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RADIAL PROCESSES!

By P. W. MILLAR

Cornell University and University of
California, Berkeley

Let X = {X; = (X4, - -+, X¢%), t = 0} be an isotropic stochastic process
with stationary independent increments having its values in d-dimensional
Euclidean space, d = 2. Let Ry = |X;| be the radial process. It is proved
(except for a rather trivial exception) that the Markov process {R:} hits
points if and only if the real process {X:!} hits points; a simple analytic
criterion for the latter possibility has been known now for some time. If
x > 0, the sets {f: Ry = x} and {t: X;! = 0} are then shown to have the
same size in the sense that there is an exact Hausdorff measure function
that works for both. Finally, if X7 hits points, it is shown that then X
will hit any reasonable smooth surface.

1. Introduction. Let X = {X,, r = 0} be a stochastic process with stationary

independent increments having values in d-dimensional Euclidean space £, d =
2. Then E é€i(u, X,) = exp {—t¢(u)} where

(L.1)  ¢(u) = i(a,u) + Jou, u) + §pa[l — €V + i(u, )1 + [y)]¥(dy) -

The measure v is called the Lévy measure, and ¢ is called the exponent. The
vector X, may be written

(1.2) X, =X - X9,
The process X* = {X/*, r = 0} will be called the kth coordinate process of X. Of

course, X* is a real process with stationary independent increments whose ex-
ponent ¢, is given by

(1.3) $u() = 40, ---,0,4,0,..-,0),

the real variable u appearing in the kth place.

Assume that X is isotropic: if r: EY — E? is any rotation about 0, then z.X
and X have the same distribution under P°. Define the radial process R = {R,,
t = 0} by

(1.4) R, = |X}]

where |+| denotes ordinary Euclidean distance in E%. It follows from isotropy
that R is a Markov process. Finally, assume further that either

(1.5) WEY) = o0 or  (ou,u)z0
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614 P. W. MILLAR

so that the processes moving only by a finite number of jumps in a finite time
interval are excluded from consideration. Let us say that R hits points if, for
every x > 0 and every y = 0,

PYR, = x forsome >0} > 0;
and that X* hits points if, for every real x and y,
P¥ X' = x forsome >0} >0.

Here Pv is the measure for the process starting at y.

One of the main results of this paper is that, under the assumptions of the
preceding paragraph, R hits points if and only if X* hits points (see Theorem
3.1). Since a simple necessary and sufficient criterion is now known for the
latter possibility, one obtains:

R hits points if and only if {5 (2 + ¢,(x))™*dx < o for some 1> 0.

One may then deduce that, if R hits points, then each x > 0 is regular for
itself; i.e., if T, = inf{r > 0: R, = x}, then P*{T, > 0} = 0. If x > 0, define
Z,={t>0:R,=x},and Z = {r > 0: X;! = 0}. Then according to Theorem
3.2 of this paper, the random sets Z, and Z have the same size in the sense that
there is a continuous increasing function f that serves as an exact measure
function for each set (see Section 3 for further explanation). In particular, these
two sets have the same Hausdorff dimension. Since the set Z is relatively well
understood, this result is of considerable help in understanding the nature of
the sets Z,. (See, for example, [1], [6] for various estimates of the dimension of
Z; and see [9] for a summary of what is known about exact measure functions
for Z.)

Blumenthal and Getoor [1] have obtained these results in case X is an isotropic
stable process; their method (involving subordination) is not applicable in the
more general case considered here.

