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THE MARTINTOTE

By PrisciLLA GREENWOOD
University of British Columbia

A martintote is a random sequence such that the asymptotic behavior
of the process distribution, conditioned with respect to the past, remains
the same along the sequence. In this respect the conditional distributions
of a martintote behave similarly to the conditional expectations of a mar-
tingale. We give an optional sampling theorem for martintotes and a class
of examples.

1. Introduction. Let (Q, 57, P) be a probability space, and let (X,, 57,), n =
1,2, ... denote a sequence of real-valued random variables X, and g-fields gen-
erated by X,, ---, X,.

n

DEFINITION. A sequence (X,, %), n = 1,2, ... is a martintote if for each
nand 4e &,

(1) LM, [P(X,y0 > y] A) — P(X, > y| AYP(X, > y) = (A)]P(4)
where ¢ isa bounded nonnegative, finitely additive function on |J ", absolutely
continuous with respect to P.

The inspiration for the word martintote is apparent if we write: a sequence
X, F,),n=1,2, ... is a martingale if for each nand 4¢ >,

(2) E(Xp|A) — E(X,[A4) =0.

In (1) the asymptotic property plays the role assumed by the expected value in
(2). A defect in the analogy is that the right side of condition (1) is not neces-
sarily zero. Were it zero, the definition would exclude sums of independent
identically distributed random variables, which often satisfy (1) with = P. We
achieve further generality at the expense of the martingale analogy by allowing
the limit in (1) to depend on A. Consideration of dependence on n as well is
deferred. The martintote, as defined by (1), should be compared with a sequence
(X,, &~ ,)suchthat E(X,,, — X,|A), Ae 7, is the restriction of a fixed bounded
measure g to . ,. For such a sequence, if 4., m < n,

3) §u X, dP — §, X, dP = (n — m)u(A),

while for the martintote a condition equivalent to (1) is, if Ae &7, m < n,

4 lim_ [P(X, >y, A) — P(X,, >y, A]/P(X, > y) = (n — m)u(A) .

The main result is Theorem 1, an optional sampling theorem. It says that a
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martintote observed at a sequence of stopping times is again a martintote. The-
orem 2, an optional sampling theorem for processes satisfying (3) is a modifica-
tion of Doob’s martingale sampling theorem and is included for comparison with
Theorem 1. A class of processes which are martintotes appears in Section 3,
followed by an explicit example.

A previous paper [4] concerned a sequence X, of sums of independent iden-
tically distributed random variables Z, such that P(Z, > y) is regularly varying
at oo, stopped at a random time m with Em < co. A condition similar to (5)
of this paper was shown to be necessary and sufficient that

P(X, > y) ~ P(Z, > y)Em .
This relation may be regarded as an asymptotic analogue of Wald’s classical
equation
E(X,) = E(X,)Em .
The martingale sampling theorem as viewed in Theorem 2 is a version of Wald’s
equation for martingales. Theorem 1 gives the analogous asymptotic relation
for martintotes.

The results presented here restrict the possibility of embedding random se-
quences in other random sequences. Similar results can be obtained in the con-
tinuous parameter case.

Possible applications appear in optimal stopping problems where the aim is to
minimize not the expected value of a functional of a process but instead the
probability that the functional is large. Such problems arise wherever overload-
ing may occur in a system.

2. The randomly stopped martintote. A stoppingtime fora sequence (X,, 5 ,)
isa function m from Q to the positive integers such that {w € Q: m(w) < n}e &,
for each n.

THEOREM 1. Let (X,, 5 ,) be a martintote, and let m(n) be a non-decreasing se-
quence of stopping times for (X, %) such that
. lim,_,, p(m(n) > i) =0,
4) liminf,__ lim ., [P(X;., > y, m(n) > N, A)
= P(Xy >y, m(n) > N, A)]/P(X, > y) =0
for Ae 5y, Then (Xyenys < men) IS @ martintote in the sense that if Ae F 4,

©)  limy_ [PXnmys > 9 A) = PXmy > y5 DIPX > )
= E,(m(n + 1) — m(n), A) .

The expected value in (6) is calculated with respect to the measure p which
appears in (1) and (4). The o-field &, is generated by Xp ), « -+, Xy

If we define a submartintote to be a sequence (X,, %) such that < replaces
= in (1) or (4), then an alternate form of Theorem 1 says that a submartintote
viewed at a sequence of stopping times satisfying (5) is again a submartintote.
The proof is essentially the same.
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THEOREM 2. Let (X,, % ,) be a sequence such that if Ae &, m < n,
§u X, dP — §, X, dP = (n — m)u(A),

where y is a bounded measure on \J ., and let m(n) be a non-decreasing sequence
of stopping times for (X,, 7 ) such that
(7) liminfy . § 40 mem s>y Xmm — Xy dP =0
for Ae ‘-g_‘mm)- Then (Xmm), ymm)) has the property: for A€ F mm»

§a Xmniny dP — §4 Xuny dP = E (m(n + 1) — m(n), A4) .
The proof is similar to that of [1], pages 85-86, and is omitted. The hypothesis

of Doob’s optional sampling theorem for martingales, which could also be used
in Theorem 2, is forn =1,2, ...

