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ON STABILITY FOR OPTIMIZATION PROBLEMS!
By LESTER E. DuUBINS? AND ISAAC MEILIJSON .

University of California, Berkeley and
University of Tel-Aviv
Small perturbations of certain species of optimization problems,—in

particular of so-called casino problems with a fixed goal—cause only small
perturbations of the optimal strategies.

0. Introduction. If a stochastic control, dynamic programming, or, more
brieﬂy, a gambling problem, is modified by a small amount, is the optimal solu-
tion also modified by only a small amount? That is, is there some kind of sta-
bility, or continuity, for such problems? Precise formulations and solutions to
this general problem are not yet in sight. So perhaps a study of a special case
can be suggestive. As pointed out in [6], where this question was raised, even
in the special case of casino problems, a species of optimization problem which,
as a mathematical object, was there introduced and studied, continuity does not
always prevail; for arbitrarily small perturbations can transform a fair casino
into a superfair casino. Once superfair and fair casinos are set aside, however,
there is indeed a kind of stability for casino problems, as this note explains.

A solution to a gambling problem involves finding two distinct, though related,
entities. The first is U, the best that can be achieved, and the second is one or
more optimal, or, if none such exist, one or more nearly optimal, strategies.
Correspondingly, one might say that continuity prevails for a house I' if a small
change in I" causes at most a small change in U. A closely related notion is
that of semi-stability, that is, with every sufficiently small change in T, there is
at least one optimal or nearly optimal strategy for I' that can be closely imitated
in the perturbed house I'. But to say that stability prevails is a stronger claim,
for it says that every strategy in I" can be closely imitated in I".

A main purpose of this note is to find a notion of nearness for a pair of subfair
casinos I and I'” that will guarantee a kind of continuity property for the mapping
I' —» U. Section 1 is devoted to the formulation of the not completely satisfying
result (Theorem 1) and, except for the last section, the remainder of the paper
is devoted to its proof.
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A main step intermediary to showing that U and U’ are close is to establish
a kind of stability for subfair casinos (Theorems 2 and 2*) to which Section 2
and Section 3 are devoted. What these Sections are about can be imparted quickly
here once these definitions are given. .

If @ is the distribution of a random variable X and ¢ > 0, then the distribution
10 of tX is a dilitation. A stochastic process f,, f;, - - - is a f-process if every con-
ditional distribution of every increment f,,, — f, given the past is a dilitation
of . Two processes are equivalent if all their finite dimensional distributions are
the same.

An idea of the contents of this paper can be gleaned from the following which
is a corollary to the Stability Theorem 2.

CoROLLARY TO THEOREM 2. Suppose that 0 and 0’ are probability measures of
bounded support and with negative means which satisfy

(0.1) §10(— o0, x] — 0'(— o0, x]| dx < €d|§ x df(x) + § x dO’(x)| ,

for some positive ¢ and 6. Then, for every 0-process with values in the unit interval,
there is an equivalent 0-process f,, f,, - - - and a 0'-process f/, f, - - - such that

(0.2) Prob (3i: |f, — f//| = 20) < 2¢.
1. A formulation of continuity (Theorem 1).

1.1. When are two optimization problems e-close? The gambling houses of pri-
mary interest for this note are based on the unit interval, that is, for each f and
each y e I'(f), 7 is a probability measure supported by the closed unit interval.
The lottery 6 that corresponds to y at f is simply 7 translated to the left by f, so
6 is supported by the closed interval [—f, 1 — f].

Of course, I' determines, and is determined by, ©, where O(f) is the set of
all lotteries ¢ available at f.

In order to reduce the number of different symbols, the same symbol is some-
times used to refer to related but distinct objects. In particular, the symbol “6”
designates a lottery, which is a probability measure, as well as its distribution
function. Therefore, by convention,

(1.1.1) 0(x) = 0(— o0, x] for all x.

As a first orientation, two lotteries # and ¢’ can be considered close if
§16'(x) — 6(x)| dx is small. However, since one gets somewhat sharper inequali-
ties by considering the implications of the smallness of § (6'(x) — 6(x))* dx and
of §(6'(x) — 6(x))~ dx separately, we shall do so. Moreover, the smallness of
§ (0'(x) — 0(x))* dx, or even of § |6"(x) — 6(x)|dx, is inadequate for our purposes.
It will be important that § (¢’(x) — 6(x))* dx be small even relative to a function
v of 6 that may itself be small. Two v’s will be exploited, the first and most
important of which is given by setting v(f) equal to the negative of the mean
of ¢, and the second is given by setting v(¢) equal to one-half of the variance
of 6.
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Of principal interest are subfair §’s, that is, §’s of nonpositive mean.