Of course, the process R hits points if and only if the process X hits the
spherical shells § = S(x) = {z € E*: |z| = x}; and X" hits points if and only if X
hits hyperplanes M = M(x) = {ze E*:z = (x, - - -, X,), X, = x}. A small patch
of S can be obtained by bending a patch of M “just a little,” and so it seems
likely that if X hits one patch with positive probability then it “should” hit the
other also. Thus the basic problem of this paper is part of a much more general
problem that may be formulated as follows. Let 4 be a Borel set in E¢, let X
be an E¢-valued process with stationary independent increments, and let f be a
mapping of E? to E?. Let C*(A) be the 2-capacity of A4 (for X); see [2], [8], and
Section 3 for definitions. Under mild regularity conditions, C*(4) > 0 if and
only if X will hit 4 with positive probability, starting from any point in E*.
The basic problem is then: under what conditions on f, X, 4 does it follow that

(1.6) Ci(4) > 0 if and only if C*(f(4)) > 0.
The methods of this paper do yield (1.6) for very smooth f, A4 if X is isotropic—
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see the remarks in Section 3, and the main result of Section 4. Hopefully,
further results in the direction of (1.6) would provide a deeper understanding
of capacity theory as well as some insight into the (relatively poorly understood)
sample function behavior of processes with values in E¢, d = 2.

The organization of the paper is as follows. Section 2 contains a number of
rather simple facts necessary for proving the main results, while Section 3 con-
tains the proofs of the main results for the radial process. Section 4 contains a
result bearing on the problem (1.6). Terminology and notation referring to the
theory of Markov processes will be that of [2]. The process X is, as usual,
assumed to be a Hunt process.

Finally, I thank Professor Harry Kesten for a number of helpful conversations
in connection with this paper.

2. Preliminary facts. This section gathers together a number of facts needed
for proving the main results in Sections 3 and 4. Throughout this section X will
be an isotropic process with stationary independent increments having values in
E?, d = 2, and satisfying (1.5).

If f, g, h are nonnegative universally measurable functions on E¢, [0, o0), and
E' respectively, define for 2 > 0:

UYf(x) = E* §7 e f(X,) dt , xe B
2.1) Vig(x) = E* §p eg(R,) dt , xe [0, )
Wik(x) = E* \© e~ h(X}) dt xeE.

If A4 is a Borel set in E¢, define UX(x, A) = U’f(x) with f as the indicator function
of A, and define the measures V*(x, +), W’(x, ») similarly. Let (., «) denote
the usual inner product (with respect to Lebesgue measure) for real-valued
functions on E¢. It follows from symmetry that for any two nonnegative uni-
versally measurable functions f, g on E* (respectively E'):

(2.22) KUY, 9> =<9, US>

(2.2b) (WA, 9> =<Kg, W)

Moreover, according to Zabczyk [10], the random variable X, (¢ > 0) has a
density relative to Lebesgue measure on E?, so that X,' and R, likewise have
densities relative to Lebesgue measure on E'. It follows from this that there

exist potential kernels #*(x, y) w(x, y) such that for bounded universally measur-
able functions f (with the appropriate domain):

(2.32) Uif(x) = §pa w'(x, ))A(Y) dy

wh(x, y) = u'(jx =), x,yeE
(2.3b) Wif(x) = §m wi(x, Y)A(3) dy

wi(x, y) = wi(lx = )I)» x,yeE
(2.3¢c) u*(+) and wH(.) are ZA-excessive for X, X' respectively.

See [2] chapter VI for details and further properties.
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The first proposition of this section establishes the same sort of thing for V2.

PROPOSITION 2.1. For x = 0, let £(dx) = x*~'dx, and define the inner product
(/> 9) = T f(x)9(x)é(dx). Let 2 > 0. Then there exists a kernel v*(x, y) = v*(y, x),
x,y = 0, such that ’

(2.41) x — v(x, ) is -excessive for R
(2.4ii) V(X)) = 10,00 V(% W(2)E(dY), f = O universally measurable.

Proor. (a) Let us first verify that the measure F*(x, .) is absolutely con-
tinuous with respect to Lebesgue measure on [0, oo). Indeed, if 4 C [0, o) is
a set of Lebesgue measure 0, then let 4, C E? be defined by 4, = {z € E*: || € 4.
Since A has (linear) Lebesgue measure 0, A4, has d-dimensional Lebesgue measure
0 and V*(x, 4) = UX(x', 4,), where x [0, co) and x’ = (x, 0, -- -, 0). Here we
have used the fact that X is isotropic so that U?(y, B) depends only on |y| when-
ever B is a spherically symmetric set about 0. By (2.3a), U*(x’, 4,) = 0 if A,
has zero Lebesgue measure, and so V*(x, y) is absolutely continuous relative to
Lebesgue measure.

