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OPTIMAL STOPPING VARIABLES FOR STOCHASTIC
PROCESSES WITH INDEPENDENT INCREMENTS

By LERoy H. WALKER
Brigham Young University

Let {W(#): t a nonnegative real number} denote a stochastic process
with right-continuous sample paths with probability one, independent in-
crements which are statistically homogeneous, E{W(r)} = 0, and E{(W(f) —
W(s))?} = ot — s| for some constant ¢; let T denote the set of stopping
variables with respect to W; and let ¢ denote a non-increasing, right-con-
tinuous, square-integrable function on the nonnegative real line. Then
Ef{supezoc(t)| W(¢)|} is shown to be finite which insures that sup: ¢ 7 E{c(r) W(z)}
is finite. Also, e-optimal stopping variables are shown to exist with stop-
ping points occurring only in discrete subsets of the nonnegative real line.
These optimal stopping variables require observation of the process W only
at the possible stopping points.

1. Introduction and summary of results. Most of the literature on the subject
of optimal stopping concerns either discrete sequences [e.g. Y. S. Chow, H.
Robbins, and D. Siegmund (1971), Y. S. Chow and H. Robbins (1967), A.
Dvoretzky (1967), H. Teicher and J. Wolfowitz (1966), etc.] or continuous
parameter stochastic processes [e.g. M. E. Thompson (1971), A. G. Fakeev
(1970), H. M. Taylor (1968), etc.]. The main goal of this paper is to bridge
the gap between the discrete parameter case and the continuous parameter case
in a particular situation. The convergence of the discrete to the continuous has
been used very profitably in other areas of probability theory and was used suc-
cessfully by L. A. Shepp (1969), M. E. Thompson and W. L. Owen (1972), and
the author (1968), (1969). The possibility of using such convergence is also
contained in Section 6 of the paper by M. E. Thompson (1971).

The situation of interest, which unfortunately requires considerable notation
for concise mathematical description, is as follows:

Let R denote the set of real numbers, R, the set of nonnegative real numbers,
I'the set of positive integers, and (Q, .5, P)a probability space. Let {W(f): t ¢ R,}
denote a stochastic process on (Q, &7, P) having the following properties:

(a) W(0) =0,

(b) W has independent increments which are statistically homogeneous in the
parameter variable, i.e. for s <1, W(1r) — W(s) and W(t — s) have the same
distribution function,

(c) foreveryreR,, E{W(t)} = 0,
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(d) for some ¢ € R, and every pair 7, se R,
E{((W(t) — W(s5))’} = o]t — 5], and
(e) W has right-continuous sample paths with probability one.

Let ¢ denote a right-continuous function of R, to R, which is non-increasing
and square-integrable, i.e.

§& (c(x))*dx < oo .

For each k e 1, put r,(k) = i2~* for every i e I U {0}. (The k in this and fol-
lowing notation will often be suppressed when the value of k is clear from the
context.) Let. & ;(k) denote the minimum g-algebra of sets contained in & for
which W(r,(k)), i = 1,. .., j, are & -measurable. Let & (¢) denote the minimum
c-algebra of sets contained in % for which W(s), 0 < s < 1, are & -measurable.
Let N(k) denote the set of functions n on Q to I U {co} such that {n < j}e .F (k)
for every jel and P{n < oo} = 1. Let #7(k) denote the set of functions n on
Q to I U {0} such that {n < j}e & (ry(k)) for every jel and P{n < oo} = 1.
Observe that N(k) c #7(k) since & j(k) C F(ry(k)). Let T denote the set of
functions = on Q to R, U {co} such that {r < t}e 5 (1) for every te R, and
Pir < oo} = 1.

The main results of this paper are given in Theorem 1, Theorem 2, and its
corollary.

THEOREM 1.
SUp, ¢ Ele(t)W(2)} < oo
and, given ¢ > 0, there exist k ¢ I and q € N(k) such that
E{e(r)W(r,)} 2 sup.., E{c(r)W(r)} — ¢ .