Since the arguments below yield different inequalities for different v’s, defini-
tions and proofs will be formulated so as to be meaningful for a general non-
negative v. )

For each fixed v and ¢ > 0, a binary relation § < ¢’ mod (v, ¢) will now be
defined. For simplicity, the notation will not include the dependence on v.
Rather, say that ¢ is at most e-better than ', or in symbols, § < 6" + e, if

(1.1.2) §(0'(x) — 0(x))* dx < cv(0) .

For sets of lotteries A and A’, define A < A’ + ¢ if, for each 6 € A, there is a
0’ e A’ for which 6 < 0" + «.

How should I" < IV + ¢ be defined? Plainly, it shall be necessary that, for
each f,

(1.1.3) (f) < O(f) + <.
where O(f) is the set of lotteries available in I' at f.

Even for moderately general houses I' and I, as simple examples show, (1.3)
is not a sufficiently strong condition to imply that U is not much larger than
U’. The kind of condition on I" and I'” that may prove to be sufficient for more
general pairs of houses than are the center of attention in this note is:

(1.1.4) 8(f) = O(f) + ¢

for all f, and all f” in a suitable neighborhood of f.
For the special purposes of this note, the simpler, and weaker, condition (1.3)
is adequate and is, therefore, here adopted as the formal definition of I' < I + e.

1.2. A formulation of continuity (Theorem 1). In Theorem 1, and throughout
this paper, unless plainly indicated otherwise, these notations are in effect:

(i) T is a subfair house based on the unit interval F;
(if) T = I'* is a nontrivial casino based on the unit interval F’;
(iii) ¢ and é with, as well as without, subscripts and superscripts are positive
numbers;
(iv) The usual u is defined by u(f) = 0 for f < 1 and u(1) = 1;
(v) U=Tuisthe Uof I'; U = U° = I'‘u is the U of I'".

THEOREM 1. For each I'° and ¢ there is an ¢’ such that, for the usual u and for
any subfair I' for which ' < I'* 4+ ¢', U Z U° + e.

2. A formulation of stability (Theorem 2). Four sub-sections are devoted to
the formulation.

2.1. The problem. The main problem is to give a precise meaning to the in-
tuitive idea that a gambler in one house may be able to imitate closely the strategy
o of a gambler in another house. If ¢ employs but one gamble and then ceases
to gamble, or stagnates, there is no problem of formulation. For let the imita-
tion strategy ¢’ employ a single gamble ¢, that is close to o, and then let o’ stag-
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nate, too. But if the gambler, after having his initial fortune f changed under
o, to a fortune f, employs a second gamble o,(f,) before stagnating, a problem
presents itself. For, call f,’ the fortune that the imitator-gambler has as the
result of his initial gamble ¢,/. What is desired is that if f}’ is close to f;, then
there should be available in I'” at f)’ a lottery o,/(f,’) that is close to o,(f,). But,
unless care is exercised, there is no reason for f,’ to be close to f,, for even if
o, = o, f, could be independent of f;’. Thus, to return to the initial gambles
o, and ¢, it is not enough that f," and f, be similarly distributed, but, rather,
what is needed is that the pair f* = (f}, f)’) have a distribution ¢,* under which
not only are its marginals ¢, and ¢, close to each other, but also, under g,*, it
must be very probable that f;’ is close to f,. This leads to the definition of the
product of two houses.

2.2. Product houses. The product I'* = T' x I'” of I and I'” is a house based
on F* = F x F’, and, for f* = (f, f"), r* e ['*(f*) if, and only if, the first mar-
ginal of y* is an element of I'(f) and the second is an element of I'/(f’). The
definiton is plainly meaningful for abstract houses I' and I'". However, when F
and F” are intervals, and gambles defined on all subsets are considered, it will
be of technical convenience to let I'* have an enlargement that, for the purposes
of this paper, is innocuous.

Call two gambles on the real line equivalent if they assign the same probability
to all intervals, and put also in I'*(f*) every gamble whose two marginals are
equivalent to gambles in I'(f) and I'(f).

