
Yoo (P, — C¥)e~*(Ar)*[k! has in ¢ the same sign change property. By (2.6) and
H(0) = 1, this means that for any 6 > 0, H(f) — e~? has at most one sign
change, from + to — if one occurs. Consequently [H(r)]¢ is decreasing in ¢,
i.e., His IHRA. []
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Proor of (3.5). Under the conditions of (3.5),

AXH(t) = By Dizo Py Pyee+0 <zkx'>k (zl?'

hod j P P — Az 'zx k Zt ik
= Lz L= PPy e w(_I%(J(' —) k)!

> z% et T (DX = A(x + 1)

Proor oF (3.6). From the hypothesis of (3.6) it follows that
T [Py D50 Py — T Pil(an k! = 0,
which can be rewritten as
DAY S DI-RY 02 B0 N3 [ DIEP ACHYL
It is not difficult to see that this is just the condition that H is NBUE. []

The following companion to Theorem 3.1 can be proved by modifying the
proof of Theorem 3.1 in obvious ways.

THEOREM 3.2. Suppose that H(t) = Y5, P e *(At)*/k!, where 1= P, >
P, > .... Then

3.7 H has a density logarithmically convex on (0, o) if p,,./p, is increasing in
k=1,2,...;

(3.8) H is DHR if P /P,_, is increasing ink = 1,2, .. .;
(3.9)  HisIMRLif 37, P,/P, is increasing ink = 0, 1, - . .;
(3.10)  His DHRA if PV* is increasingink = 1,2, .. -;
(3.11)  HisNWUifP,P, <P, j,k=0,1,...;

(3.12) HisNWUEfP, 57,P, < 55, P k=01, ...

The conditions of Theorem 3.1 are not necessary conditions. In this connec-
tion, (2.9) has an interesting consequence. If H has the form (2.1) and is, e.g.,
THR, then even though P, /P, is not decreasing in k, H can be approximated
by the survival functions H, which are THR and have the form (2.1) with
P,../P, = H((k 4+ 1)/2)/H(k/2) which is decreasing in k. Similar statements can
be made concerning the conditions of (3.1), (3.3), (3.4), (3.5) and (3.6).

Conditions weaker than those of (3.2) which also insure that A given by (1.1) is
IHR have been given by Murthy and Lientz (1968). Their results are contained
in the following theorem.

TueoreM 3.3. If Py =1 and
(3'13) Sk = Z?':O (I]")[Pj+lpk—j+l - Pij—j+2] Z 0 ’ k = 09 1, AR
then H, given by (1.1), is ITHR.
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Proor. By using (2.4) and differentiating 2 — r(7), it is easily seen that r(z) is
increasing in ¢ if and only if

(3.14) Do [ KN 2k NPy Prcjur — PPy 20, t=20,
from which the theorem is immediate. []

The condition of (3.2) that P,/P,_, is decreasing in k = 1, 2, - .. can be seen
to imply (3.13) if S, is written in the form

Slc = Pk+1P1 - POPk+2 + ngﬁ] [(];) - (j’il)][Pj+1Pk—j+l - Pij—j+Z] ?
and if (3.2) is used with the fact that (¥) — (,*,) =0, =1,2, ..., [k/2].

If P, = (* when k is even and P, = {*** when k isodd, 0 < { < 1, use (3.13)
and the fact that (1 — 1)* = 0 to check that S, =1 — (*> 0 and S, = O for
k > 0. Here, (3.13) is satisfied, but the condition of (3.2) is violated. Thus
(3.13) is strictly weaker than (3.2). If P, =1,P, = }, P, = P, = {,and P, = 0
for j > 3, then (3.13) is violated for k = 1 but (3.14) is satisfied so that H given
by (1.1) is IHR. Thus (3.13), like (3.2), is not a necessary condition.

A condition similar to (3.13) can be given for F to be DMRL. In fact, H is
DMRL if and only if

A =L jr Axyax = 1 5, (S5, Pe- (k!
I Iz

is IHR, where 1 = { H(x) dx. Thus a sufficient condition for DMRL can be
obtained by replacing P, with Y%, P, in (3.13). It is easily verified that the
resulting condition is weaker than the more complicated condition obtained by
Murthy and Lientz (1968).

One can generalize (3.1), (3.2), (3.7) and (3.8) from PF, to PF, (see Definition
2.3). This is done in the following theorem, which is closely related to Lemma
2.3, page 109, of Karlin (1968). Karlin’s lemma has stronger hypotheses and
stronger conclusions. Our proof is more elementary.