The new content of Theorem 1 is in the first part, namely the finiteness of
sup. ., E{c(t)W(z)} since the second part is implied by the material in Section 6
of M. E. Thompson (1971), particularly Corollary 6.1, page 310. However,
the corollary to Theorem 2 gives a somewhat stronger form for the second part
of Theorem 1, and the method of proof does not require the sophisticated ideas
contained in Thompson’s work.

THEOREM 2. Givene > 0, there exist k € I and a function f, ,on R, to R, U {oo}
such that
SUPae i Ele(t + 1) (y + W(r))} > c(t)y —e  when y < f (1),

<oy —  when y=f,,(0),
and
g=sup{j: W(r) <fou(r),i=1---,j—1}

belongs to .¥"(k) and is e-optimal in the sense that

E{e(r)W(r))} 2 SUPne ay E{e(r)W(r,)} — ¢
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COROLLARY. Given ¢ > 0, there exists k e I such that the Sesa,x function of Theo-
rem 2 provides an c-optimal stopping variable; namely,
g=sup{j:W(r) < fopu(r),i=1,---,j— 1} e N(k), and
E{e(r)W(r,)} = sup.cr E{e(r)W(7)} — ¢
The proof of Theorem 2 relies heavily on the theory of Y. S. Chow and H.
Robbins (1967). However, the optimal stopping variable can be defined in a

relatively simple form, the form which one would expect from the work of A.
Dvoretzky (1967) and/or H. Teicher and J. Wolfowitz (1966).

2. Proof of the theorems. The proofs will be achieved by proving a number
of lemmas. The first two lemmas are concerned with establishing the finiteness
of the expected values of the random variables of interest.

LEMMA 1. For every ke l,
Efsup;e, e(ry)|W(ry)l} = 2(0 §7 (e(x))" dx)* < oo

Proor. That the sequence {(W(r,))’, & ;: je I} is a separable semimartingale
is immediate from the right-continuity and independent increment properties of
W. Hence, by Theorem 5.1 of Z. W. Birnbaum and A. W. Marshall [(1961)
page 698],

M
P{supie; (e(r)W(r))* 2 #} < Plsupren, (c(W()) = w') = =7
where M = {7 (¢(x))*dx. Therefore,
Efsup;e, ¢(r)|W(ry)|} = — 5 ud, P{sup,, c(r,)|W(r;)| > u}

< lim,_. M7 4 2 Plsup,.,, (c(r)W(r))* = w) du
u

< fedu + g:% du = 2(Mo)}

where a = (Mo)t. ]

LEMMA 2. E{sup,.p, ¢()|W(1)]} £ 2(0 §& (¢(x))’ dx)t < oo.

Proor. The sequence {sup;., c(r;(k))|W(r;y(k))|: k € I} is non-decreasing with
upper bound sup, . ., ¢(t)|#(t)|. Therefore, by the right-continuity of ¢ and W
(with probability one) sup,., ¢(r,)|W(r;)| converges monotonically upward to
SUp, .z, ¢(?)|W(?)| as k tends to infinity. Hence, by the Lebesgue monotone con-
vergence theorem,

lim, ., E{sup,, c¢(r;)|W(r;)]} = E{sup,cr, c()|W(1)]}.
By Lemma 1,
lim,_, E{sup;e, c(r))|W(r;)[} = 2(o §5 (c(x))* dx)? :

hence,
E{sup;c, c()IW ()|} = 2(0 {7 (c(x))* dx)t . 0
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Observe that the first statement of Theorem 1 is.a corollary of Lemma 2 since
c()W(r) < SUDPyez, ()W (1))

for every reT. Also, since for every kel and ne J7(k), c(r,)|W(r,)| <
SUP;cr, (NI (1),

E{sup,c 0 c(ra)W(r)l} < oo
This result provides an integrable bounding function for any sequence
{e(Puii))W(Puwy) i i € 1} of variables; hence, the Lebesgue convergence theorem can
be applied in appropriate situations such as the one which arises in the proof of
Lemma 3.

LeMMA 3.
lim, ., sup,c -, E{c(r,)W(r,)} = sup.., E{c(x)W(z)}.