2.3. Extensions and imitators of strategies. A partial history p, unless vacuous,
is of the form p = (f;, - - -, f,) with f, e F. Similarly, a partial history p*, unless
vacuous, is of the form p* = (fi*, - -, f,*) with f,* = (f,, f)), fi€ F, f/ e F'.
If p = (f, -+, f.)), then p and p’, the components of p*, obviously determine,
and are determined, by p*. A strategy o assigns to every p a gamble o(P) based
on F, and, of course, a strategy o* assigns to every p* a gamble ¢*(p*) based on
F*. Just as g(p) is the conditional distribution of f, , given p, so o*(p*) is the
conditional distribution of f¥, that is, of (f,,,, f7,,), given p*. Plainly, then,
given p*, o*(p*) has two marginal distributions, ¢,*(p*) and ¢,*(p), the condi-
tional distribution respectively of f, ., and of f;,, given p*.

If, for all p*, o,*(p*) and o(p) are the same, then o* is an extension of ¢. When,
as in this paper, F and F’ are intervals, also to be deemed as extensions of ¢ are
those o* for which g,*(p*) is equivalent to o(p).

If A(0) is the event that for some i, f; > f/ + 24, and o* is an extension of ¢
for which the o*-probability of 4(d) is at most ¢, then o*, as well as g,*, is an
(e, 0)-imitator of ¢. :

The o*-probability of A(d) is defined to be the supremum over all stop rules
t of the g*-probability of the event

(2.3.1) @i<t:f,=f + 20),
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which, incidentally, is a definition in concordance with the fact that open sets of
histories can always consistently be assigned a probability equal to the supremum
of the probabilities of its closed-open, or finitary, subsets as is shown in [4].

2.4. A formulation of stability realized (Theorem 2). With the help of the de-
finitions of the preceding sections, the theorem is easily formulated thus.

THEOREM 2. Suppose that I' < I'* + 6. Then, if o is available in T at f, there
is an (¢, 0)-imitator of ¢ available in I" x I'* at (f, f).

When Theorem 2 is applied to one-game casinos, the corollary stated in the
introduction is obtained.
Section 3 will now be devoted to the proof of Theorem 2.

3. The proof of stability (Theorem 2).

3.1. The probability that the difference of two sequences never exceeds d. Plainly,
for any sequences of real numbers, f,, f1, f3, - - -, and f¢/, f\', f, - - - with f; = f{/,
and any positive integer ¢,

(3.1.1) SUP; < <t (f: _fj,) = 2a(x — xi,)+ ’
where:
(3.1.2) x;=fi—fis X =f—fi-

In view of (3.1.1), the following lemma is immediate.

LemMma 3.1.1. Let x,, x/, f; and f, be stochastic processes with f, = f 4+ 331 x;;
fi=f+ Xix;/; let 6 > 0, and let t be the least i, if any, such that f, — [ = 0.
Then

(3.1.3) Prob (t < o0) = % E(Xjze (X5 — X)) -

3.2. The infimum of two lotteries.* For distribution functions ¢ and ¢’, define,
possibly as Fréchet first did, a two-dimensional distribution function 6 A ¢, thus;
(3.2.1) @ A O)x, x') = 0(x) AO'(X),
where the right-hand side of (3.2.1) is the minimum of the two numbers 6(x)
and 6'(x’).

Also, if 6 and 6’ are lotteries, any two-dimensional lottery #* whose distribu-
tion function is the infimum of the distribution functions of § and of ¢’ will be

called the infimum of ¢ and ¢’, and will be designated by 6 A §’. The following
lemma is no doubt well known.

LemMA 3.2.1. For any distribution functions 6 and 0’ on the real line, there exists a
two-dimensional distribution function * whose marginals are 6 and 6’, and under which

(3.2.2) E(X — X')* = §=_ (0'(x) — 0(x))* dx,

! One of the authors, Dubins, is appreciative of stimulating verbal comments by Giorgio
Dall’ Aglio or this topic.
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where X and X’ are the coordinate variables:
X(x, x") = x and X'(x, x") =x".

Proor. Let 6* = 6 A 6’. Under 6*,
(i) P(max (X, X’) > x) = max (P(X > x), P(X’ > x)).
Moreover, as is well known,
(i) If P(Y = 0) = 1, then E(Y) = {; P(Y > x)dx,
and
(iii) (X — X)* = max (X, X") — X".

