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SYMMETRIC MARKOV CHAINS!

BY MARTIN L. SILVERSTEIN

University of Southern California

W. Feller’s decomposition into a road map and speed measure are
adapted to symmetric Markov chains with instantaneous states. The road
map is a family of matrices defined by time changing the process with
measures concentrated on finite sets.

0. Introduction and notations. Let P,(x, y) be a standard transition matrix
satisfying a condition of symmetry

(0.1) m(x)P(x, y) = m(y)P(y, x) .
The rate
(0.2) g(x) = lim (1/){1 — Py(x, x)} (t10)

exists with 0 < g(x) < +oo. If every state is stable, that is, if g(x) < + oo then
also

(0.3) lim (1/)Py(x, y) = q(x)P(x, )

for x # y with P a substochastic matrix which vanishes on the diagonal. (See
[1].) If P is recurrent, then P(x, y) is completely determined by (0.2) and (0.3).
This need not be the case if there are transient state for P. In [10] we com-
pletely classified solutions of (0.2) and (0.3) under the assumption that P is
transient, irreducible and strictly stochastic. Our main tools were certain
techniques introduced in [8] and some discrete time potential theory associated
with the matrix P.

We begin here a study of symmetric standard transition matrices which need
not satisfy the restriction g(x) < +oco. Thus we do not rule out instantaneous
states. The main result in this paper is that Feller’s decomposition [2] into a
road map and a speed measure still makes sense if we replace the matrix P by
a family of matrices P, indexed by finite subsets M of the state space. Roughly
speaking P, is Feller’s road map determined by “looking at the process only
when it is in the set M.”

After some preliminaries in Section 1 the road map is introduced axiomatically
in Section 2 and the connection with continuous time Markov chains is estab-
lished in Section 5. These three sections form an independent unit which can

Received June 25, 1973.

1 This research was supported in part by the National Science Foundation under grant GP
24239. :

AMS 1970 subject classifications. Primary 60J10; Secondary 60J25, 60J45.

Key words and phrases. Symmetric Markov chains, instantaneous states, road map, speed
measure.

681

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Probability. ®

www.jstor.org



682 MARTIN L. SILVERSTEIN

be read independent of the rest of the paper. In the remaining two sections we
develop some discrete time potential theory.

I'am grateful to the referee for informing me that the general technique of
approximating a Markov chain by time changes onto a finite set has also been
exploited by D. Williams, D. Freedman and others. We refer the reader to the
recent monograph [3], for a survey of results and for detailed references to the
literature. InSection 5 we interpret Freedman’s sufficient condition for existence
in our set up.

Added in proof. The author is now preparing a monograph [11] which unifies
and extends the results in [8] and [9]. This will be preferable to either [8] or
[9] as a reference for background material. Also the material in Section 27 of
[11] will supplement the results established here.

Our notations are consistent with [10]. Functions and measures on I are
viewed as column vectors and row vectors and then matrices are viewed accord-
ing to the usual conventions. The indicator of a set w1ll be denoted both by 1,
and I(4). The integral of a function & over the set determined by a partlcular
condition, say X, = y, will be denoted both by Z[X, = y; £] and LI(X, = y)¢.
Questions of measurability are taken for granted. All functions are real valued.
In particular L*(m) or L*(X, m) is the real Hilbert space of square mtegrable
functions on the measure space (X, y).

Elementary results for martingales and Markov chains are taken for granted.
We list [5] as a general reference.

1. Preliminaries. In this section M’ is a finite set and P(x, y) is a substochastic
matrix on M’ which vanishes on the diagonal. Thus

(L.1) P(x,y) = 0; P(x,x) =0; 2P, )1,

We assume that there exists an everywhere positive measure « on M’ which |
symmetrizes P:

(1.2) a(x)P(x, y) = a(y)P(y, x) -
We also make the harmless assumption that P is jrreducible.

We augment M’ by introducing a dead point 3. Functions f on M’ are extended
to M’ U {9} by the convention f(9) = 0. The preliminary discrete time sample
space Ay, is the set of sequences w = {w(n)}7_, in M’ U {3} which satisfy the
following condition. ,

ConpiTioN 1.1. There exists a life time {(w) with 0 < ¢(9) < + oo such that
o(m) =difandonlyifp > {(@).

Of course the dead point 0 can be gliminated when P is recurrent. It will
turn out however that our main concern is with the transient case. -
The ,t_rajggtory variables X, are defined on A, by

X, (0) = o(n) .



SYMMETRIC MARKOV CHAINS 683

For x in M’ the probability %, is the unique probability on A, such that
(1.3) PBo[Xo = x, X; = x5 -+, X, = x,] = P(x, x;) -+ P(X,_y, X,)
forn =z O and for x,, - - -, x, in M’. For E a subset of M’ the hitting time ¢(E)
and the delayed hitting time o*+(E) are defined by
o(E)y =inf{n =2 0: X, isin E}
o*(E) = inf{n > 0: X, isin E}
with the understanding that these times are +oco when not otherwise defined.
The hitting probability H*(x, y) is defined by
HE(x, y) = PB,[0(E) < + 005 X,y = y] .
The last exit time ¢*(E) is defined by
o*(E) =sup{n =2 0: X, isin E}
with the understanding that ¢(E) = — co when not otherwise defined.
For M a subset of M’ we define
Py’(y, 2) = Plo"(M) < +00; Xpui) = 2]
Py(y, 2) = Bylo(M — {y}) < 4003 Xowopyy = 2]
for y, z in M, and also
ay(y) = {1 — P,"(y, y)}a(y)
for y in M and we are ready for

THeoRreM 1.1. (i) «, symmetrizes P,. That is,

fory, zin M n(Y)Pu(y> 2) = ay(z)Py(z, y)
ory, zi .