THEOREM 3.4. Suppose that
H(t) = Yr, Pye () [k! , t=0
where | = P, > P, > .... Then
(3.15) h(s + 1) is SC, in s, t > O with sign e if p,,;is SC, in j, k = 1 with sign ¢;
(3.16) H(s + t)isSC,ins, t > O with sign e 1f17'1.+,c is SC,inj, k = 0 with sign ¢.
Proor. Since the proofs of (3.15) and ('3. 16) are essentially the same, we prove

only (3.16). We compute
H(s + 1) = e~ 36+0) J1e= PkM = e~A6+b Y= P, T, (As)7 (At)k-d

k! J (k=)
— p—A(s EJ o p (ls)j (Zt)k—j
— e (8+1) =0 Zk=]' Pk j! (k = ])!

e w () —w 5 (AD)
= et Y (;;) Yo Py (1!) .
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If P]. +1188C,inj, I = 0,1, ... with sign ¢, then by the basic composition formula
(Karlin, page 17) and the total positivity of #, Q(t, j) = 352, P,,,(A0)'/I! is SC,
in j=0,1,... and r > 0 with sign e. By a repetition of this argument,
H(s + 1) = e %0 3= Q(t, s)(As)7/j! is SC,, in s, t = 0 with sign ¢, []

4. Cumulative damage threshold models for the 2,. The model considered here
has been described in our context by Cox (1962) page 91, and it has been dis-
cussed, e.g., by Morey (1965) and by Murthy and Lientz (1968). Closely related
models involving compound Poisson processes have been considered by many
other authors; see, e.g., Feller (1966) page 179.

Suppose that the ith shock to an item causes a random damage X;. Damages
accumulate additively, and the kth shock is survived by the item if X, 4-- .. 4 X,
does not exceed the capacity or threshold x of the item.

The case that X, X,, - . . are independent with common distribution F is par-
ticularly simple and interesting. Here
(41) szF‘k’(x), k:O,l, sy,
where F® denotes the kth convolution of F, k = 1, 2, ..., and F® is degenerate
at 0.

Alternatively it may happen that successive shocks become increasingly effec-
tive in causing wear or damage, even though they are independent. This means
that F,(z), the distribution function of the ith damage, is decreasing in i = 1,
2, ... for each z. -Here

(4.2) Pozl and Pk:Fl*F2*~--*Fk(X), k=1,2,---,

where x denotes convolution.

Often, successive damages are neither independent nor identically distributed.
A primary reason for this is that an accumulation of damage may result in a
loss of resistance to further damage. In this case the magnitudes of successive
damages are dependent, so that (4.2) does not apply. Rather, it may be reason-
able to assume that

(4.3) P{X,<ulX, ---,X,,} dependson X, ...,X,, onlyvia
Z, =X+ -+ X,_,,
4.4) P{X, < u|Z,_, =1z} isdecreasingin z>=0,
4.5) PlX,su|Z,_, =2} = P{X,,, Su|Z, =z},
z=20,k=1,2,..., where Z,=0.

Condition (4.4) restates the assumption that an accumulation of damage lowers
resistance to further damage. Condition (4.5), says that for any given accumu-
lation of damage, later shocks are apt to be more severe. Probably the case of
equality in (4.5) is more important than inequality. With conditions (4.3), (4.4)
and (4.5),

(4.6) P,=1 and P, = F¥(x), k=1,2,--,
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where FI¥i(x) = P{X, + - + X, < x} = §¢ P{X, < x — 2| Z,_, = z} dFte-1)(z),
Of course, (4.1) and (4.2) are special cases.
For the case that P, is given by (4.1) we have the following lemma.
LemMA 4.1. If F is a distribution function satisfying F(z) = 0 forall z < 0, then
[F®(x)]"* is decreasingin k =1,2,....

PrROOF. F®(x) = {z F(x — z)dF(z) < i F(x)dF(z) = [F(x)]*, so that F(x) >
[F®(x)]}. Now suppose that [F*=D(x)[V* -V = [F®(x)]V*, i.e., F*(x) =
[F®(x)]*-2/ for all x. Then

[F(k)(x)]k+1 — F(k)(x)[s F(k—l)(x —_ Z) dF(z)]k
= FO@)[§ [F®(x — 2)[*=/* dF(2)]*
= {§ [FREPAF®(x — )]0 dF())
= {§ FO(x — 2) dF(2)}* = [FEP(x)]° 0

Next, suppose that P, is given by (4.2).

LeMMaA 4.1a. If F,; are distribution functions satisfying Fy(z) = 0 for z < 0,
i=1,2, ..., and if F,(z) is decreasing in i for all z, then

[Fo* Fyx - -« x F(x)]* is decreasingin k =1,2,....

Proor. The inductive proof of Lemma 4.1 applies here, with the added step

that
§Fox .- xF(x —2)dF(z2) Z \ F, % -+ x Fi(x — z)dF, (2) . U

A similar generalization of Lemma 4.1 holds for (4.6).