Proor. Foreachne . #7(k),r, € Tbecause(r, <t} ={n < [12¥]} e F (rp) C
Z(t)and P{r, < o} = P{n < o} = 1. Hence,

SUPne sty E{c(rn)W(rn)} é Sup:e T E{C(T)W(T)} *
Since sup.., E{c(r)W(z)} is finite by the first part of Theorem 1, given 6 > 0,
there exists 1€ T such that

E[c()W(A)} = sup.., E{c(r)W ()} — 6.
For each k e I, define n(k) by
n(ky = inf {j: r;_y(k) £ 2 < ri(k)}.

Observe that {n(k) < j}={A < rk)} e F(ry(k)) and P{n(k) < oo} = P{A< o0} =1;
hence, n(k) e .#7(k). Since r,, = 4and lim,_,r,,, = 4 with probability one,

the right-continuity of ¢ and W (with probability one) and the Lebesgue con-
vergence theorem insure that

lim, ., E{e(7u) W (Tai)} = E{c()W(A)} .
Therefore,
lim, ., sup,c ., E{c(r,)W(r,)} = sup.., E{c(x)W(7)} — o . U

_ The condition E{sup,._,, ¢(r,)|W(r,)|} < oo established above insures that
condition A* of Y. S. Chow and H. Robbins (1967) page 433, holds; hence,
Theorem 2 will follow from their Corollary to Theorem 6 [Y. S. Chow and H.
Robbins (1967) page 436] given Lemma 4 below and the comments which follow
the proof of the lemma. Implied in this statement is the fact that the results of
Chow and Robbins hold for stopping variables in . /7(k) as well as for stopping
variables in N(k). Checking this fact is a straightforward rewriting of their
proofs in this somewhat more general context. In order to state and prove
Lemma 4 reasonably, some more notation is needed. The probability space
(Q, F, P) can be expressed in a cross product form when working with W due
to the independent increment property of W; namely, for jel and kel,
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(I; x A, F; x G;, H; x Q;) where II, consist of the continuous functions on
the interval [0, r,(k)) and A, consists of the continuous functions on the interval
[ri(k), 0),and F;, G, H;, and Q; are the corresponding “probability space quanti-
ties” on the respective sample spacesII;and A;. Forje land k e I, put 4 (k) =
{max (j, n): ne.17(k)} and v;(k) = essSUp,._,.; Ele(r)W(r,) | F, x {A}):

[The v; is the notation of Y. S. Chow and H. Robbins (1967) Equation 5, page
428. A definition of the essential supremum is given by Y. S. Chow, H. Robbins,
and D. Siegmund (1971) page 8.]

LemMA 4. For jeland ke,
vj(k) = SupneVVj(k} SI\j c(rn)W(r‘n) dQJ *

Proor. For every ne 47(k), §,, c(r,)W(r,) dQ; is F; x {A;}-measurable be-
cause the definite integral has eliminated all dependence on points in A;. Put
l‘J.i(k) = supneA +75(k) sAj c(rn)W(rn) dQJ *

Then (k) is F,; x {A;}-measurable. Let A€ F; x{A,}. Since for each ne _#7(k),
§ac(r)W(r,) d(H; x Q;)
is finite, it may be expressed as an iterated integral; namely,
Sam; $a, c(r)W(r,)dQ; dH; .

Hence, for every ne . 47(k),

§uoi(k)d(H; x Q) = (4 e(r)W(r,) d(H; x Q)
. = (4 E{c(r)W(r,) | F; x {A}}d(H; x Q;),
ie.

Di(k) = E{e(r)W(r) | F; x {A}}

with probability one.

Let Y be a F,x {A;}-measurable random variable such that Y >
E{c(r,)W(r,)| F; x {A;}} for every ne 47 (k). Put A ={Y < 5,(k)} and suppose
that (H; x Q,;)(A4) > 0, that is, suppose that the lemma is false. Then

§u Yd(H; x Q) < §,9,(k)d(H; x Q) ;
therefore, there exists ¢ > 0 such that
§a Yd(H; x Q;) = §,9;(k) d(H; x Q) — «.