(ii) If f defined on M’ satisfies f{ = H"f, then
(1.4)  § Teyimw @P ) = fDF + Do a0l — PLx)}/(x)
=3 Zeymu ()P, S (x) — fO)F

+ Zowmw ({1 — Py 1(0)}f*(x) -

This simple theorem is our starting point. Note first that
Py’ = i, 1, P(1, P}*1,

and therefore by (1.2)

a(y)Py(y, 2) = a(2)Py(z, y) -
But it is easy to check that for y =+ z ’
(1.5) Py'(y, 2) = {1 — Pi’(y, »)}Pu(y> 2)
and (i) is proved. Our main tool for the proof of (ii) is a technique introduced

in Section 7 of [8]. .
We consider first the case when P is transient so that the potential operator

G(x,y) = Zise PH(x, y)
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is everywhere finite. It is easy to see that P*1 — 0 pointwise and therefore
1 = G(1 — P1). The symmetry condition (1.2) implies an analogous symmetry
condition for G and this leads in turn to the identity

2 a(){l — PIY()E, L3, ¢(X,) = 2 a(x)e(x)
which plays an important role below. Next we introduce entrance and return
times for excursions into D = M’ — M. These are defined by
e(l) = inf{n > o(M): X, isin D}
r(l) = inf{n > e(1): X, isin M}
e(2) =inf{n > r(1): X, isin D} etc.
with the understanding that e(i) or r(i) = 4 co and therefore X, or X, ,, = 0
when not otherwise defined. By the martingale property of f(X,) along
excursions into D,
3 2. a1 — PINX)E, 20, {f(X,) — [(Xeyy-)F
=3 Zyinn () Zamp PO NS () — f(F
+ 2 Zymu a1 = PO ()
+ 3 2. a({l = PIYX)E, Zinsoun Lo(X){f (Xasr) — XY -
On the other hand
3 2. a()fl — PIY(x)E,[0(M) < o3 fH(Xoun)]
=4 2. a(){l — P1}(x)f*(x)
+ 3 Lo a(){l = PIN0E, Zncoun LX) (Xasr) — (XN
and putting all this together we get
3 2. a(){l — PIY(x)(E, 2 {f(Xr) — f(Xeir-0)F
+ f[o(M) < +00]/*(X,un))
= % 2oy @()PC () = fOI
+ 2. a(){l — P1}(x) /(%)
— % Zyemu aOPG () — fF

which is equivalent to
% 2y @OPC (%) — SO + 2 a()fl — P1}x) f(x)
=% Zuenn ¥ NP0, D) = f@OF + Lymu a1 = PLIONS Q) -
Finally we apply (1.5) and its corollarsr
(1.5 1 =P 1(y) = {1 — Py’(y; {1 — Py 1(3)}

and (1.4) is proved for P transient.
To handle P recurrent, fix a reference point 0 in M and define

Q(x,y) = P(x, y) if x,y=+0
=0 if x=0 or y=0.
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Then Q is transient and the theorem can be applied for Q. Since P and P,
must be strictly stochastic there is no loss of generality in assuming that f(0) = 0
in which case

3 Doy @(X)PC Y (x) — )Y o
=} 2., ()00, () — O + Za a(x){l — Q1(x)}/*(x) -
On the other hand
Qu(y> 2) = Pu(y>2) if y, 20
=0 if y = 0 or z=0
)'(> ) = Pu'(y,y) y#0
and the theorem is proved for P recurrent.

2. Road maps. The state space I is a denumerably infinite set. We assume
given for each finite subset M of I an irreducible substochastic matrix P, on M
and a measure a, on M such that a, symmetrizes P,. We assume further that
for M a subset of M’

2.1 Py(y, 2) = Bumlo(M — {y}) < +005 Xy = 2] -

2:2) ay(y) = {1 — Bur,[o7 (M) < +005 Xoran = Y]} (y) -

Of course PBy,, is defined in the same way as P, in Section 1 with P,, playing
the role of P. Such a collection will be referred to as a road map on 1. It is
easy to check that the P, are either all transient or all recurrent and so it makes

sense to speak of the road map as being transient or recurrent.
For f defined on I and for M a finite subset of I we define the Dirichlet norm

2-3) " (f, ) = % Dywimn auDPu(y> D) = (D)}

. . + ZﬂlnMaM(y){l - PM1(y)}f2(.y)‘
The right side of

24 HYf(x) = Cupna[a(M) < 4005 f(Xoun)]

is independent of the choice of M’ containing M U {x} and so H"f is well defined
by (2.4). By Theorem 1.1

C(f, f) = " (Hf, H'f)
for M’ containing M. Now consider g vanishing on M and 4 satisfying H"h = h
and as in Section 1 let D = M’ — M." Then
G (h, 9) = % Xarwinp A (X)Py(x, W){h(x) — A(W)Hg(x) — g(w)}
+ Zainn Ly % (¥) P (3, y){A(x) — A(y)}9(x)
+ Zemp @ ({1 — Py 1) f(x)9(x)
= Zainp A (){A)IE) Py 15(x) — 9(x)Py: 1p4(x)
+ BIX)Py Lu(x) — JHPy Lyh(x) + ARG — Py 1)(3)}
= Yuinp A (X){A(x)9(x) — g(x)Py. h(x)} = O
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since P, h = h on D by the “optional stopping time theorem” for martingales.
Thus

(2.5) &' (h,g) =0
and it follows that for arbitrary f .
(2.6) ' (f, f) = € (f.[) + €(f — Hf.[f — Hf).