Lemma 4.1b. If X\, X,, - - - are nonnegative random variables with a joint distri-
bution which satisfies (4.3), (4.4), and (4.5), then
[P{X, + -« + X, < x}]/* isdecreasingin k =1,2,....
Proor. Using (4.4), then (4.5) with z = 0 and k = 1, we obtain
FU(x) = \i P{X, < x — z| X, = z} dFU)(z)
< e PX, < x — z| X, = 0} dF1(2)
< $e P{X, < x — z}dF™M(2) < [FM(x)].
To complete an induction, suppose that [Fl*)(z)]/* < [F¥-1)(z)]¥*-b. Then for
z £ x, F¥)(z) = [FU¥)(z)|VF[Ftk(z)] -1/ < [FU)(x)]VEF=1)(z).  Using this and
(4.4), and then using (4.5), we obtain
[FE))f = [ PXe = x — 2] Z, = 2} dFI(2) )
< [§; Py < x — 2] Z, = 2} dFU-1(2) FF0(x)
= [§ PXe = x — 2| 24y = 2} dFTTI(2) T (x)
— [F[k](x)]k+1 . D

CoROLLARY 4.2. If F is a distribution function such that F(z) = 0 forallz < 0,
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then the survival function

_ 2[ k
(4.7) A() = Sipe YV Foogy)
isITHRA. If Fi(z) = 0 for z < 0 and F(z) is decreasing ini = 1, 2, .., then
— k
(4.72) A0 = 3z, e-“(;;}f; s oo x Fy(x)

is IHRA. Still more generally, if X, X,, ---, are nonnegative random variables
satisfying (4.3), (4.4), and (4.5), then

(4.70) A() = Bree P+ 4 X2y

is THRA.

Proor. This is an immediate application of (3.4) of Theorem 3.1, and of
Lemmas 4.1, 4.1a and 4.1b. ]

We wish to emphasize that the IHRA property has been obtained in Corollary
4.2 as an implication of a natural physical model. The only hypothesis imposed
upon F is that it be the distribution of a nonnegative random variable.

We remark that the survival functions (4.7), (4.7a), and (4.7b) are, for fixed
t, distribution functions in the suppressed variable x. From this viewpoint, (4.7)
is a compound Poisson distribution. The stochastic process {Z(¢), t = 0} which
represents in our model the amount of damage accumulated by time ¢ is a com-
pound Poisson process, and for each ¢, (4.7) as a function of x is the distribution
function of Z(r).

The following corollary considers a special case of (2.11), where there are
several independent sources of shocks.

CoROLLARY 4.3. If F\, F,, - .., F, are distribution functions such that F (z) = 0
forallz <0,j=1,2,...,1, then the survival function
H@) = Foon e 3‘,’:0[ L_, et MJ F0 5 oo x Fylio(x)
i;!
is IHRA.

Proor. Since this is a special case of (2.12) we may rewrite H in the form of
(2.1) where ‘
P, = Diszo, pig=k Gy, i) Is= q; F 0 % - x FUY(x)
and ¢; = 2,/3]}_, ;. But then we see that P, = F*(x) where F(x) = 3}}_, ¢, F;(x),

so that the first part of Corollary 4.2 applies. []
Let us return briefly to Lemma 4.1, to identify those distribution functions F

for which [F®(x)]"* is constant in k.

THEOREM 4.4. Let F(z) = 0 for z < 0. Then [F*®(x)]"* is independent of k =
1,2, ..., if and only if F has no mass in the interval (0, x].
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Proor. First note that [F*(x)]V* is independent of k if and only if F*(x) =
[F(x)]*. If X,, X,, - - - are independent random variables with distribution func-
tion F, this can be equivalently written as

PIX, + -+ + X, < x} = [P{X, < x}]*
PN Ex XN Ex -, X, 2x), k=12 ....

Clearly this holds if P{0 < X; < x} = 0. On the other hand, this relation means
thatP{x/k<Xi§x}=0,k: 1,2, -... 0

COROLLARY 4.5. The survival function (4.7) is exponential if and only if F has
no mass in the interval (0, x].

Proor. This is immediate from Theorem 4.4 and Example 2.1. []

Having obtained the results of Lemma 4.1, it is natural to ask if one can reach
there the stronger conclusion that F¥(x)/F**~V(x) is decreasing in k = 1,2, - . -,
without strengthening the hypotheses. The following example shows that this is
not possible.

ExAMPLE 4.6. Suppose that F places mass p at 1 and mass 1 — p at 3. Take
x = 3.5. Then F(x) = 1, F®(x) = p, F®(x) = p*, and F(x) = 0, i = 4.