By the definition of a supremum, there exists n e /7;(k) such that
S 950k d(H; x Q5) = Sapm, $a, €)W (r,) dQ;dH, + - (H; x Q,)(A)
= Saclr)W(r) d(H, x Q) + = (H; x 0;)(4)

Hence,

§.0 Yd(H; x Q) + e = §,e(r)W(r,) d(H; x Q;) + %(Hj x Q;)(4) .
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But
§4Yd(H; x Q;) = §, E{c(r)W(r,) | F; x {A;}}d(H; x Q;)
= c(r)W(r,)d(H; x Q)),
which contradicts the previous result. Therefore, (H; x Q,)(4) = 0. [
According to the corollary to Theorem 6 of Y. S. Chow and H. Robbins (1967)

page 436, an e-optimal stopping variable is given by stopping at the smallest j

such that
c(ry)W(r;) =z vi(k) — ¢

By Lemma 4, this inequality can be written in the form
€ Z SUPue i Sa, (C(r)W(r) — (ry)W(r;)) dQ;
= SUPwe s Sy (C(ra)(W(ra) — W(ry)) + (e(ra) — c(ry))W(r;)) dQ; .

Because of the independent increment and homogeneity properties of W, this
inequality can be expressed in the more convenient form

€ Z Supne/(k) Sﬂ (C(t + rn)W(rn) + (C(t + r'n) - C(t))y) dp

where the symbols r; and W(r;) have been replaced by ¢ and y respectively to
emphasize that they are constants relative to the variable of integration.
For every ne _47(k), the expression

Ele(t + r)W(r,) + (c(t + 1) — ()}
= E{c(t + r)W(r,)} + E{c(t + r,) — c(t)}y

as a function of y is continuous and non-increasing because c¢ is non-increasing.
Hence, the supremum of the expression over all stopping variables n ¢ _#7(k)
will also have these properties as a function of y. Therefore, the function f, ,
on R, to R U {— oo, oo} defined by

fer(t) =sup{y:sup,c . E{c(t + r)(y + W(r,)} > c(t)y — ¢}
is characterized by the property
SUPue pa Efc(t + 1)y + W(r)} > c(t)y — e when y < f, (1),
Sc(f)y—¢e  when y=f (1),

with the interpretation that when f, ,(¢) is + oo or — co the appropriate inequality
is deleted from the above expression. Consideration of the stopping variable
n = 2* shows that f, ,(f) = 0 for all re R, i.e.

Efe(r + 1)(y + WD} =c(t + L)y > e()y — ¢

for all y < 0. The ¢-optimal stopping variable ¢ can now be expressed in terms
of f, , as
g=sup{j: W(r) < foulr)i=1,---,j—1}.

Theorem 2 is proved.
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Observe that ¢ depends only on the values of W at parameter points {r;: i € I};
hence, g € N(k) and

SUP,e vy E{(r)W ()} = E{e(r)W(r,)} :
=

SUPue sk E{c(rn)W(rn)} — ¢,
Consequently,

SupneN(k) E{c(rn)W(rn)} = Supne/(k) E{c(rn)W(rn)} *

This result coupled with Lemma 3 can be used to complete the proof of Theo-
rem 1 as follows. For each k ¢ I, select a sequence {n(i): i € I}, each n(i) € N(k),
such that

lim, ., E{c(7,))W (Fu@))} = SUPnenan E{c(r)W (1)} -
Then a Cantor diagonalization gives
lim, ., E{c(rn)W(Fai)} = SUP.cr E{c(r)W(2)};
hence, given ¢ > 0, there exist k € I and g € N(k) such that
E{c(r)W(r,)} = sup..r E{c(t)W(r)} — ¢

Theorem 1 is proved. However, by using Theorem 2 more can be said con-
cerning a possible form for g. Take ¢ > 0. Select k € I such that

SUPye -y E(C(r)W (7)) Z SUP.er Ble(@)W(0)} — =
Then g defined by
g=sup{j: W(r) < fupu(r)i=1,---,j—1}

has the desired property; namely,
E{c(r)W(r)} = sUp,e_ ) E{c(r)W(r,)} — %

= sup,.p E{c(r)W(r)} — ¢

by Theorem 2. The corollary to Theorem 2 is proved.
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