In particular G*(f, f) increases with M and we can define the associated Dirichlet
norm

2.7) &> /) = sup &(/. [) -
The associated Dirichlet space is the collection & of functions f on I for which
E(f,f) < +oo.
It follows from (2.2) that «,(y) increases with M and therefore
a(y) = sup ay(y) M in I

is well defined.
DeriNITION 2.1, yinTis stable if a(y) < + oo and instantaneous if a(y) = + co.
For y in I let e, be the indicator of the set {y}. Thus
e (x) =1 x=y

=0 xXF+y.
Clear}y

€"(e,s €,) = ay(Y1 — Py l(D)} + Zawy @u(V)Pu(y, %)
= ay(y) .
and so e, belongs to § if and only if y is stable in which case
E(eyr €,) = a(y) -
3. Discrete time potential theory. In this section we consider a transient
road map {P,} with corresponding symmetrizing measures a,. Sets M, M’ below

are understood to be finite subsets of I.
If x, y belong to M and if M’ contains M then clearly

Zino (Pi)"(x, y) = Xin—o (Pi)"(x, I — B lo™ (M) < +o005 Xpp iy = 1}
and from this it follows that the potential kernel
(3.1) N(x,y) = Do (Par)" (x5 y)au(Y)

is independent of M containing x, y. Clearly every entry N(x, y) > 0.
A function & on I is excessive if it is finite and

3.2) h=0; h=P,h on M

for every M. If h is excessive and nontrivial then A(x) > O for every x in L.
Also

(3.3) P,h>=P,h on M
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whenever M’ D M. This follows upon observing that A(X,) is a supermartingale
relative to P . . The conditioned matrix P," is defined by

Py (x, y) = (1/(x))Py(x, y)A(y) -
The conditioned probability $,,, is defined in the same way as 935, except that
P, is replaced by P,".

For each M let the preliminary sample space A, be as in Section 1. The
dead trajectory 4, is the unique member of A, such that X (6,) = d. If M’ D
M there exists a natural mapping J,,.,, from A,, to A,. This is defined by setting

Jyyo(n) = o(z,) n=0
where
7, = o(M)
7, = inf{n > e(M): X, isin M, X, #+ x,,,} etc.

with the understanding that r, = + oo and therefore J,,, w(n) = d when not
otherwise defined. The inverse limit A,° is the collection of families {w,} with
each w, in A, and such that J,,,, ,, = @, whenever M  M’. The discrete time
sample space is the reduced inverse limit A, = A,° — {0} where 4 is the point
in A° whose components are the dead trajectories d,. We denote by J, the
natural projection of A, onto A,.

For x in M and for M c M’ clearly

@(M’)xg OV = @(mzf

for ¢ = 0 on A,. Since B4, does not charge the dead trajectory d,, it follows
by a trivial modification of the argument on page 138 of [7] that there exists a
unique probability 3, on A, such that

&0 Jy = Cuy.f
whenever M contains x and whenever § > 0 on A,. More generally for 2 > 0
excessive there exists a unique probability %3,* on A, such that
CLrEody = Clyf .
Trajectory variables, hitting times and exit times are not well defined on A,.
However first hitting positions X, ,, and last exit positions X, , are well defined
at least for E finite. Once and for all we adopt the convention that X, ;, = 0 and
X,vz = 0 when not otherwise defined.
For Ec M c M for h > 0 excessive and for x in E
Plunalo"(E) = +o0] = {l — Burul Xoran = XIBlul0*(E) = + 0]
and therefore

(3-4) Lg'(x) = 1y(x)au(x)PBisLo*(E) = +oo]
is independent of M containing E. The following relations are easily checked
(3-5) h)BHXormy) = y] = N(x, »)A(Y) L))

(3.6) HEh(x) = 25, N(x, y)R(Y)LEN(Y) -
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(See Section 1 in [10] where analogous relations are discussed in the stable case.)

For E a finite subset of I the local time reversal operator p, and the trun-
cation operator t are defined on A, N [¢(E) < + o0, ¢*(E) < + o] for M con-
taining E by

prol) = olo*(B) — n] . 0 n < o¥E)
=0 n > o*(E)
Tzo(n) = w(n) 0<n<o*E)
=0 n > ¢*(E).

These induce operators p, and 7, on A, N [X,. g, # 9] by
Juop® = pplyo
Jytgo = 50,0 .
The behavior of the probabilities §3,* under these operators is described in
THEOREM 3.1. Let h, ' > 0 be excessive, let E, E' be finite subsets of I and let
& = 0 be defined on A. Then
B7) D HELEREH Xy # 35 0 ps]
= Ly ML ()& [Xorary # 03 € 0 Tp] -
This theorem extends results first obtained by G. A. Hunt in [4]. For the
proof it suffices to combine the technique of [4] with some “diagram chasing.”
(See for example the proof of Theorem 1.2 in [10].)