By comparing with k = 2 and k = 3, we see that F¥(x)/F*-V(x) is not decreas-
ing in k. Moreover, by comparing with k = 1 and k = 2 and taking p = %, we
see that 3 =, F9(x)/F%(x) is not decreasing in k. []

From Example 4.6, it follows that (3.2) cannot be used to show that H given
by (4.7) is IHR. Moreover, (3.2) connot be used to obtain the weaker conclu-
sion that H is DMRL. On the other hand with P, = F*(x) and F as in Example
4.6, the condition of Theorem 3.3 is satisfied, so that H is in this case IHR.
Thus, we must still consider the possibility that H given by (4.7) is IHR.

ExaMPLE 4.7. For j = 1,2, ..., suppose that F, places mass p at 1 and mass
1 — patj. Takex; =j+ }. Then Fy(x;) = 1, F,"(x;) = pifori = 2,3, .. 5 Js
and F;(x;) = 0fori > j+ 1. With F = F; and x = x; in (4.7), we obtain

— s t2P2 . t]p]
Hj(t)—e l:l+t+—5!—+ '+T.
The algebra involved in checking monotonicity of the hazard rate of H ; is cum-
bersome for large j. Consider therefore H* = lim; H;, which is given by
H*(t) = e7'[t — pt + e'].

It is easy to check that for sufficiently large 7, the hazard rate of H* is actually
decreasing. Because the class of THR distributions is closed under limits in dis-
tribution, this means that for sufficiently large j, H ; is not IHR. Moreover, H*
is not DMRL either, so that for sufficiently large j, H, is not DMRL. []

Example 4.7 show that although H given by (4.7) is THRA, it need not be
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IHR or even DMRL. But if we are willing to impose some hypotheses on the
distribution function F, stronger conclusions concerning H are obtainable.

TueoreM 4.8. If F is a distribution function such that F(z) = 0 for all z < 0,
and if F has a density f that is PF,, then [F*(x) — F*+(x)]/[F*(x) — F*(x)]
is decreasing ink = 1,2, ..., so that H given by (4.7) has a PF, density.

Proor. The monotonicity conclusion of this theorem is due to Karlin and
Proschan (1960). The remainder of the theorem is immediate from (3.1). []

This result is also true for convolutions of unlike F;, and similar results hold
for higher order total positivity.

Now, let us consider conditions on F in order that H be IHR. To apply (3.2),
we would like F*)(x)/F*~"(x) to be decreasing in k = 1,2, . ... That this need
not hold when F is IHR can be seen by taking F(r) = /2,0 < t < 1, F(r) = 1,
t =z 1 (an equal mixture of a uniform and a degenerate distribution), by taking
x = 1, and by comparing the ratios for k = 2 and k = 3. However, if we assume
that F is PF, rather than that F is PF, (F is IHR), we obtain the desired result.

THEOREM 4.9. If F(x) = 0 for x < 0, the following chain of implications holds:
F(x)is PF,in x = F*)(x) is TP, in k and x = F%(x) is PF, in k (for each x) — H
given by (4.7) is IHR.

PROOF. For x; < x,, let D(x,, x;) = F™(x)F™D(x,) — F™(x,)F"*(x,). If
x; < 0,then D =0. If x; = 0and n > 1, then D(x,, x,) = {5 [F™(x,)F™ (x, — 0) —
F™(x,)F™(x; — 0)] dF(0). Since the PF, property of F is preserved under con-
volutions (Barlow and Proschan (1965) Theorem 5.3, page 38), F™(x) is PF, in
x. Thus the integrand, and hence D(x,, x,), is nonnegative. This proves the
first implication. The second implication is similarly obtained because
§o D(x — 0, x) dF(0) = 0. The third implication follows from (3.2). []

The first implication is true for convolutions of unlike F;; the second and third
implications similarly generalize if F,(z) is decreasing in i for all z.

Continuous wear: first passage times. Throughout this section, we have consid-
ered models for wear (damage) that accumulates in discrete amounts at isolated
points in time. Let us forgo the assumption of discreteness, and denote the wear
accumulated in the time interval [0, f] by Z(r), t = 0. The stochastic process
{Z(t), t =z 0} will in practice normally satisfy

(4.8) Z(0) = 0, and Z(t + A) — Z(r) = 0 for all 7, A = 0 with probability
one. This condition simply says that a device enters service (at time 0) with no
accumulated wear, and that wear is always nonnegative. A model of this kind has
been considered by Morey (1965) who additionally assumes that P{Z(t 4 A) >
x| Z(t) < x} is decreasing in x > 0 whenever ¢, A > 0. Rather than this, we
shall supplement condition (4.8) with

4.9) {Z(?), t = 0} is a Markov process, and
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(4.10) P{Z(t + D) — Z(t) < u| Z(r) = z} is decreasing in both z and ¢ in the
region 1 =0, z >0 and A > 0. Loosely speaking (4.9) says that given the
amount of wear accumulated by time ¢, details of earlier history are, not relevant
in predicting the amount of wear to be accumulated by some future time ¢ 4 A.
Condition (4.10) says that, for fixed time 7, an accumulation to wear can only
weaken a device and make it more prone to further wear. Also, (4.10) says
that given equal amounts of accumulated wear, an older device is more prone
to additional wear than a young one. Of course, these conditions are not
universally satisfied in practice, but they often can be verified from physical
considerations.