(8) E|Xp| < 0, and
) liminfy .. Sms>y [ Xy dP = 0.
Since (m(n) > N) | ¢, (8) implies
limy_,, Smms>y Xmm = 0,

and (7) follows from (8) and (9). Why does not Theorem 1 have a hypothesis
analogous to (8), (9)? For the martintote a statement analogous to (8) would
be, forn=1,2, ...
(10) lim, ., P(Xmin) > y)/P(X1 > y) < oo
But (10) does not imply that

lim,_,, lim_, P(Xy,, >y, m(n) > N)/P(X, > y) =0.

An example is constructed in [3]. The hypothesis (5) of Theorem 1 which is
analogous to (7) is, then, not very different from the hypothesis of Doob’s
optional sampling theorem, and the difference cannot be avoided. All these
hypotheses are satisfied by bounded stopping times and in other cases may be
difficult to verify.

ProOF oF THEOREM 1. Let A€ 5, ,,. LetD; = A n {m(n) = j}. Then D; ¢
F ; (see [1] page 85)and 4 = |J D;.
For any N,
P(Xuiiny > ys A) — P(Xmny > 5 A)
= 2 [PXnsnan > 9> D) — P(X; >y, D))]
+ PXmininy >y, m(n 4 1) > N, A)
— P(X, >y, m(n 4+ 1) > N, A4).
The hypothesis (5) allows us to restrict attention to the first sum. Add and
subtract 3 X7, P(X; > y, m(n 4 1) = i, D)) to obtain:
D PG> yymn + 1) 24, D)) — P(Xyy > y,mn + 1) =2 4, D).
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Now divide by P(X; > y). As y— oo, since X, is a martintote the result is

L X p(m(n + 1) =4, Dj)
=N, pmn + 1) =i,mn) <i—1,4)
= 2ia Ziapm(n + 1) —m(n) = i — j, m(n) = j)
N (£ 1) — mn) = K) .

The hypothesis implies that the final term of this sum goes to 0 as N goes to co.
Summation by parts shows that the limit of the sum, whether finite or not, is
E, (m(n 4 1) — m(n)).

3. A class of examples. Let Z, denote the increment X, — X,_; of a random
sequence (X, .~ ), with X; = 0.

DeriNITION. If Xand Y are random variables such that lim sup, , .., P(X > x,
Y > y)/P(X > x)P(Y > y) < oo, we will say that the pair (X, Y) is of bounded
dependence. 1If each of the pairs (X,_,, Z,), (|X,_i|, Z,), (X,_1» |Z,|) is of bounded
dependence, n = 1, 2, - - -, we will say that the random sequence (X,, &7 ,) has
increments of bounded dependence.

A non-increasing function f varies regularly if lim,__, f(rx)/f(x) exists and is
finite for every r > 0. In this case the limit is r=7 for some p in [0, co0). Feller
(1966) gave a simple proof that if Z, and Z, are independent random varia-
bles such that the functions P(Z, > y), i =1, 2, are regularly varying and
lim,.., P(Z, > y)/P(Z, > y) = 1, then lim, ., P(Z, 4+ Z, > y)/P(Z, > y) = 2.
The following lemma can be proved by induction using Feller’s argument. We
omit the proof.

LEMMA. Let (X,, & ,) be a random sequence with increments Z, of bounded de-
pendence such that the functions P(Z, > y) are regularly varying. Suppose that

llmy_,wP(Zn>y)/P(Xl>y):1, n=1,2....
Then

limy_,wP(Xn>y)/P(Xl>y):n, n=1,2,....

THEOREM 3. Let (X,, 5 ,) be a random sequence with increments Z, of bounded
dependence such that the functions P(Z, > y) are regularly varying. For n =2,
3, .-.,and Ae 7 ,_,, let

lim, . P(Z, > y)/P(X;>y) =1
and
lim,_, P(A|Z, > y) = n(A), i.e. the limit exists .