From now on I,, k = 1 is an increasing sequence of finite subsets of 1 such that
1,1 1. Consider h, ' > 0 and excessive and for each k define * on A, by

G®E = 3, K (X)L, ()h(x)Eh,. €

Here and below we replace a subscript or superscript I, by k for typographical con-
venience. With the help of Theorem 3.1 it is easy to check that

@(k+1)§ ° Jk+l.k — (gj(k)&

for £ > 0 on A, and vanishing on ,. (See the proof of Theorem 1.3 in [10].)
Again by a modification of the argument on page 138 of [7] there exists a unique
countably, additive measure PB:, on A, such that

(3.8) Ghé ol = T HOLM (RXENME

for £ = 0 on A, and vanishing on g,. Clearly N(., x) is excessiveand L,V"* = ¢,
when I, contains x and so

(3'9) ?V(-.a:)g = h(x)@zhé °
It is easy to check that the local time reversal operators p, are related by

i1,k Ok = O is1,

and so there is a unique global time reversal operator p such that

Jeo = oud,
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for all k. Routine arguments extend Theorem 3.1 to
THEOREM 3.2. Let h, i’ > 0 be excessive and let £ > 0 on A,. Then
(3.10) b Eop=ENE.

If #’ = Nv with v a measure on I, then };, v(x)A(x)&* agreés with &}, and so
a special case of (3.10) is

(3.11) 2 v(x)h(x)E 1 0 p = G,V E

which is valid if Ny converges.
We return now to the Dirichlet space defined in Section 2. Let v be a measure
on M and let f = Nv. Then clearly

[ = D0 (Py) (v]ay)

[ = Pyf =vfay
and so for any function g
(3.12) C(f, 9) = Z. au(x)(f — Py [)(X)9(x)
= 2. u(x)9(x) -

It is easy to check that H¥f = f and it follows from (2.5) that (3.12) is valid
with M replaced by M’ containing M, which proves

THEOREM 3.3. Let f = Nv where v is a measure on 1 with finite support. Then
S belongs to  and

(3.13) E(f, 9) = X, v(x)9(x)
for arbitrary g in §.
The capacity of a set E is defined for E finite by
(3.14) Cap (E) = 3. Ly(x)
and for E arbitrary by
(3.14") Cap (E) = sup{Cap(K): K C E, K finite}.

The basic connection between capacity and the Dirichlet norm E is established
in

THEOREM 3.4. If f belongs to § and if |f| = 1 on E then

(3.15) G(f> /) = Cap (E).
Proor. Clearly &(f, f) = &(|f], |f|) and so we can assume f > 0. Also it
suffices to consider E finite. But then :
E(f, f) = G(H"1, H*1) + &(f — H"1,f — HF1) + 26(H"1, f — H"])
= G(H"1, H*1 + 2(f — H"1)).
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Since H”1 = N(L,) by (3.6), we can apply Theorem 3.3 to conclude that
(/5 1) 2 Lo Le(HEL(x) + 2(f(x) — H"1(x))}
= Cap (E)

and the theorem is proved.
Replacing f by (1/¢)f in (3.15) we get the Tchebychev type estimate

(3.16) Cap {x: |f(x)| = ¢} = (1/eE&(f, /)
for ¢ > 0 and for f in  and taking E = {x} and ¢ = |f(x)| we get
(3.17) Liy(0)f*(x) = &/, /) -

This immediately implies
THEOREM 3.5. § is a Hilbert space relative to the inner product &. Morever if
Sfu— [ strongly in 3, then f, — [ pointwise on 1.
The energy of a measure v on I is defined by
(3-18) C() = {Za. MPN(x, Y} -
Simple limiting arguments establish the following two theorems.
THEOREM 3.6. The following are equivalent for v a measure on I.

(i) v has finite energy.
(ii) The potential Ny belongs to % and

(3.19) (W, 9) = X, v(x)9(x)
for g in .

(iii) There exists a constant ¢ > 0 such that
2. U0)|9(x)| = {€(g, )}
for g in .
THEOREM 3.7. The following are equivalent for E a subset of 1.
(i) E has finite capacity.
(ii) Ly has finite energy.
(iii) H,1 belongs to .

If these conditions are satisfied, then H,1 = NL, and

C(Hy1, 9) = 21, Ly(x)9(x)
for g in .
ReMARk. If E does not have finite capacity, then it may or may not be true
that H,1 = N, L,. _
If g in ¥ is orthogonal to all functions H”f as M runs over finite subsets of 1
and f runs over §, then in particular

&"(9, 9) = €(g, H"9) = 0
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for all M and therefore G(g, g) = 0 and g = 0. Thus the functions H"f are
dense in § and in particular & is separable. Therefore we can argue as in the
appendix of [8] to get a convenient compactification of I.

We say that g is a normalized contraction of f if

(3:20) l9C = /G5 19() — 9 = () — fO)] -

It is easy to check that if f is in § and if g is a normalized contraction of /> then
also g is in  and ©(g, 9) < G(f, f). From this it follows that the subcollection
of bounded functions in ¥ is an algebra. Let B, be the algebra in I generated
by the potential kernels N(., y) and by the indicators e, for x stable. It is easy
to check that B, is dense in  and that the uniform closure B is a separable
Banach algebra. The desired compactification X is the maximal ideal space of B.
It is well known and easy to check directly that X is a separable locally compact
Hausdorff space. The algebra B, separates points on I and therefore I is naturally
imbedded as a dense subset of X. The singleton {x} is open in the induced to-
pology if and only if x is stable.