If a device has a known capacity for wear, it will fail when the accumulated
wear first exceeds this capacity, say x. Thus failure times are first passage times.

THEOREM 4.10. If the process {Z(t), t = O} satisfies (4.8), (4.9), and (4.10), then
the first passage time T, = inf {t: Z(f) > x} has an ITHRA distribution.

Proor. Let H, be the distribution of 7,, and let F, be the distribution of
Z(t), t 2 0. Choose A > 0 and consider the random variables X, = Z(id) —
Z((i—1)A), i=1,2,.... Then X,, X,, - - satisfy the conditions of Lemma
4.1b, so that

[Fra(x)]** is decreasing in k =1,2, ... .

This means that [F,(x)]* = [F,(x)]"* whenever s < ¢ and s/t is rational. In case
s < tbut s/t is not rational, the inequality still holds, as can be seen by approxi-
mating ¢ from below by rational multiples of 5. Since T, > ¢ if and only if
Z(t + ¢) < xfor some ¢ > 0, it follows that H,() = lim,_, F,, (x). Thusifs < ¢,

[A.()] — [H0] = lim_o {[F,, ()4 — [F ()P} = 0. [

There are a number of stochastic processes which satisfy the conditions (4.8),
(4.9), and (4.10) of Theorem 4.10. For example, processes satisfy the conditions
if sample functions start at the origin and the increments of the process are non-
negative, stationary, and independent. This, of course, includes the compound
Poisson processes, and the infinitesimal renewal processes.

Applications in renewal theory. The lemmas in the early part of this section have
immediate applications to renewal processes, and to certain Markov processes.
The most obvious of these amounts to little'more than a restatement of Lemma4.1.

CoROLLARY 4.11. Let N(x) be the number of renewals in [0, x] for an ordinary
renewal process (not automatically counting the origin as a renewal point). Then

(4.11) [P{N(x) = k}]V* is decreasingin k =1,2, ... .
Lemma 4.1b has a similar application.

COROLLARY 4.12. Let N(x) be the number of renewals in [0, x] for a stationary re-
newal process (not automatically counting the origin as a renewal point). If the under-
lying recurrence time distribution F is NBUE, then (4.11) holds with N in place of N.
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The condition that F is NBUE is just the condition that for the stationary
renewal process {X,, X,, X, ---}, the distribution F, of X, and the common
distribution F of X,, X, - - - satisfy Fi(x) = F(x) for all x. This condition was
encountered by Barlow and Proschan (1964) and by Marshall and Proschan
(1970) in a renewal theory context. They show that for an ordinary renewal
process with a recurrence distribution F that is NBUE with mean g,

M(t) = EN(t) < t/u forall t>0.

Discrete versions of the IHRA property, of which (4.11) is one, have appar-
ently received little attention. We mention one application to illustrate the
utility of (4.11).

Let P,,k =0,1,... bea decreasing sequence of nonnegative numbers such
that Py =1,letp, =P,_, — P,, k =1,2, ..., and let

B; = Yo Cpe = X (j+£_l)Pk .
If P,/* is decreasing in k = 1,2, - - - and P, < 1 for some k > 0, then B; < oo
for all j, and

(4.12) B is decreasingin j=1,2,....

This can be proved using the variation diminishing property of (#+;~*) which is
totally positive in k and j (Karlin (1968) page 137).

If P, = P{N(x) = k} (or P, = P{N(x) = k} and F is NBUE), then from Corol-
lary 4.11 (or Corollary 4.12) together with (4.12), it follows that B; < oo for
all j and B,/ is decreasing in j= 1,2, .... Using B’ > B,, it follows that
Var N(x) < [EN(x)]* + EN(x). This inequality, while rather crude for large x,
may be useful when x is small.

5. Random threshold for cumulative damage. Often one is interested in an item
for which there is a significant individual variation in ability to withstand shocks.
Moreover, there may be no practical way to inspect an individual item to deter-
mine its threshold x. In this case the threshold must be regarded as a random
variable.