(b) Next let us verify that if f, g are nonnegative universally measurable
functions on [0, co0), then

(2.5) (Vfs9) = (9, Vf)
It will be enough to verify this for f = I,, g = I, indicators of sets 4, B. Define

A,, B, as in part (a). Then for known constants ¢, (depending only on the di-

mension d):
(VY2 9) = §5 VA(x, A)xitdx

= ¢ {5, Uy, A,) dy
= cd<UZIAa’ IB,,>
=1y, Ul ) by (2.2a)
=(f, V9).
~ The proposition now follows from (a), (b) by [2], VI. 1, Theorem 1.4, page 254.
ProOPOSITION 2.2. If 2> 0 and f is a real, bounded, universally measurable

function on [0, co) having compact support, then Vf(x) is a continuous function
of x. In particular, every A-excessive function is lower semicontinuous.

Proor. The second assertion is a well-known consequence of the first. To
verify the first assertion, define for x e E¢, f'(x) = f(|x]). It follows from (2.3a)
that U'f'(x) is a continuous function of x ¢ E%. Since

U (x) = {5 e ME*f(X,) dt
= {0 e ME"=IfY(X,) dt
= {7 e MEFf(| X)) dt
= Vi),

the result follows.
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This completes the collection of facts needed for carrying through the argu-
ments of Section 3. For the amusement of the reader we conclude this section
with a simple proposition that complements Corollary 3.2.

PROPOSITION 2.3. Let X be an isotropic process in E¢, d = 2, with v(E*) = co.
Let R = {R,} be the radial process. If z > 0, then (relative to R) z is regular for
both (z, o0) and [0, z).

Recall that if T, = inf {r > 0: R, € 4}, then z regular for 4 means P¥{T, >
0} = 0. The proposition therefore states that, starting from z > 0, R will hit
[0, z) and (z, o) “immediately.”

Proor. From Proposition 2.1 it follows that R cannot remain at z for a
positive initial time interval, so that, starting from z, it must with positive prob-
ability hit one of the sets (z, c0), [0, z) immediately. By the Blumenthal zero-
one law, R will then hit one of these sets immediately with probability 1.

Suppose that R hits (0, z) immediately with probability 1. Then by isotropy,
X starting from z’ = (z,0, - -, 0) must hit the sphere B, = {xe E*: |x| < z}
immediately with probability 1. Again by isotropy X will then hit B, immedi-
ately starting from —z’. But by translation invariance, X starting from z’ will
have to hit B, + 22/ immediately. A fortiori, X starting from z’ hits E* — B,
immediately; i.e., R starting from z hits (z, co) immediately with probability 1.

On the other hand, suppose that R starting from z hits (z, co) immediately
with probability 1. For ease of exposition, suppose d = 2. Then since X is
right continuous, X starting from (z, 0) € £” must hit S, U S, U S; immediately,
where S;, i = 1,2, 3 are open spheres of radius z centered at (z, z), (22, 0), (z,
—7) respectively. Hence by the Blumenthal zero-one law, X must hit at least
one of the S; immediately with probability one. Suppose S, is hit immediately
from the point (z, 0) on its boundary. By isotropy, X then enters B, immediately
from (z, 0); i.e., R starting from z hits [0, z) immediately with probability 1.

3. Main results. In this section we obtain a useful criterion for deciding
precisely when the radial process R, = |.X,| hits points (equivalently, the isotropic
process X hits spherical shells.) The ideas leading to the solution of this problem
are then applied to show that the sets {r: R, = z}and {r: X, = 0} have essentially
the “same size.” Unless explicitly stated to the contrary, X is assumed to be an
isotropic Ei-valued (d > 2) process satisfying (1.5).