All functions ift B are identified with their continuous extensions to X. In
particular the potential kernel N(x, y) is well defined for y in I and x in X and
for fixed y in I is continuous in x. If # > 0 on I is excessive then H"} 1 has
finite M 1 I and since each H"# is a finite sum of the potential kernels N(., y)
it follows that 4 has a unique lower semicontinuous extension to X such that
H"h 1 h on X. We identify & with this extension to X. This is true in particular
for k = N(x, «) with x in X and therefore N(x, y) is well defined on X x X and
lower semicontinuous in each variable separately. Notice also that N separates
points on X.

Consider E finite, let M in I contain x, yand E, and let F = M — E. Then

N(x, y)ay(y) = 15 Xvs (15 Py 1)1 o(x, y)
+ 2wz HE(x, 2)N(z, y)a,(y)
and therefore
(3.21) 2 HA(X, 2N(z, p) = X, 15 HE(p, 2)N(2, X) .

It follows in particular that for fixed y in I the sum

Ziemz HE(+, 2)N(z, y)
has a continuous extension to X. But as y runs over E and a fortiori as y runs
over I the functions N(-, y) restricted to E span the finite dimensional vector
space of functions on E and therefore for each z in E the function H%(., z) has
a continuous extension to X. From now on we regard H%(x, z) as being defined
by this extension for x in X. With this understanding (3.21) makes sense and
is valid for x, y in X. From this it follows directly that also

(3.22) N(x, y) = N(y, x)
for x, y in X.
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From the very definition of the maximal ideal space, B is precisely the Banach
space of continuous functions on X “vanishing at infinity.” (Of course the last
phrase is superfluous when X is compact.) It follows in particular that every
measure v on I with finite energy is a Radon measure on X. More generally we
say that a Radon measure v on X has finite energy if there exists a constant

¢ > 0 such that
§ u(dx0)f(x) = AE(Sf, NI
for f in B,. In this case there exists a unique function Nv in ¥ such that
E(Nv, f) = § v(dx)f(x)
for f in B,. We call Nv the potential of v and we define the energy of v by
E(v) = {E(Nv, Nv}t.

Of course this is consistent with previous notations when v is concentrated on
I. The proof of Proposition 1.2 in [8] shows that f in ¥ is a potential if and
only if &(f, g) = 0 whenever g > 0 on L. (This is not true if we consider only
measures v concentrated on I.) Moreover it is easy to check that this is the
case if and only if f is excessive.

For G open in X we define the capacity of G by
(3.23) Cap (G) = inf &(f, f)
as f runs over the functions in § such that f = 1 on G n I. If no such f exists
we put Cap (G) = +oo. For general Borel subsets 4 of X we define
(3.23) Cap (4) = inf Cap (G)
as G runs over the open supersets of 4. With the help of (3.15) it is easy to
check that this is consistent with (3.14) when 4 is a finite subset of I. It follows
from the proof of Proposition 1.5 in [8] that if open G in X has finite capacity,
then there exists a unique function p¢ in & such that p > 1 on G n I and

Cap (G) = €%, p%) -
Also0 <pf<lonland p° =1 on GnIand p¢ =N, with  concentrated
on the closure ¢/(G) in X. Let v be an arbitrary measure on X with finite energy.
Then Nv in  is excessive, HYNv — Ny strongly in §§ as M 1 I and therefore
L, converges vaguely to v. Thus

y(G) _S_ lim inf Zzina LMNv(x)

= lim inf };, L,/"*(x)p%(x)

= lim inf G(p®, HYNv)

= G(s, Nv)

and therefore

(3.24) %(G) < G(){Cap (G)}} .
By the proof of Proposition 1.8 in [8]

(3.25) Cap (G,) 1 Cap/(G)
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whenever open G, 1 G and

(3.26) Cap (G, U G,) + Cap (G, n G,) < Cap(G,) + Cap (G,) .

Thus the Choquet extension theorem applies and for every Bore subset 4 of X
(3.27) Cap (4) = sup Cap (K)

as K runs over the compact subsets of 4. From this it follows that (3.23’) is
consistent with (3.14’) when A4 is an arbitrary subset of I.

A Borel subset 4 of X is said to be polar if Cap (4) = 0. A property is said
to be valid quasi-everywhere on X if the exceptional set is polar. Two functions
are said to be quasi-equivalent if they differ on a polar set, that is, if they are equal
quasi-everywhere. A function f is quasi-continuous if there exists a decreasing
sequence of open sets G, in X with Cap (G,) | 0 such that f is continuous on
X — G, for every n.

It follows from (3.24) that if a measure v has finite energy then it charges no
polar set. The proof of Lemma 1.17 in [8] establishes a partial converse. Every
Radon measure which charges no polar set can be represented as a countable
sum of measures with finite energy.

The proof of Theorem 1.11 in [8] shows that every f in § has a quasi-
continuous extension to X which is unique up to quasi-equivalence such that
whenever f, — f, then for a subsequence the extensions f, converge quasi-every-
where to the extension f. From now on we identify f in § with this quasi-
continuous extension to X. Then the proof of Theorem 1.12 in [8] shows that

(3.28) G(f, Nv) = § v(dx)f(x)
(3:29) Cap {x: |f(x)| = ¢} = (1/)E(f, /)
for fin §, for v having finite energy and for ¢ > 0. This leads directly to the
familiar

LeMMA 3.8. (Maximum principle) if f = Ny and g = Nv are potentials in § and
if f = g [a.e. v], then f = g quasi-everywhere on X.