Therefore,
E(X — X)* = E[max (X, X") — X']

= {2, [P(max (X, X) > x) — P(X" > x)]dx

(3.2.2) = {2, [max (P(X > x), P(X’ > x)) — P(X' > x)]dx
= §. (P(X > x) — P(X" > x))*dx
= {=. (0'(x) — O(x))* dx .

LEMMA 3.2.2. If 0 < 6’ + ¢, then
(3.2.3) E(X — X")* < ev(0),
where E refers to expectation under 6 A 0', and X and X' are the coordinate variables.

3.3. Relationship between strategies, stochastic processes, and incremental pro-
cesses. A strategy ¢ gives the distribution of f, and the conditional distribution
of f,,, given p, for every partial history p = (f}, ---, f,). Thus, under o, f,,
fi» - -+ is a stochastic process. And, of course, a stochastic process f, f,, « - -
with a fixed assignment of conditional probabilities determines the strategy o.
Since, in the remainder of this note, it will be convenient to employ the customary
language of stochastic processes, a stochastic process here is a strategy, or what
is the same thing, a coordinate stochastic process f,, f,, - - - with a fixed assign-
ment of conditional probabilities. There should be no confusion if a symbol
such as “f,” is used to designate a random variable, the projection onto the
second coordinate, as well as the element of F that happens to occur in the
second position of the history & = (f}, f5, - - -).

When each f; is real, and the initial state f = f; is fixed, each history 4 de-
termines, and is determined by, the increments x, = f, — f,_,.

For fixed f, the strategy ¢ determines, and is determined by, the distribution
of x, and the conditional distribution of x,,, given the past. The distribution
of x, is the initial lottery of ¢, and the conditional distribution of x,,, given p is
the lottery employed by ¢ after the partial history p = (f}, - - -, f,)--

Henceforth, the initial lottery employed by o will be designated by o,, and the
lottery employed after p will be designated by o(p).

Similarly, each two-dimensional strategy ¢* determines a two-dimensional
stochastic process f,*, f,*, - - - with fixed conditional distributions. When the
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initial state f* = f* is fixed, this process determines, and is determined, by the
incremental process x,*, x,*, - - -, where

xF = = f

(3.3.1) = (%, x/)
= (fz _fi—l’fi, _f:i—-l) .

Thus the lottery o*(p*) employed by o* after p* is the conditional joint dis-
tribution of (x,,,, x,,,) given p* = (f/*, .- -, f,*).

3.4. Infimum of two strategies. An infimum of a pair of strategies ¢ and ¢’ is
a two-dimensional strategy ¢* such that, for each p*, with component partial
histories p and p’,

(3.4.1) a*(p*) = a(p) A d'(p) »

where o*(p*), o(p) and ¢'(p) are lotteries.

Notice two aspects of this definition. The first is the asymmetric treatment
of ¢ and ¢’, for it is the lottery that ¢’ employs after p rather than after p’ that
is relevant. The second is that the definition is framed in terms of lotteries o(p),
o'(p) and o*(p*), rather than gambles, in accordance with the convention adopted
in the preceding sections. In detail, o*(p*), the conditional joint distribution
of (x,,1, X,,1), given that the past of the process under ¢* has traced out the
partial history p*, is the infimum of ¢(p) with ¢’(p), where a(p) is the conditional
distribution of x,,, given that the past of the process under ¢ has traced out p,
and ¢’(p) is the conditional distribution of x,,, given that the past of the process
under ¢’ has traced out the same partial history p.

Here is another definition. Write ¢ < ¢’ + ¢ if

(3.4.2) a(p) £ d'(p) + ¢ forall p.

In contrast to the preceding definition, this one does not threaten to be mis-
understood. For here, were both ¢(p) and ¢’(p) to refer to gambles, rather than
lotteries, used after p, the meaning would not be altered.

Let o A ¢’ designate the infimum of ¢ and ¢'.

LEMMA 3.4.1. Suppose that o and ¢’ are strategies with initial fortune f, and that
0 < o' + ¢. Then, under o A d’, the process fi*, f1*, - - - with fi* = (f,, f,) satisfies:
(3.4.3) E[(x,41 — Xpp) " [fi* 1 1 = n] < ev(a(p))

= G’U(O(fl, N "fn)) .
Proor. Apply Lemma 3.2.2.