We begin by establishing a preliminary criterion for deciding when X hits
spherical shells. A main tool for this first lemma will be capacity theory as
developed by Port and Stone [8]. If B is a Borel set in E?, let T, = inf{r > 0:
X,eB). If 2> 0, let p;* be the unique measure supported on B (= closure
of B) whose A-potential has the density (relative to Lebesgue measure on E?)
E-*¢~*T-5, This measure always exists and

(3.1) Ci(B) = p5(B)
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is the 2-capacity of B ([8] Theorem 6.1). Since X, has a density for each ¢,
(3.2) CYB) >0 ifandonlyif P*T, < oo} >0 forevery xekE?.

Finally, as an elementary consequence of the definition of ,* and the first passage
relation we have the following formula ([8] Equation 6.1):

(3.3) 5 1s'(dz)UNz, A) = \, E-"¢~""-Bdx = {, E*e~""B dx

where A4, B, are Borel sets in E¢, and the second equality comes from isotropy.
Let a > 0 be fixed. Define

3.4) S =S8(@a) ={zeE |z] = a}
S, =S,(@a) ={zeE*: |z — S| < h}.
Then we have the following criteria for deciding when X hits the spherical shell
S.
Lemma 3.1. Leta > 0,anda’ = (a,0, - - -, 0) e E°.

(a) If lim inf, ,, A1 UX@, S,) < oo, then CX(S) > 0.
(b) If limsup, , kA *UXd’, S,) = co, then C(S) = 0.

Proor. In (3.3) choose 4 = S,, B=S,,. Obviously 4 C B and if xe 4,
P*{T, = 0} = 1. Thus the right side of (3.3) yields ’

(3.5) §s, Eve™*"smdx = (s, dx ~ const. X h as #|0
(where the positive constant depends on a and d). From the left side of (3.3)
(3.6) §s, Ece™ TS dx = {5, p§, (d2)UX(z, S,)

=< sup,.s,, UN(z, $,)C*(Su) -
Hence, combining (3.5), (3.6),

3.7 CX(Sy) = const. hfsup,.5,, UX(z, Su)]™* .
But using the isotropy,
SUp, e s, UXz, Sp) = SUPa_sh<ozarm UNZ', S) » 7 =(z0,---,0)c E?
= SUP,_ssszaran U0, oy — 2') .
However, if a — 2h < z < a 4 2h, then

Szh_z'CSAh_a,’
whence .

(3.8) Sup,.s,, U'(z, Su) < UXO, S, — @) = UX@', S,) .
Since C?(+) is a Choquet capacity ([8] Section 6)
3.9) Ci(Sy) | CX(S) as £ | 0.
From (3.7), (3.8), (3.9) it then follows that C*(S) > 0 provided that
lim sup, |, A{UXa’, S,,)]7* > O

and this implies the conclusion (a).
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In an entirely analogous way one obtains conclusion (b). Merely choose
B=3S5,, 4=, in (3.3) to obtain

(3.10) §s, Eoe7""Sndx < (g, dx ~ const. h as £ 0
and
(3.11) {5, 14,(d2)U%(z, S,,) = inf, .5, Uz, Su)CX(S,)

implying that
(3.12) CX(S,) < const. A[inf, 5, UX(z, Sy)] ™" .
If z is real and |z — a| < &, then S,, — 2’ D S, — @', so that as before

inf, 5, Uz, Sy) = inf,_,c,cain U0, S,, — 2)
> UX0, S, — @)
completing the proof.

The reader no doubt will have noticed that the proof above can be modified
slightly to give criteria for other nice surfaces in E¢. We will need the follow-
ing additional result. The proof is omitted; using the proof of Lemma 3.1 as a
model, the reader will have no difficulty in supplying the proof himself. For
further extensions, see the remarks after the proof of Theorem 3.1.

Leta > 0,andlet M* = {x = (x;, -+ -, x,) € E¢:1x, = 0, % + -+ + x < a’},
and M,* = {xe E*: |x — M| < h}.