We have already remarked that every f in & has a unique quasi-continuous
extension to X. Fukushima’s argument (see the proof of Lemma 1.15 in [8]) is
easily adapted to improve the statement of uniqueness.

LemMA 3.9. Let f, g be quasi-continuous on an open subset G of X andlet f = ¢
on G N 1. Then [ = g quasi-everywhere on G.

Next consider # a potential in § and suppose that g is excessive and 0 < g <
k. Then for every M

6"(9, 9) = X au(x)0(x){g — Pyo}(x)
(3.30) < T au(h(x){g — Pug}(x)
= T au()g(x){h — Pyh)(x)

< @*(h, k)
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and it follows that also g is a potential in . In particular if % is a potential in
& then so is H*h for E finite. Indeed if # = Ny then by (3.21)

HENW(x) = 3,5 § H(x, 2)N(z, y)u(dy)
(3.31) = Zemz § H(y, 2)N(z, x)v(dy)
= N(m®v)(x) :

where 7"y is the balayaged measure
(3.32) *u(z) = §v(dy)H"(y, 2) .

We extend this now to E infinite.

Let _# be the collection of Radon measures on X having finite energy. The
proof of Proposition 1.4 in [8] shows that _# is complete relative to the energy
metric §(u — v). For E an arbitrary subset of I let _#(E) be the closure in _#
of measures concentrated on E and let F(E) be the closed linear span in ¥ of
N_#(E). For v in _# the balayaged measure n”y is the unique measure in the
closed convex set _#(E) such that (v — =”v) is minimal. The proof of Lemma
3.5 in [8] shows that Nz”v is the orthogonal projection of Mv onto F(E). Next
consider finite subsets E, T E. By the convergence theorem for reversed super-
martingales lim N(X,; ,, y) exists [a.e. ,] for x, y inI. Also lim e (X, ) exists
for y in I and therefore lim f(X,, ,) exists [a.e. PB,] for f in B,. Therefore
X, = lim X, , is well defined [a.e. P,] as a point in X U {9}. (We are
identifying the dead point 9 with the trivial homomorphism on B.) We denote
the distribution of X, ., relative to 5, by H*(x, dy) and we define the operator
HE by
(3:33) Hf(x) = €. f(Xox)

= § H(x, dy)(7)

when this converges. Similar arguments together with time reversal establish
the existence of the last exit position X,.;, = lim X,. 5 ,.

THEOREM 3.10. Let f belong to  and let E be an arbitrary subset of 1.
(i) H"f converges everywhere on 1 and is the orthogonal projection of f onto F(E).
In particular

(3.34) HENy = Nrnfy
for pin _#.

(ii) f belongs to the orthogonal complement of F(E) if and only if f = 0 every-
where on E.

Proor. (ii) follows directly from (3.28). For (i) it suffices to consider f = Nv
with v supported by I. It is easy to see that H%f is excessive and dominated by
f and therefore is a potential in . Since f = H%f on E, clearly f — H%f is
orthogonal to F(E). By the proof of Lemma 3.5 in [8], f = Nx®v on E and
therefore H®f = H*Nz®v. But Nz®y can be approximated by potentials of
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measures concentrated on E and it follows easily that H*Nz*y and therefore
HEf is dominated by Nz®v. Then by (3.30)

G(HEf, HE f) < @(Nr*v, Nxtv)

and it follows that H%f = Nr%y.

Finally we note that for E an arbitrary subset of I the function H*N(x, y)
defined by

(3.35) H®N(x, y) = § H%(x, dz)N(z, y)
for x in I'and y in X extends by our conventions to a function defined on X x X

which is lower semicontinuous in each variable separately and symmetric. This is
easily proved by approximating E from below by finite sets.

4. The Martin representation. We continue to work with the transient road
map of Section 3. A function % on I is said to be harmonic if

(4.1) h = H®h

whenever I — E has compact closure in X. (It is understood that the right side
of (4.1) must converge everywhere on I.)

NortATION 4.1. E | @ canonically if each E is a subset of I, if the comple-
ment I — E has compact closure in X and if the closure of E in X decreases to
the empty set.

An excessive function £ > 0 is said to be a potential if H*h | O onlas E | @
canonically. It follows from Theorem 3.10 that every excessive function in §
is a potential and that & contains no nontrivial harmonic functions. In particu-
lar N(., y) is a potential for y in I. Indeed H®N(.,y) | 0 quasi-everywhere on
X as E | @ canonically and it follows by symmetry that N(x, ) is a potential
for quasi-every x in X. To pursue this further, we use the techniques of Hunt
[4]-

We begin by fixing a reference point 0 in /,. For x, z in I clearly
4.2) N0, z) = B X, () = xIN(x, 2)
and this extends by continuity to z in X. It follows that if for a given z in X
we have N(z, 0) = 0, then N(z, x) = 0 for all x in I and therefore f(z) = 0 for

all f in B, which is impossible by the very definition of the maximal ideal space
X. Thus N(., 0) is eve;rywhere positive on X and therefore the Martin kernel

(4.3) K(x, y) = N(x, y)/N(0, y)

defined for x, y in X is continuous in y for fixed x in I. Also (4.2) and the
corresponding estimate with the roles of x and 0 reversed imply

(4.4) BelXoop = 0] = K(x, ) = B[ Xogiany = *)7 -
We define a metric on X by
d(y,y) = L. BO)Bilogan = x]IK(x, y) — K(x, ")l
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with B(x) > 0 chosen so that )], A(x) < +co. The Martin closure X* is the
completion of X with respect to d. The Martin kernel extends by continuity to
I x X*. But for fixed y in X* the function K(., y) is excessive on I and therefore
K(x, y) is actually well defined for x in X and y in X*.