We use the notation (j < ¢) to designate the indicator function of the event
(J = t), which accords with convenient notational devices suggested by de Finetti

[1].

LeMMA 3.4.2. Letf, f,, f,, - - - be anonnegative stochastic process with increments
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Xy, Xy +++, and let t be a stop rule for f, f\, f,, ---. Then
(3.4.4) E(Z; (U= 0E[=x;lfp - i) =S

If, in addition, it is supposed that 0 < f, f, fy, - - - is subfair with values in the unit
interval, then

(3.4.5) E(S,(J < 0)Var (5|f -5 fi-) < 2f -
Proor orF (3.4.4). Verify that, for L, the left-hand side of (3.4.4),
(3.4.6) L=E(_Zj§txj)=E(f_ft):f_Eft§f'

That (3.4.5) holds, is shown in [3].
Of course, when v(6) is the negative of the mean of 6, (3.4.4) states the same as

(3.4.7) E(Z; (J = DE[(o(fo - fim)D =S -

Moreover, if v(f) is interpreted as one-half of the variance of ¢, then also
(3.4.5) states that (3.4.7) holds, where now the inequality is even strict.

Henceforth, the underlying v is either the negative of the mean, or one-half of the
variance. With this understanding, Lemma 3.4.3 is, in effect, two propositions.

LemMma 3.4.3. Let ¢ and o' be strategies based on the nonnegative reals with the
same initial fortunes, and suppose that ¢ < o' + €. Then, under ¢ A o',
(3.4.8) Prob3j:f;, — f/ = dof) < e.

Proor. According to Sub-section 3.1, the left-hand side of (3.4.8) is majorized
by (0f)'E(X ;<. (x; — x;/)*), where ¢ is the first j for which f; — f/ > of.

For the rest of the proof, compute thus:

EXic (x5 — x)" = E(L; (J = 0)(x; — x;)7)
= E(Z; B[ = 00 = %) A5 - 7))

(3.4.9) = E(S, (J < 0B — 5 1S5 o fi])
< OB(3, (J £ DE[(O(fy - > fi-))
< if ,

where the first and second inequalities hold by Lemma 1 and by (3.4.7),
respectively.

3.5. The stability Theorem 2, slightly generalized.
THEOREM 2*. Suppose that for some o available in T" at f,
(3.5.1) 03¢ 4+ ¢e0.

Then there is a o* available in I' x I'* at (f, f) which is an (¢, §)-imitator of ¢.
Plainly, Theorem 2 is immediate from Theorem 2*.
Also, since ¢* is an (¢, d)-imitator of g, it is equally plain that, under o*,

(3.5.2) Prob (3i: f/ = 1 — 20) = u(o) — ¢,

where u(0) is the probability under ¢ that for some i, f;, > 1.
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Proor oF THEOREM 2*. Let 3 be a real number. If ¢ is the distribution of f,
let 86 denote the distribution of gf. If @ is the joint distribution of f and g, let
B0 denote the joint distribution of f and Sg.

Let @« = (1 4 )%, and, in terms of o, ¢’ and a, define the two-dimensional
strategy o*, thus. The initial lottery of o*, say, a,*, is the infimum of ¢,, the
initial lottery of o, with ag,/, where ¢, is the initial lottery of ¢’. In symbols,

(3.5.3) g,* = g, N\ agy .

Similarly, for each partial history p* = (fi*, - -+, f,*),
y p yp S

(3.5.4) 7*(p*) = o(p) A ad'(p),
except, if, for some j < n, af; > f/, let
(3.5.5) a*(p*) = a(p) A 6(0),

where d(0) is the trivial lottery that assigns probability one to the singleton {0}.
This o* satisfies the conclusion of Theorem 2*. Why? That ¢* extends o is
obvious from its definition. To see that ¢* is available in I' x IV at (f, f), it
plainly suffices to verify that a¢’(p) is available in IV at f,” if af; < f; for all
Jj < n. For this, recall that since ¢’(p) is available in I at f,, and since I'" is a
casino, ag’(p) is available in I'" at af,, and hence also at f,’, since af, < f,’.
Therefore, to complete the proof, it is only necessary to verify that under o*,

(*) Prob(Fi: f, = f/ +20) S e.