Lemma 3.2. (a) If liminf, , A—'U*0, M,*) < oo, then C}(M*) > 0.

(b) If lim sup, , A~*U%0, M,*) = oo, then C}(M*) = 0.

It is easily checked that if C*(M*) > 0 for one point a, then C*(M*) > 0 for
alla > 0. Let M = {xe E*: x, = 0}. One also easily checks that C*(M) > 0 if
and only if CA(M*) > 0 for some a. Finally, writing the process X, as X, =
(X3, - -+, X,%) one sees that C’(M) > 0 if and only if the one-dimensional process
X' = {X}', t = 0} hits points. In particular,

CoRrOLLARY 3.1. X' hits points if and only if lim, |, A~*U*(0, M,*) < oo for some
(hence all) a > 0.

The idea of proving the next lemma by comparing arcs was suggested by
Professor Harry Kesten.

LeEMMA 3.3. Fix ge E?%, |q| = a > 0. Then there are positive constants c, C such
that for all sufficiently small h
cUX0, M%) < UXg, Si(a)) = CUY(0, ME;) .

Proor. First consider the two-dimensional case, and let us begin here with
the left-hand inequality. By isotropy, we may assume ¢ = (a, 0); it will then
be enough to show

cUX0, M,*) < UXO0, S,(a) — q) .

Elementary plane geometry shows (by comparing arc lengths) that if (r, 6) are
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the polar co-ordinates of a point in E?, then for fixed r
(3.13) Q2/m)p{l: (r, 0) e M} < p{0: (r, 0) € S,(a) — g}

where (2 is Lebesgue measure on the line. Since X, is isotropic, it has a density
Jf: on E* depending only on r (see Section 2), so that in terms of polar co-ordi-
nates, for any Borel set 4 C E*

(3.14) PAX, e A} = §,,.0)e 4y 40 fi(r)r dr .
Using (3.13) and (3.14), we see by integrating on & first, then r, that
(3.15) (2/7)P°{X, € M,*} < P°{X, € S,(a) — q} .
The left-hand inequality of the lemma now follows (for E?) from (3.16) since
UX0, A) = §y e *P°{X,c A}dt.
The proof of the right-hand inequality is slightly more involved. We will
show, assuming ¢ = (a, 0)
CUX0, M3j) = UX(0, Sy(a) — q) -
Let S} = {S,(a) — g} N {(x,y) € E*: x = —a} be the right half of the annulus
Su@) — ¢, and §;* = {Sy(@) — ¢} N {(x, ) e E*: x < —a,y 2 0}, S}’ = {S,(a) —
g} N {(x,y)e E>: x < —a, y < 0} be the northwest and southwest sectors re-
spectively. If 0 < r < |a 4 h|2¢ (so as 0 ranges over [0, 27) and r over the range
indicated, (r, §) will just barely cover S,'), then some analytic geometry com-

paring arc lengths reveals that there is a constant C, such that for sufficiently
small #, and r in the above range,

w{0:(r,0)e S} < Copfb: (r, 0) e M} .
It follows as in the first part of the proof that
U% 0, s} < C,U*0, M%) .
Next, let T = inf{t > 0: X, ¢ S,?}. Then
UX(0, $,*) = E°{e~"UXX,, S,})} .

But using isotropy and translation, if x e §,? then (rotating S,? around to the
eastern side of the annulus and then sliding it over so that the point x is placed
at 0): .

Ui(x, §,2) < UX0, S,;,H)

so that
U0, §,») < C,U*0, M%) .
Hence,
UX(0, S,(a) — q) = UX(0, S,") 4+ UX0, S,*) + U0, S,?)
= 3C,UY0, M%),
as desired.