For 7 > 0 excessive the last exit positions X,.; , have the same distribution
relative to 93" as the first entrance positions X, 1 have relative to 5,7, Thus
for fixed x in I the random variables K(x, X,., 1 )) form a reversed supermarting-
ale and so lim K(x, X,.,,) exists [a.e. P;*] as k | co. Therefore the terminal

position
X, =limX

a*(Ig)

is well defined [a.e. 93,*] as a point in the Martin closure X*. By (3.5) and (3.6)
hO)&*K(x, Xouz,y) = I, K(x, 2)N(0, 2)Li}(2)h(2)

= H"h(x)
and passing to the limit in k we conclude that
(4.5) h(x) = § K(x, yp(dy)

with v*(dy) the distribution of X, with respect to 4(0),*. We denote by X, the
set of y in X* such that K(., y) is an extremal potential and by A, the set of x
in X* such that K(.,y) is extremal harmonic. The proof of Theorem 1.7
in [10] shows that »* is concentrated on X, U A, and is the unique measure
concentrated on X, U A, such that (4.5) is valid. If # is a potential, then by
Theorem 3.10
Ziemzar, N0, 2)L(2)h(z) < HEh(0)

which | 0 independent of k as E | @ canonically. Therefore v* is concentrated
on X and it follows that X, is contained in X. If A = Nv belongs to § then
clearly z’kv — v vaguely. Butalso z’kv = L,* and it follows that v* = N(0, +)v.
In particular v does not charge X — X, and since every measure which charges
no polar set is a countable sum of measures with finite energy, it follows that
X — X, is a polar set. We summarize these results in :

TueOREM 4.1. (i) Every excessive function h > 0 has a unique representation
(4.5) with v* concentrated on X, U A,. Indeed v* is the distribution of the terminal
positive X, with respect to h(0)P;* and N(O, «) L,*h — v* vaguely as k | oo.

(ii) X, is a subset of X and X — X, is polar.

(iii) If h = Nv with v having finite energy, then v* = N(O, +)v.

From now on we denote the restriction of v* to A, by /* and we let £* be the
unique measure on X, such that

Vi (dy) = IMdy) + N(O, y)&*(dy) .
We also use the abbreviations
) o o— PG
v — pEC,m

vt = N, <)L} *h  etc.
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As in [10], Theorem 4.1 plus the martingale convergence theorem lead to
COROLLARY 4.2. (Fatou) Let h > 0 be harmonic and let x in 1. Then as k 1 co
h(XmI,,)) — (dl*dl')(X.) [a.e.B,].
For x in X and y in X* the Naim kernel ©(x, y) is defined by
O(x, y) = K(x, y)|N(x, 0) -
Clearly
(4.6) O(x, y) = 6(y, x)
for x, y in X. The proof of Lemma 1.9 in [10] shows that
2. % (9)8(z, )
increases with k for x, y in X* and that we can extend © to X* x X* by setting
O(x, y) = lim 3, »*(2)8(z, y) (k1 ).
This extension satisfies (4.6) and is lower semicontinuous in each variable
separately. Finally, the proof of (1.24) in [10] establishes
(4.7) Gl (X Xiwo) = § ¥(dy) § ¥X(d2)B(y, 2)0(y; 2)
for ¢ = 0 on X* x X*.

5. Speed measures. We return now to the general road map of Section 2.

DEFINITION 5.1. An everywhere positive measure m on I is a $peed measure
if F n L¥m) is dense in L*m). It is an active speed measure if for each f in F
there exists a sequence f,, n = 1 in F n L*m) such that f, — f pointwise on I

and sup, E(f,, f,) < +oo.
We fix a speed measure m and put
F = n LY(m).
It is easy to check that the pair (F, €) is a Dirichlet space on L*(m) in the sense
of Section 4 in [10]. Let P,(x, y) be the unique standard transition matrix on

I such that (F, @) is the associated Dirichlet space. It is automatic that P,
satisfies the symmetry condition

(5.1) m(x)P,(x, y) = m(y)Py(y, x)
for + > 0 and for x, y in I. It is well known [1] that
(5.2) g(x) = lim (1/0){1 — Py(x, x)} t|0

exists for x in 7 with 0 < ¢g(x) < +o0. (This and related results can also be
proved using arguments based on Theorem 4.1 in [10].) In the literature, a
state x is said to be stable if g(x) < 4 co and instantaneous if g(x) = +oco. It
follows from Theorem 4.1 in [10] that the indicator e, belongs to F if and only
if x is stable and therefore this is consistent with our terminology in Section 2.
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In order to obtain a decent process we compactify I as in Section 6 of [10].
Let B, be a subset of F n L!(m) n L> satisfying

5.2.1. B, is an algebra and contains the indicator e, whenever x is stable.

5.2.2. B,is dense in F relative to any of the inner products

C.f,9) = &(f, 0) + ¥ T mxfxe) ~  w>0.
5.2.3. The uniform closure B of B, is separable.

Then B is a commutative Banach algebra and its maximal ideal space Y is
the desired compactification of I. This is a separable locally compact Hausdorff
space which is compact if and only if 1 belongs to B. The original state space
I is densely imbedded in Y. The singleton {x} is open in I if and only if x is
stable.