Let us now turn our attention to the case that the threshold x is random with
distribution G such that G(0) = 0. We shall assume that the damages X, X,, - - -
from successive shocks are mutually independent with common distribution F,

and in addition we assume that X, X?’ ... are independent of the threshold.
Then the shock survival probabilities are given by

(5.1) P, = {7 F®(x) dG(x) , k=0,1,...,
and H is given by

(5:2) A() = Tioe W 55 P dog)

For technical reasons, it is convenient to assume in what follows that F* and
G have no common discontinuities. Then there is no problem in writing P, as

P,=EGX, + --- + X,).
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The conclusion of Corollary 4.2 that A given by (4.7) is IHRA is particularly
satisfying because the only condition required of F (that F(z) = 0 for z < 0) is
physically reasonable in terms of the model we have introduced. Similar
hypothesis-free results about (5.2) would be even more useful. The results that
we obtain below again do not depend on F, but we cannot expect them at the
same time to be free of hypotheses on G. For if we allow F to be degenerate,
say at a, then P, given by (5.1) takes the form P, = G(ka). Thus any conditions
obtained on the P, are reflected as conditions on G.

THEOREM 5.1. The survival function (5.2) is exponential for all F such that
F(z) = 0 for z < 0 if and only if G is exponential.

Poor. From Example 2.1, we know that H is exponential if and only if
(5.3) oo F®(x) dG(x) = [§5 F(x) dG(x)]* .
If G is exponential, then §° F(x) dG(x) = §¢ G(x) dF(x) is the Laplace transform
of F, so that (5.3) holds.

Now, suppose His exponential, i.e., suppose (5.3) for all F. Take F degenerate

at x,. Then we have from (5.3) that G(kx,) = [G(x,)]*, k = 1,2, --.. Since
lim, _, x,[u/x,] = u, it follows that if G is continuous at u, then

G(u) = lim, _, G(x,[#/x,]) = lim, _, {[G(x,)]"/=0}ol/=0)
= {lim, o [G(xo)/=0]}* &

Using the monotonicity of G, we conclude that for all u, G(u) = e~** for some
2.0<2< 0. [

This theorem give conditions for equality in inequalities or monotonicity re-
sults in several of the theorems which follow.

THEOREM 5.2. Let P, = {7 F*(x)dG(x), k =0, 1, ..., where F(z) = 0 for
z < 0and G0) = 0.

(a) If G is IHRA, then H, given by (5.2) is IHRA.
(b) If G is IHR, then P,V* is decreasing in k = 1,2, ... for all F.
() Iff’kl/" is decreasing ink = 1,2, ... for all F, then G is IHRA.

An unresolved question remains: Is P,,l/" decreasing in k =1,2, ... if G is
IHRA? If this is true, (a) would follow from (3.4). We have been able to prove
that P,/* is decreasing only with the stronger hypothesis that G is IHR. Con-
sequently, we cannot make use of (3.4) to prove that H is IHRA whenever G is
IHRA. This result is obtained only by bringing to bear a body of theory that
otherwise plays no role in this paper. References for required facts and defini-
tions are given.

ProOF THAT (a) G 1s THRA 1mpLIES H1s IHRA. Let X}, X,, ---and Y, Y,, - --
be mutually independent random variables, the X; having the common distribu-
tion function F, and the Y, being exponentially distributed. Let {N(¢), t = 0}
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be a Poisson process with parameter 4 and almost surely right continuous sample
paths. Define

T,=inf{t: X, + -+ + Xy > Y}, i=1,2,...,

i.e., T, >t if and only if X, + --- 4+ X, < Y,. For any finite subset 7 of
positive integers, min, , Y, is exponentially distributed, so that from Theorem
5.1 we conclude that

min,

1€l

T. = inf{t: Xl + e 4 XN(t) > minieIYi}

is also exponentially distributed (although the T’; are of course dependent). Now
let = be the life function of a coherent structure ¢ of order n (see Esary and
Marshall (1970a)). Then it follows (Esary and Marshall (1970b) Application
5.3) that «(T,, - --, T,) has an IHRA distribution.
Denoting the characteristic (indicator) function of a set 4 by y,, we compute
that
P{=(T) > 1} = i P{e(T) > 1| N(1) = kle™"(1)*/k!
= D0 ES(ixpstxysrys * 0o Xyt xpsr )€ (AN k!
= Zo Pe(Yy -+, Vo) > X+ - 4 XiJem"(A0)*[k!

k
=z U g o d6.0)
where G, is the distribution function of #(Y,, ..., Y,).
Since G isIHRA, G can be approximated by an increasing sequence of survival

functions each having, for some n, the form of G, (Birnbaum, Esary and Marshall
(1966) page 822). It follows that if H is given by (5.2), then

n—0oo P{Tn(Tl’ ] Tn) > t}
where for each n, 7 (T}, - - -, T,) has an IHRA distribution. Hence H is IHRA. []

Multivariate questions which arise to a small degree in the above proof are sub-
jected to further investigation in a paper by Esary and Marshall (in preparation).