Finally, the d-dimensional case can be treated as follows. As in the two
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dimensional case, we may assume ¢ = (4, 0, - .., 0) and must compare U0,
M,*) to UX(0, S,(a) — g). Introduce cylindrical co-ordinates as follows: the point
(%1, -+ -, x,;) has the representation (x,, o¢,, - - -, pp,_,) With 37 pf=1p=0.
The density of X, then depends only on x? -+ e? and because the sets M,e,
Si(@) — g are symmetric about the x, axis, the calculation of P°{X, e M,%},
P°{X, € S,(a) — g} will involve only x, and p (the ¢,’s will be integrated out.)
The calculation of these probabilities is thereby reduced to essentially the prob-
lem treated in the two dimensional case. Since the reader should now have
no difficulty carrying out the details here, this completes the proof.
The next theorem is one of the main results of this section.

THEOREM 3.1. Let X, = (X}, ---, X,%) be an isotropic process in E*, d > 2,
with stationary independent increments satisfying (1.5). Let R, = |X,| be the radial
process. Define ¢, as in (1.3). Then the following statements are equivalent:

(a) For every x = 0 and every y > 0, P*(R, = y for some t} > 0.
(b) For every real x, y, P*{X}! = y for some t} > 0.
(©) V&[4 + ¢i(r)]*dr < oo for some 2 > 0.

Briefly, the radial process R hits points if and only if the co-ordinate process X*
hits points.

ProoF. Since ¢,(r) is the exponent of X?, the equivalence of (b) and (c) is due
to Kesten [5]. The radial process will hit points if and only if spherical shells
have positive capacity for X. The theorem now follows from Lemmas 3.1, 3.3
and Corollary 3.1.

REMARK. The method of proof in the preceding theorem can be used to
establish somewhat more general results. Let X be isotropic and let B be a nice
smooth surface in E?, d = 2. Then with a few alterations, the preceding method
yields: X hits B if and only if X* hits points. Here “nice smooth” means that
if B, = {x:|x — B| < h} then the volume of B, is ~ const. & as & | O (so that
an analogue of Lemma 3.1 will hold) and that B not be so convoluted that the
arcwise comparison of Lemma 3.3 cannot be carried out. Of course, in order
to prove B is hit, one need consider only some small patch of B where these
smoothness “conditions” are satisfied. See Section 4 for a more precise treat-
ment of this general problem by different methods. Turning to more general
processes in E¢, one finds the following analogue of the criteria of Lemma 3.1
for hitting the spherical shell S(a):

(@) If liminf, , A=1fsup,,. , ., U(z, S,(a))} < oo, then C*(S(a)) > 0.

(b) If lim sup, , 2~*{inf ., _,, UX(z, S)(a))} = oo, then C*(S(a)) = 0.

CoroLLARY 3.2. If (a), (b), or (c) of Theorem 3.1. holds, then every z > 0 is
regular for itself (for R).

Proor. If z were not regular for itself, then z would be a thin, hence semi-
polar, set. Since v*(x, y) = v*(y, x) (Proposition 2.1), all semi-polar sets are
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polar ([2] VI, Proposition 4.10, page 289: this result is applicable here by virtue
of the work in Section 2). This contradicts the hypothesis that singletons in
(0, o) are not polar.

CoroLLARY 3.3. If(a), (b) or (c) of Theorem 3.1 holds and if z > 0, then v(z, +)
is continuous at z.

Proor. Let T, = inf{r > 0: R, = y}. According to [2], II. 2, E%e~*Tv is -
excessive as a function of z, so E*e~*"v is lower semi-continuous (Proposition
2.2). Hence E*e~*"v is continuous at y > 0; for if not,

1 = limsup,,, E*e~*"v > lim inf,  E?e~*"v > Eve="v
implying that y is not regular for itself, a contradiction. From capacity theory
(see [2] VI. 4)
Ere™'"v = CY({y})v'(z, y)
where C*(A) is the A-capacity of the set 4. Hence from the preceding argument
v*(+, y) is continuous at y > 0. Since v*(x, y) = v*(y, x), vX(z, +) is continuous
atz > 0.

Our final project in this section is to give a useful estimate of the size of the
set {t: R, = z}. In order to do this, we first sharpen Lemma 3.3.