REMARK. The compactification Y is introduced only to get us started in our
analysis and will not play an important explicit role. At least in special cases
we can guarantee that Y is identical with X introduced in earlier sections.

Structures on I are carried over to Y in the obvious way. The point is that
(F, ©) is a regular Dirichlet space on L*(Y, m) and therefore the results of [8]
are applicable. We adjoin a dead point § to Y according to the usual con-
ventions. The standard continuous time sample space Q is the collection of
mappings o from [0, co) into the augmented compactification Y U {9} which
satisfy the following conditions.

5.3.1. w(?) is right continuous and has left hand limits everywhere.

5.3.2. There exists a life time {(w) with 0 < {(w) £ + oo such that o(f) = 0
if and only if 1 > {(w), and o(t — 0) # 0 for 0 < ¢t < {(w).

By the results of Section 2 in [8] there exists on exceptional set N of Y which
is polar (and in particular does not intersect I) and a family of probabilities .7,
indexed by x in the complement Y — N which form a strong Markov process
taking values in Y — N and having the usual regularity properties. In particular
each .7, is concentrated on Q and therefore the trajectories are right continuous
with left hand limits everywhere. Trajectory variables X, and first hitting times
o(E) and last exit times ¢*(F) are defined in the usual manner. (See Section 5
of [10].)

For M a finite subset of I we introduce the additive functional

AM(t) = Sods 1L(X,) ,
the inverse functional
BY(s) = inf {t > 0: A¥(s) > ¢t}
and the time changed process

M _
Xz — “BM() -
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Roughly speaking, X,” is defined by “looking at X, only when it is in M.” The
time changed resolvent R, is defined by

R p(x) = &, \& dt e~ p(X,™)
which after a change of variables can be written
RMp(x) = &, §o dt 1 (X,)e " Dp(X,) .

It is proved in [8] that the operators R,”, a > 0 form symmetric resolvents
relative to L*(M, m). Suppose now that m is active. The associated Dirichlet
norm is identified in Section 5 of [8] and also in Theorem 6.1 of [10] as

G(H"f, H"f)
where for the moment

(5.3) HYf(x) = &,[o(M) < oo; fiXoun)] -

From Theorem 8.4 in [8] it follows that (5.3) is consistent with (2.4) and
therefore the associated Dirichlet norm is actually the norm G* defined by
(2.3). From this it follows by an elementary case of Section 5 in [9] that

(5-4) Py(x,y) = Flo(M — {x}) < +005 Xouyopa) = J]-
(5-5) ay(x) = m(x)qu(x) -

where ¢, is defined by (5.2) except that P,(x, x) is replaced by the transition
matrix for the time changed process. Clearly ¢, 1¢ as M 11 and it follows
again that x is stable in the sense of Section 2 if and only if g(x) < 4-co and in
this case
a(x) = m(x)q(x) .

The proof of Theorem 4.2 in [10] is valid without the restriction that every
state be stable and it follows that every standard transition matrix which satisfies
a symmetry condition (5.1) and an obvious condition of irreducibility can be
obtained by the above construction from a unique road map. We summarize in

THEOREM 5.1. Let {P,} be a road map on 1 with corresponding symmetrizing
measures a,. Suppose that m is active. Then there is a unique irreducible standard
transition matrix P(x, y) satisfying the symmetry condition (5.1) such that P, and
a, can be recovered by (5.4) and (5.5). Conversely if P/x,y) is an irreducible
standard transition matrix satisfying (5.1) for some everywhere positive measure m
on 1, then there is a unique road map such that m is an active measure and such that
the above is true. '

REMARK. By irreducibility in Theorem 5.1 we mean that for each pair x, y
in I there exists # > 0 such that P,(x, y) > 0. It then follows from results in
[1] that actually P,(x, y) > 0 for all 7 > 0 and for all x, y in I. Obviously this
restriction is harmless.

If the road map is recurrent and if m is bounded, then 1 belongs to F and
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@(1, 1) = 0. From this it follows that the corresponding transition matrix is
conservative. This is easily extended to general speed measures using random

time change.
If the road map is transient and if the speed measure m is bounded, we can

put B, = B, and then Y = X. In this case it is easy to establish connections
between various quantities in Sections 3 and 4 and their counterparts in con-
tinuous time: For example (5.3) is valid for arbitrary subsets E of I and

&, §§ df(X) = L, Noxs ) f(ym(y) -

We finish by interpreting a criterion of Freedman’s in our set up. Fix a
reference point 0 in I and for x in I define

0(0, x) = ay(0)F o, < of;)]
O(x, 0) = ay(x)Ffoy < o]
a(0, x) = 0(0, x)[{O(x, 0)

where M is any finite subset of I which contains 0 and x. It is easy to check
that these quantities are independent of the choice of M. For a given choice of
m and for each finite M containing 0 define

ru(t) = inf{§5du 1,(X,): §5du 14(X,) > 1}
It is easy to check that
Eoru(t) = (1 + Zsen 9(0, x)m(x)/m(0)) .

Sense can be made of this whether or not m is a speed measure. Freedman’s
sufficient condition for existence is

) supy &oru(f) < +o0
or, equivalently

(5.6) 21.9(0, x)m(x) < +oo .

(See [3] page 110.) This together with our results guarantees that (5.6) is a
sufficient condition for an everywhere positive m on I to be a speed measure.
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