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ON THE DIVERGENCE OF A CERTAIN RANDOM SERIES

By L. H. KoopMaNs, N. MARTIN, P. K. PATHAK AND C. QUALLS
The University of New Mexico

The divergence of the stochastic series 3,7, S»*/n is investigated,
where Syt is the positive part of the sum of the first # components of a
sequence of independent, identically distributed random variables {X;, i =
1,2, ---}. It is shown that if P(X; = 0) # 1 then either this series or the
companion series Y;_; Sy~/n diverges almost surely. If EX;? < co and
EX; = 0 then necessarily both of these series diverge. The method of proof
also yields the almost sure divergence of 35, Sw/n. These results are
extended to the series Y o_; Sut/ni*? for 0 < p < 4 by a slightly different
method of proof which does not, however, yield the divergence of
Yy Sufnlte,

1. Introduction. LetX,, X,,- - beindependent, identically distributed random
variables with partial sums S, = Y7_, X;. Further, let S,* = max (S,, 0) and
S,” = max (—S,, 0). In[4]anadaptive sequential algorithm of interest in Learn-
ing Theory was developed. It was claimed that the algorithm converged to a
“good” set of strategies with finite loss. In [5] it was shown that the finite loss
claim is not valid, but that the algorithm does converge to a “good” set of strate-
gies under rather restrictive assumptions. In investigating this question when
these assumptions are not satisfied, it was established in [5] that a “good” set of
strategies does not exist if the series
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diverges. Let Y_ = %, S, /n. In Section 2 of this note we establish that if
P(X, = 0) = 1 then a certain trichotomy always holds which implies that
P(Y, = o) =l or P(Y_ = co) = 1. We also establish that if EX;’ < oo and
EX, = 0 then both equalities hold, thus the series of interest diverges almost
surely.

These results will be seen to depend on the divergence of the series 317, n7".
Because S,* and S, increase with n “on the average” one would expect at least
one of the series

A S -
Yi(p) = Xia and Y (p) = Xia —11:;7

nitr n
to diverge for positive values of p. In Section 3 we show by a slightly different

method of proof that if P(X; = 0) # 1 then for 0 < p < 4, P(Y,(p) = o) =1
or P(Y_(p) = oo) = 1. Again, both diverge if EX;> < oo and EX, = 0.
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2. Divergence of Y,. Let! = limsup, ;7 S,/n, Y = liminf, Y™ S,/n
and Y = YI;_,;, where I, denotes the set indicator function of 4.

THEOREM 1. If P(X, = 0) 1, then exactly one of the following holds:

(i) P(Y = —o0) = 1
(i) P(Y = o0) = 1

Thus, in particular, Y ,7_, S,[n diverges almost surely.

Proor. Write 337, S,/n=U, + V,, where U, = (1 +  + --- + 1/m)X,.
Note that

[limsup V,, < o0,lim U, = —o0] C [Y = —o0]

[liminf V,, > — o0, limU,, = o] C [Y = o]

[limsup ¥V,, = oo, liminf V,, = — oo, limU, = + 0] C [¥ = 0]
[limsup ¥, = oo, liminf V,, = —o0,limU, = —o0] C [Y = —o0].

Now, by the Hewitt-Savage Zero-One Law ([2] pages 63, 64), the events on the
right-hand sides of these inclusions have probability zero or one. If P(X, <0) =1,
clearly (i) holds, while (ii) holds if P(X; > 0) = 1. If both P(X,>0) and P(X,<0)
are positive, then so are P(lim U,, = o0) and P(lim U,, = — o). Since the se-
quences {U,} and {V,} are independent it follows that at least one of the first
three events on the left of the above inclusions has positive probability and the
third and forth have positive probability together. Consequently, the events on
the right can be combined into three mutually exclusive events [Y = oo], [Y =
—oo]and [¥ = o0, Y = —oo] at least one of which (and hence exactly one of
which) has probability 1.
This theorem has the following immediate corollary.

CorOLLARY 1. If P(X, = 0) 1, then either P(Y = o) or P(Y_ = c0) =1
or both.

Examples are easily constructed in which one or the other or both equalities
hold. Clearly, if X is symmetrically distributed, both hold. On the other hand,
if EX, exists then it is easily argued by means of the strong law of large numbers
that exactly one of the equalities holds if EX; = 0. If EX, = 0, the situation is
not clear. However, it is resolved if the variance exists as the next theorem
shows.

THEOREM 2. If EX;* < co and EX, = 0 then P(Y, = c0o) = P(Y_ = o) = 1.