For this purpose, consider the two-dimensional process (f, f), (fu, /i), (fas fs'')5 - *
governed by the strategy ¢ A ¢’. Of course, ¢’(p) is the conditional distribution
of fI'., — [, given the past. Since ¢ A (a¢’) = a(s A d’), as far as verification
of (*) is concerned, it may be supposed that

(3.5.6) N=rn f=Ff+afi"=1);
and, inductively,

(3.5.7) froa=fd +a(fla=1f),
unless, for some j < n, af; > f,/, in which event,
(3.5.8) nen=fa

To complete the proof of Theorem 2*, three preliminary lemmas are needed.
LemMMA 3.5.1. If af; < f;/ forall j < n, then
(3:5.9) fi=af/ + (1 —af

=f+aZ{=l(fi” -
forallj<n+4 1.

Proor. By induction on n.

LeMMma 3.5.2. If f; — f;" < of forall j < n, then af; < f; forall j < n.
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Proor. For n = 0, it is clear, since f, = f,’ = f,”” = f. Suppose now that for
some n, f; — f;” < df, for all j < n. Then, by induction, af; < f for all j <
n — 1, and hence, by Lemma 3.5.1, f/ = af,”” + (1 — a)f for j < n. Also,
since f, — f,”" < of, '

af, < af,” + adf
(3.5.10) =af,” + (1 — a)f
=f..
This completes the proof.

LemMa 3.5.3. If, for every j< n, f; — f,”" < Of, then for every j < n 4 1,
fi— 1 <2

Proor. According to Lemma 3.5.2, af; < f,/ for j < n. Hence, by Lemma
35., ff =af ! + (1 —a)f forj<n+ 1.

Therefore,
fi—=fi=fi—o" — (1 —a)f
<fi"+of —af! — (1 —a)f
(3.5.11) =1 —-af) +o — (1 —a)
<(Il—a)+0d+0
<0+d5+0,

where the fact that f;”” < 1 is used.
The proof of Theorem 2* is now completed thus.

(3.5.12) Prob(3j: f; — f/ = 20) < Prob3j: f; — f;" = 0f) S ¢,
where the first inequality holds by Lemma 3.5.3, and the second by Lemma 3.4.3.
4. Remainder of the proof of continuity (Theorem 1).

4.1. The uselessness of randomization. Let v be a bounded utility defined on
F. Define v* on F* = F x F’ thus

(4.1.1) ve(f, f) = v(f) .
Let V' be the U of the gambling problem (I, v), that is, in the notation of [6],
V' = TI'v. Similarly, V* = I'*v* is the U of (I'*, v*).

ProposITION 4.1.1. Forall fe F and f' € F',

4.1.2) VX(f. f)) = V() -
Proor. Plainly,
(4.1.3) V(f) S V(A1)

for, in determining V(f), a sup of v(s) or, equivalently of v*(s*), is taken only
over those ¢* which depend only on the first coordinates of the fortunes f,*.
For the reverse inequality, apply Theorem 2.12.1 in [6]. That is, first verify
that

4.1.4) V(f) = v, f") -
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Second, if Q(f, f’) is defined as F(f), then Q is excessive for I'*. That is, for
r* e TH(f*), with f* = (f, f"),
7Q = § Q(s, 1) dy*(s, 1)
(4.1.5) = { V(s) dy(s)
= V()
=0,/
where 7 is the marginal of y* on F. That the inequality holds is the content of
Theorem 2.14.1 in [6]. From Theorem 2.12.1 in [6] conclude that Q > V*,
The proof is complete.
A randomized strategy available in I at f is any strategy o* available in I'* at

(f: f") for any f".

Interchanging the roles of I and I'” one obtains:

CororLARY 4.1.1. For any f, v, ¢* and randomized o* available in I at f,
there is an (ordinary) strategy ¢’ available in I'” at f such that

(4.1.6) v(a") > v¥(a*) — e* .

Though not important for the main purposes of this paper, we note that
Proposition 4.1.1 and Corollary 4.1.1 apply to all abstract gambler’s problems.
Indeed, F and F’ can be arbitrary sets, and I'* can be the product of any T’
based on F with any IV based on F’. In particular, for all f/, I'(f’) could be
the set of all gambles on F”’.

4.2. The end of the proof of continuity (Theorem 1). Theorem 1 follows easily
from the following more general formulation, which is sometimes applicable
when Theorem 1 is not.