ProoF THAT (b) G 1s IHR IMPLIES P,/ Is DECREASING. By writing P, =
EG(X, + --- + X,) where the X, are independent and have distribution function
F, and by using the fact that G is NBU, we have

EG(X, + X)) < EG(X,)G(X,) = [EG(X,)}

i.e., P, > P},
Now, suppose that for all THR distributions K

§ Fo0(x) dR(x) = [§ F®(x) dK(x)] 00
We shall apply this in the induction which follows, with
K(z) = G(2) = [G(y + 2) — G]/G(Y) -
G, is IHR because G is IHR (G, would not necessarily be IHRA just because G
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is IHRA). Note in advance that the calculations below are followed by expla- -
nations of the steps involved.

{§ F®(x) dG(x)]"* = P,[§§ F"(x — y) dF(y) dG(x)]"
= P,[§§ F*=V(x — ) dG(x) dF(y)]"
= P,[§§ F"™(2) G (2)G(y) dF(y)]"
= (P,\" § [F™(2) dG (2)] "G (y) dF(y)}"
= [§§ F™(2) dG (2)G(y) dF(y)]" = [§ F™V(x) dG(x)]" .

Here the first inequality follows from the inductive hypothesis. The second
inequality is an application of P, = §{ F™(z) dG (z); this follows from the mono-
tonicity of F*, because G is IHR so that G(z) < G (z) for all z. The last equality
is a reapplication of the first three steps of the calculations. []

PROOF THAT (c) P,/* 1S DECREASING IMPLIES G 1s IHRA. Take F to be degenerate
atx,. Then P = [G(kx,—)]"* is decreasing in k, e.g., [G(kx,)]"** is decreasing
ink, k=1,2, ... This means that [G(ar—)[¥** = [G(t—)]* whenever a < 1
is rational. Thus we can approximate s < ¢ from above by rational multiples
of ¢ to obtain [G(s)]* = [G(t—)]* = [G(1)]". [

THEOREM 5.3. Let P, = {7 F*¥(x) dG(x), k =0, 1, . . ., where F(z) = G(z) = 0
forz < 0. Then P, , < P, P, for j,k =0,1, ..., for all F if and only if G is
NBU. If G is NBU, then H given by (5.2) is NBU.

Proor. Let X}, X,, - .- be independent random variables with distribution F,
and suppose that G is NBU. Then

Pj+k = EG(XI + e+ Xj+k) é EG(X1 + - + XJ)G(X.H-I + o+ Xj+k)

= EG(X, + -+ + X)EG(X;,, + --- + X,) = P, P,

Now suppose that P, , < P, P, for j,k > 0. Choose s5,7> 0 and take F
to be degenerate at x, = s/k. From P, , < P, P, we obtain G((j + k)x,) <
G(jx,)G(kx,), i.e.

G(s + jx) = G(5)G(jx,) j=0,1,.0.

Choose j = j, = [t/x,] + 1. Thent 4 x, = j,x, > t. Since x, —0as k — oo, and

since G is right continuous, we have by taking limits that G(s 4+ 1) < G(5)G(r),
i.e., G is NBU.

The last part of the theorem is a consequence of the first part and of (3.5). O

This theorem remains true if F*)(x) is replaced by F,  F, x - - - x F,(x) where
F(z) is decreasing in i for all z.

In view of Theorem 5.1, 5.2, and 5.3, it is interesting to note that with P,
given by (5.1)

() {pr = P.., — P,k = 1,2, ...} need not be a PF, sequence when G has
a PF, density,
(ii) P,/P,_, need not be decreasing in k = 1, 2, --. when G is IHR,
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(ili) >3-, P;/P, need not be decreasing in k = 1, 2, ... when G is DMRL,
(iv) Itneed notbethat P, 315 P, > 1=, P,,k = 0, 1,... when G is NBUE.

We have already seen that the first three of these negative results are true because
the conclusions do not hold for all F even when G is degenerate. To see the
fourth result, take

Gx)=1 for x<3, G(x=1%1 for 3<x<7,
G(x)=0 for x>7.
Then G is NBUE. Take F degenerate at 13/8. Then P, = G(13k/8), i.e.,

P0:P1:1, P2:P3:P4:%, P. =0 for ]>4

J
The conclusion of (iv) is violated with k = 2.
For the case of a nonrandom threshold, we used conditions on F in Theorems
4.8 and 4.9 to obtain stronger conclusions on H than would otherwise be pos-
sible. These results have analogs in the case of a random threshold.