LemMA 3.4. Fix z > 0 and suppose R hits points. Then there are positive con-

stants ¢, C such that for all sufficiently large 2,

(3.16) ew’(0, 0) < v¥(z, z) < Cw(0, 0)

where wi(x, y) = wX(|y — x|) is the potential kernel for the co-ordinate process X'
of (X%, -+, X%).

Proor. According to Corollary 3.3, v)(z, «) is a continuous function, and
since the symmetric process X* hits points, w’(+) is also continuous (see Breta-
gnolle [3]). Let M, = {xeE*:x=(x, -+, X)), —h < x;, <h}. Then from
Lemma 3.3

Ui, 5,(2)) < C,UH0, M,,) , 2 = (2,0, .-, 0)
so that
itk vz, )y dy < G (2 wi(y) dy -
The continuity of the integrands at z then implies that
vX(z, 2)227* < 4C,w1(0) ,
establishing the right-hand side of (3.16) (with C depending on z).

To obtain the left-hand side, let M, = {xe E?: —h < x, < B, X} + -+ +
x? < 22t and N, = M, — M,*. Then
3.17) U*0, M,) = UX0, M,*) + U*0, N,7) .

Let T, be a stopping time independent of X, having an exponential distribution
with density Ae~*, r > 0. Then since U*(0, N,?) is the expected time in N,*
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before T,, we have, if T" =inf{r > 0:X,eN;?}, T° = inf{t > 0: X, e Ny}
Ny = M N,

(3.18) UY0, N,*) < P°{T" < T,;}U*0, M,,) .

Also, by Lemma 3.3,

(3.19) UY0, M,*) < ¢, UXZ', S,(2)) » Z =(0,---,0).
Combining (3.17)-(3.19), we have

(3.20) UY0, M,) < ¢, UXZ, S,(2)) + P°{T" < T,}UX0, M,,) ;

that is,

(G:2l) LWl ) dy < 6 §L, 03z )yt dy + PO{TH < T} §2% wi(y) dy -
Since w*(+) is continuous, and v*(z, +) is continuous at z, this implies
(3.22) wi(0) < ¢,vX(z, z) + 2P°[{T° < T,}wX(0).

Lemma 3.3 now follows from (3.22), since P°{T° > 0) = 1 and T, — 0 in prob-
ability as 4 — oo.

Before stating the final theorem of this section, it will be convenient to present
further background. Let T = {T,, t > 0} be a subordinator; i.e., a process with
stationary independent increments and increasing paths. Then

Ee~'Tt = exp{—1g(2)}

where g is called the exponent of 7. Let 5 be the inverse of ¢ (near infinity), let

hy(t) = log |log t|/(yt" log [log 1]) , r>0
and let f, be the inverse of 4. Then Fristedt and Pruitt [4] have shown that for
any y > 0, f'is an exact Hausdorff measure function for the range of 7. (This
means that the Hausdorff f-measure of Range T is positive and finite a.s.) Let
x > 0, and

(3.23) Z,={t>0:R =x}, Z={t>0:X}=0}.

If x is regular for {x} (for R), then it is a known consequence of the theory of
local time (see [1], [2]) that Z, may be regarded as the range of a subordinator
{T#(1), t = O} (possibly truncated at a positive stopping time), where the exponent
g, of T, is ‘

9a(2) = [v'(x, )]

and similarly Z is the range of a subordinator T, whose exponent is

9,(2) = [wH(0)]™".
Finally, note that the measure function f, is obtained from g(2) by applying
monotone functions to g for large values of 1. From the foregoing discussion
and Lemma 3.4, an easy argument then gives the following theorem which
implies in particular that dim Z = dim Z,.
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THEOREM 3.2. Let X, = (X}, ---, X,%) be an isotropic process in E*, d = 2,
with stationary independent increments. Let R = {R,, t = O} be the radial process,
and assume x > 0 is regular (for R). Define Z,, Z by (3.23). Then there exists a
monotone continuous function f which is an exact measure function for ,Z, and for Z.