Proor. By the Hewitt-Savage Zero-One Law, [Y, = co]and [Y_ = co] have
probabilities 0 or 1. Thus, if the conclusion of the theorem is false, necessarily
either (Y = o) =lor (Y = —o0)=1. If T, = 3;», S,/n and {r,} is any
sequence of positive constants it follows that either lim,, P(r, T, > 0) =1 or
lim,, P(r, T, < 0) = 1.
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Now, write T, = 1=, ¢, , X,, where

b

1 1

C = oo -

k,m k + + m
and consider
T,
(1) m
(D)
whereY, ,, = d, ,X,andd, , = ¢, ./(5r, ¢l )} It will follow that the sequence
of random variables (1) is asymptotically normal with mean zero and variance
EX? if the normal convergence criterion

) lim,, X1 § 20 V'Fim(dy) = 0

is satisfied, where F, , is the cdf of Y, , ([3] page 103). However, it is easily
established that 4, ,, > d,, > --- > d, , for all m and lim, d,, = 0. Thus,
letting F, denote the cdf of X,, we have

2t Sze V(@) = X1 dim §1a,, o1z XFi(dX)
S 2D dim iy paize X*Fi(dX)
= $iay prize X*F1(dX) .
This last expression tends to 0 as m — oo and condition (2) is established. It
follows that lim,, P(r,, T,, > 0) = lim,, P(r, T, < 0)= L whenr, = (X0, ci )
This establishes the theorem.

= ka=1 Yk,m ’

REMARKS. Theorem 2 can be generalized to some extent using the general
central limit theorem developed, for example, in [3]. All that is required is that
there exist a sequence {r,,} of positive constants such that {r, T} converges in law
and the resulting infinitely divisible limit law have support on both sides of the
origin. Baxter and Shapiro [1] give necessary and sufficient conditions for the
support to be one-sided and by violating one of their conditions or by selecting
the support to contain the origin (see [7]), examples can easily be constructed
for which the conclusion of Theorem 2 is valid even when EX;? = oo.

However, as we now indicate, this method cannot be used to weaken the
moment conditions of Theorem 2 to E|X,| < co and EX, = 0. Suppose that
P(X, = —2) = } and that X, has a density function asymptotically of the form
f(x) ~ x7*log~* x as x — oo normalized to guarantee P(X, > 0) = } and EX,* = 1.
It follows that EX, = 0. Now, let b, be defined implicitly by the relation

It can be verified that if 7,/b, = Y™, Y, , as in (1), then the conditions for the
convergence in law of T,/b, given in ([3] Theorem 4, page 124) are satisfied.
Moreover, M(u) = 0, N(u) = 0, ¢> = 0 and y(r) = 1, where the functions M(u),
N(u) and the constant ¢* are determined by the Lévy representation of the
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characteristic function of the limiting random variable and

7(r) = lim,,_, >7, Slzl<r xF, .(dx) .

It follows that T,/b,, — 1 in law and in probability; but this information is in-
sufficient to perform the classification in Theorem 1. The almost sure conver-
gence of T, /b, remains an open question.

3. Divergence of Y (p).

THEOREM 3. If P(X, = 0) = 1 then for 0 < p < 4 either P(Y (p) = o0) =1
or P(Y_(p) = o0) = 1 (or both).

Proor. For p =0, let R, = S,/n*. Then
R, *
n

Y+(1’) = Zn:l = Zn:l 7 1(0,1)(Rn) + Zn=1 7 I[l,oo](Rn) .

But
w R, w 1
Zn=1 -n“ I[l,w)(Rn) Z Zn=1 7 I[l.w)(Rn) .

Thus, denoting the series on the right-hand side of this inequality by W (p), it
follows from the Hewitt-Savage Zero-One Law that if P(W (p) = co) > 0, then
P(Y.(p) = o) = 1.

Let W_(p) = N7 ™ _n(R,) and W(p) = D5, 1™, (R,). By the same
argument, P(W_(p) = oo) > 0 implies P(Y_(p) = o0) = 1. But, W (p)+W_(p)+
W(p) = Yg..n~' = co. Thus, at least one of these series is infinite with positive
probability. Now, if P(W(p) = oo) > 0 then EW(p) = co. However,

EW(p) = S+ PR, < 1)

1
= >r, o P(]S,| < n?).

By a theorem of B. Rosén ([6] page 324), for 0 < p < } there exists a constant
C (depending on p put not on #) such that P(|S,| < n*) < Cn?~1. It follows that
EW(p) < oo; thus P(W(p) = o) = 0 for these values of p. Consequently,
P(W_,(p) = o) > 0 or P(W_(p) = oo) > 0 and the theorem is proved.

COROLLARY 2. If EX?< coand EX, =0, then for0 < p < %, P(Y (p) = o0) =

Proor. The proof of Theorem 2 goes through with ¢, ,, =k=*P 4 ... 4 m=0+»),
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