Then (X,, ) is a martintote.
Proor. Let Ae.%,. Let us write condition (1) in the form

(1) dlim o [P(Xpy > ), Xy S 95 A) — P(X, >y, Xy = 95 ANPX > )
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We shall show that the first quotient of (11) converges to p(A4), the second to
zero. If 0 < e < 4,
P(Xn + Zn+1 >y’ Xn é .y’ A) Z P(.y Z Xn >}’(1 + 6), IZn-Hl <}’5’ A)
+ P(Z,00 > Y1+ 0), |X,| < ye, A4).
The first term on the right is zero and
llm infz/—woo P(Zm.+1 > )’(1 + 8)’ IXnI < ye’ A)/P(Xl > .y)
> lim, . P(A| Zys > y(1 + )P(Z,1 > y(1 + 9)[P(X; > ))
— clim,, P(Z,1 > )1 + )P(X,] = yo)[P(X, > )
= w(A)(1 + o).
The ¢ indicates use of the bounded dependence condition. In brief,
liminf,_, P(X,,; > y» X, < y, A)/P(X, > y) = p(A)(1 + ¢)7.
On the other hand,
PX,+ Z,y > ), X = 9y A)
SPyz=X,>yl —e)A)+ PZ,., > y(1 —¢), X, <y, A)
+ P(y = X, > ye, Z,, > ye, A) .
The 4 may be omitted from the first and third terms and (X, < y) from the
second. The lemma, used in a computation similar to the foregoing, yields
lim sup, o, P(X,1 > 3, X, < 3, A)/P(X; > y)
S (1 —¢) =D+ u(A)(1 —e)™? 4 c(e? — 1)n lim, ., P(Z, > ye).
As in the lemma of [4] we see that for all sufficiently small ¢ > 0
Iimy—'w P(Xn > }” X'n+1 é y)/P(Xl > }’)
< lim, ., P(y < X, = y(1 + ¢))/P(X; > y)
=n((l +¢)7—1).
The remaining conditions in the definition of martintote are clearly satisfied.

COROLLARY. If X, isa sum of independent, identically distributed random variables
Z, such that P(Z, > y) varies regularly, then (X,, 7",) is a martintote with y = P.

The corollary together with Theorem 1, slightly extends the main result of [4].

We illustrate the application of Theorem 3 to a sequence without independent
increments. Let X, be the non-decreaéing Markov chain with X, = 0 and with
increments Z, = X, — X,_, such that

P(Zn>y|Xn—l>x):(l+x)/y2(1+xy) lf X,y_Z_l,

= 2/y%1 + y) if x<1,y>1.
Then
P(Z,>y) =2/y'(1 +y), n=1,2,..., and

lim, , o P(Z, > y| Xt > %)[P(Z, > y) = § -
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Since X,,, Z, = 1, it follows that the process has boundedly dependent incre-
ments of regularly varying and identical distribution. To establish that X,is a
martintote we verify the last hypothesis of Theorem 3. Because of the Markov
property, we need only show that lim,_., P(X, ;€ C|Z, > y) = p(C) exists for
Borel sets of [1, c0). Let & denote the collection of such C for which 2#(C)
exists. Let C be an open set and write it as a union of disjoint open intervals,
C=U:(a;b),alla, = 1. Then Ce &

2 P(X,_.€(a, 0)] Z, > y)
= 2u[P(Z, > y| Xoos > a)P(X,, > a) — P(Z, > y| X,_, = b)
X P(X,_, = b)]/P(Z, > y)
(12) = (1 + /2 Z: (1 + a)/(1]y + a))P(X,_, € (a;, b,))
+ 2+ a)/(1]y + a)) — (1 + 8)/(1]y + b,)]P(X,_, = b,)]
-+ 2 (0 + a)/a)P(X,_, € (a;, by))
+ ((b; — a;)/a;b,)P(X,_, = b,)] as y—oo.
If some b; = oo, add to (12) the term §(1 + a;)/a; P(X,_, > a;). The regrouping
of terms has made it apparent that the sums converge uniformly in y.
To show that < contains all Borel sets we consider a monotone decreasing

sequence A, in & such that 4, | 4. The sequence (4, is also monotone de-
creasing, u(4,) | a. Let B, = A, — A. Then

P(X,_,eA|Z,>y) = P(X, €A, Z, > ) — P(X,_.,eB,|Z,>y).

Given ¢ > 0, choose a such that P(X,_, € [a, c0)) < . Choose m and ¥, such
that P(X,_,e A4,|Z, > y) is within ¢ of « for y > Yoo and such that P(B,) +
A(B,, — [a, o)) < ¢, where 2 is Lebesgue measure. We retain this value of m.
Let C be an open set in [1, a] such that B,  C U [a, o) and P(C) + AC) < 2e.
For y sufficiently large, we see from (12) that

P(X,_,eB,|Z,>y)< P(X,_,eCuU [a, c0))
= P(C) + AC) + Pla, ) + ¢ < 4e.
It follows that lim,_, P(X,_,e A|Z, > y) = a.
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