THEOREM 1*. Suppose that for some ¢,-optimal strategy o in T' at f, there is a
o' in I at f, such that ¢ < ¢’ + €0, and that the oscillation of U’ on every interval
of length 20 is at most ¢,. Then

(4.2.1) UNzUf)—(E+eate).

Of course, in Theorem 1*, ¢, may be the smallest number such that U(g) —
U'(h) < e, for all g and A for which |g — A < 24. Incidentally, as shown in [2],
when U’ is a casino function, 1 — U’(1 — 24) is the minimal permissible e,.

Proor oF THEOREM 1*. By Theorem 2*, there is a ¢* available in " x I at
(f5 f) such that, the ¢*-probability that for some i, f/ > 1 — 25 is at least
U(f) — & — ¢. Since o* is a randomized strategy available in I'” at f, Corollary
4.1.1 applies to v, the indicator function of [1 — 24, 1], to yield a ¢ in [ at f
under which
(4.2.2) Prob(@i: f, =21 —20) = U(f) — ¢, —e — e*.

Moreover, by hypothesis,
(4.2.3) U1l —-20)=1—s¢,.
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As is easily seen, U'(f) is no less than the product of the left-hand sides of (4.2.2)
and (4.2.3). Hence,

(4.2.4) U(f) = Uf) — (e + & + & + ¢*) .
Since ¢* is arbitrary, the proof is complete.

Proor oF THEOREM 1. GivenI” = I'*ande > 0, choose 4 so that (4.2.3) holds
with ¢, = le, and let ¢’ = d¢,. Now let I' be subfair and satisfy I' < IV 4 ¢’;
let o be an ¢,-optimal strategy in I' at f. There is a ¢’ in ['" at f such that ¢ <
o' + ¢'. According to the conclusion of Theorem 1*,

(4.2.5) U(f) 2 U() — (e + & + )
= U(f) — (e + )
Since ¢, is arbitrary, the proof is complete.

5. Some remarks on the applicability and inapplicability of the continuity
and stability theorems. For an illustration of the applicability of the theorems
offered here, consider red-and-black casinos I' and IV = I'* with parameters w
and v,

(5.1) O<w <w= 3.

Case 1. v = v,, where v,() is the negative of the mean of 6. As is easily
checked for v, ' £ I'* 4 ¢ for

(5.2) e =2(w— W)/l —2w.

Hence, if the inequality in (5.1) is strict, the hypotheses of the theorems are
satisfiable, and the conclusions therefore apply. In particular, if w and w’ are
much closer to each other than they are to }, Theorem 1 implies that U and
U’ are close to each other, and Theorem 1* yields an upper bound to their
difference.

If, however, w = 1, the hypothesis that ¢ < ¢’ + ¢ is not satisfiable for v = v,.

Moreover, no hypothesis can then guarantee the conclusion of Theorem 2.
For no matter how close I may be to I', there will certainly be a strategy o,
available in I" at , that increases the gambler’s fortune, sometime in the future,
to 1, with probability 1, and that employs such tiny bets, that no strategy o’
available in I at 1 can imitate ¢. For, if ¢’ employs bets significantly larger
than does o, it plainly does not imitate o; whereas if ¢’ employs bets of size
comparable to those employed by ¢, then the probability that, under o, the
gambler’s fortune increases to 1 is microscopic, as can easily be seen, for example
with the help of [5].

Case 2. v = v,, where v,(#) is one-half of the variance of 4.

As is easily verified, even if w < 4, there is no finite ¢ for which' < IV 4 ¢,
so Theorems 1 and 2 are inapplicable. By good fortune, even for w < , Theorem
1* is satisfied for suitable o, ¢’, ¢’s and §, thus yielding quantitative information,
in particular, about the difference between U'(f) and f.
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Returning to more general houses I' and I, it would be desirable to find a
less restrictive notion of closeness for I' and I'" which would guarantee that U
is within a prescribed ¢ of U’. Even the kind of continuity established here by
Theorems 1 and 1* does not seem to be improvable to an assertion about uniform
continuity, unless, possibly, a neighborhood of the fair casinos were deleted
from the domain of the mapping I' — U. This can be contrasted with the fact,
which we do not prove here, that once there no longer is insistence on a pre-
scribed e, there is definable even a very weak notion of convergence such that,
if a sequence of subfair casinos I', converges to a fair casino I, then U,(f) con-

verges to U(f) = f.
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