Remark. Theorem 3.2 of course gives information on the dimension (and on
the exact measure function) for the set {r > 0: X, € S(x)}. It seems likely that
the same measure function would work for the set {r > 0: X, € C} where C is
any nice smooth surface in E¢, but I have no proof.

4. A generalization of Theorem 3.1. According to the results of Section 3, if
X, hits points then X hits spherical shells. The purpose of this section is to show
that indeed under this hypothesis X will hit any reasonably smooth surface. To
make this precise, let f: [0, 1]~ — E¢ be a surface in E. Assume f is smooth
in the sense that if

f(tv cee, td—l) = (f1(tp ceey td—l)’ . '5fd(t1’ ceey td—l))

then in a neighborhood of the origin, f, .-, f; all have continuous second
partial derivatives and

?=1 [(a/atj)fi(tv B} td—l) |(t1,---,td_1)=0]2 > 0

for each j = 1,2, ...,d — 1. Then the following theorem is the main result
of this section.

THEOREM 4.1. Let X be an isotropic process in E® satisfying (1.5). Let [ be a
smooth surface in E* as described above, and let A = {f(¢;,---,1,,): 01, < 1,
1 <i<d}. If X* hits points, then C(A) > 0.

REeMARKS. If A4 is part of a spherical shell, then one can use the method of
proof below to establish the converse, so by this method one of the results of
Section 3 is recovered. While the proof below does not yield the useful double
inequality of Lemma 3.3, it nevertheless yields directly a result valid for a much
greater variety of surfaces.

Proor. For ease of exposition we will assume d = 2; the case d > 2 is proved
in essentially the same way. If X' hits points, then with positive probability X
hits the line L = {(¢,5)e E*: 0 <+ < 1,5 = 0}. As in Section 2, u(x,y) =
u'(x — y) = u(|]x — y|) is the A-potential kernel for X; if x = (z, 0) e E? and
y = (5,0)e E?, then we will abuse notation further and write #(x,y) =
ut(t — s) = u¥(Jt — s|).

Let us verify that

(4.1) Pioo $hoo (|t — s|) di ds < oo .
Since X hits L, there is a finite measure ¢ carried by L such that

§,u'(x, y)p(dy) £ 1 for all xe E?
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(see [2] VI. 4.3, page 285). Hence, letting x = (7, 0) € E?,

o0 § . #(1, 0), )pu(dy) di = §2y V2o (1, 0), (5, O))p(ds) dr < 2.
Hence there exists 0 < s, < 1 such that

0o > YLyt — s)dt = §ou(r)de = §3ui(r) d .
Therefore,
§5 Sout(t — s)ydtds = §j \i2 u¥(r) dt ds
<2 G ui()drds < oo
proving (4.1).
Since X is isotropic, for every finite measure p:

Supz S ul(x, )’)/—l(d)’) = Supxesupportp Sul(x, y)p(dy)
(see [2] VI, 1.26). By a lemma of Orey ([7], Lemma 1.1), in order to show that
a set 4 C E* has positive 2-capacity it is sufficient to produce a finite measure
¢ with support in A4 such that

§a Y #'(x, y)p(dx)p(dy) < oo .
We will do this for the set 4 of the hypothesis by showing that for ¢ small

§6 §6 w'[(fi(D), £(1))s (f1(9), ful(9))] dt ds < oo .
Since for x, yeE?, w!(x,y) = u’(|x —y|), the integrand may be written
u'[|t — s|H(t, 5s)] where
H(t, sy = F(t, s)* + G(t, s)?
F(t, 5) = fi(1) — [()/(t — 9)
G(t, 5) = f(t) — f()[(t = 3) .

Make the change of variable y = tH(t, 5), z = sH(t, s). The regularity of (f,, f,)
yields dy dz = B(s, t) dt ds where for s and ¢ near zero, B(s, 1) is bounded away
from 0 (and bounded above). Hence after this change of variable, if ¢ is small

§2 50 ' L(/u(0), £2(1)), (fi(5), fuls))] dt ds
< const. {3 3 ut(ly — z|)dydz < oo,
finishing the proof.
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