THEOREM 5.4. Let F and G be distribution functions such that F(z) = 0 for z < 0
and G(0) = 0, and suppose F and G have densities [ and g that are PF,. Then

[§ FO(x) dG(x) — § F*0(x) dG(x))/[§ F*1(x) dG(x) — § F*®(x) dG(x)]

is decreasing ink = 1,2, ..., so that H given by (5.2) has a PF, density.

Proor. Let w(k) = § F¥(x) dG(x) — § F*+Y(x) dG(x). Then

Wk + 1) = §§ [F®(x — 2) — F*(x — 2)]g(x)f®(2) dx dz
= §§ [F®(u) — F*(u)]g(u + 2)f(z) dudz .

Since F®(u) — F**(u)is TP,ink = 1,2, ... and u = 0 (see Theorem 4.8 or
Karlin and Proschan (1960) Theorem 2), it follows from the basic composition
formula for totally positive functions (Karlin (1968) page 17) that § [F*(u) —
F*Y(y)lg(u + z)du is TPy ink = 1,2, ... and —z. Since f'(z) is TP, in | and
z (Karlin and Proschan (1960)) it follows by the same argument that w(k + /)
isTP,ink =1,2,...and —I,1=1,2,.... Hence wis PF,. [

We remark that Theorem 2. (2) of Morey (1966) is a stronger result than Theo-
rem 5.4. However, his omission of any condition on G is an apparent oversight.

THEOREM 5.5. Let F and G be distributions such that F(z) = 0 for z < 0 and
G(0) = 0. If F is PF,, and if G has a density g that is PF,, then the P, given by
(5.1) satisfy 1 = Py = P, = ... and P,|P,_, is decreasing in k = 1,2, ..., so H
given by (5.2) is IHR.

Proor. This is a special case of Theorem 5.4 of Karlin (1968) page 130. [J

6. Maximum shock threshold models for P,. Here we consider the case that
shocks to a device do no damage unless they exceed a critical threshold x. If
the threshold is exceeded, the device fails; otherwise it is “as good as new.”
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This model may be an appropriate description, e.g., for the fracture of brittle
materials such as glass.

Although the concept here appears quite different from that of Section 4, we
hasten to point out that this model can be regarded as a special case of the model
treated there. One needs only to take in Section 4 damage distributions F that
place no mass on (0, x]. Then, the damages caused by shocks are either 0, or
they exceed x and cause failure.

If we assume that the magnitudes X;, X,, - -- of successive shocks are inde-
pendent and have corresponding distributions F,, F,, - - -, then for the model
here, the probability P, of surviving k shocks is given by
(61) Pk=Hf=1Fi(X)’ k= 1,2,---,
and the corresponding survival functions is

7 e
(6.2) A() = Tpoe UL TIE A, r20.

THEOREM 6.1. If F(x) = F|(x), i = 2,3, - .., then H given by (6.2) is exponen-
tial. If F(x) is decreasing ini = 1,2, .., then H is IHR. If Fy(x) is increasing
ini=1,2, ..., then H is DHR.

Proor. This is a trivial consequence of Theorem 3.1.

Of course one can use Theorem 3.1 to obtain conditions on the F, in order
that H have various other properties. However, the cases mentioned in Theorem
6.1 have some practical interest.

Suppose that the shock magnitudes are independent and identically distributed
with distribution F, but the occurrence of each shock causes a change in the
threshold level that does not depend on shock magnitudes. Denote the successive
threshold levels by x;, x,, - - .. Then

P, =TI, F(xy), k=1,2,....
This form is similar to that of (6.1), and Theorem 6.1 applies with F(x;) in place
of F(x). Consequently, if successive shocks each cause a lowering (raising) of
the threshold, i.e., x; is decreasing (increasing) in 7, then A is IHR (DHR).

Let us now consider the modified case of (6.1), where the threshold level x is
random, but independent of the shock magnitudes. Let us further suppose that
F(x) = F(x),i=1,2,.... Then
(6.3) P, =\ [F(%)]* dG(x) , k=0,1,....

THEOREM 6.2. If P, is given by (6.3), then H given by (2.1) has a density that is
logarithmically convex on (0, o).

Proor. From (6.3) and (2.3) we compute that

h(t) = {5 e~ *'® F(x) dG(x) .

Thus, & is a mixture of exponential functions, and concequently # is logarithmic-
ally convex (see, e.g., Artin (1931)).
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Alternatively, one can use the fact that the P, of (6.3) form the moment
sequence of a random variable taking values in [0, 1]. Because of this, proper-
ties of the P, are well known, see, e.g., Karlin and Shapley (1953) page 55). In
particular, if p, = P, _, — P,k =1,2,...,thenp,p,,, — pi,, = 0,i=1,2,...,
i.e., {p,} is a logarithmically convex sequence. The theorem follows from this
and (3.7). [
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