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Consider a dynamic programming problem with analytic state space
S, analytic constraint set 4, and semi-analytic reward function r(x, P, )
for (x, P)e A and y € S: namely, {r > a} is an analytic set for all a. Let Tf
be the optimal reward in one move, with the modified reward function
r(x, P,y) + f(y). The optimal reward in n moves is shown to be 770, a
semi-analytic function on S. It is also shown that for any » and positive
¢, there is an e-optimal strategy for the n-move game, measurable on the
o-field generated by the analytic sets.

1. Introduction. There is a state space S, endowed with a o-field o(S). Let
7(S) be the set of all probabilities on ¢(S). There is a given subset 4 of S x
7(S), whose x-section A4, is nonempty for all xe S. There is a nonnegative
function r(x, P, y) of (x, P)e 4 and y e S, which is a ¢(S)-measurable function
of y for each pair (x, P). When you are at x ¢ S, you can select any P e 4,, and
move to a new state y € S selected at random according to P. You receive the
reward r(x, P, y). If you select P, your expected reward is {5 r(x, P, y)P(dy),
and your optimal reward in one move is

u(x) = SUPpe 4, $s r(x, P, y)P(dy) .

Even under very stringent regularity conditions, u, need not be o(S)-measurable:
see example (45) below. To get around this for now, let {* be the usual outer
integral. Compare Dubins and Savage (1965) pages 8-9.

Suppose you are allowed to move twice. If your first move is to y, the most
you can get on your second move is #,(y). So your optimal reward in two
moves is -

Uy(x) = SUPpe, §is [M(X, P, y) + uy(y)1P(dy) ,

and so on. To study this formally, it is convenient to introduce the optimal
reward operator T which transforms nonnegative functions f on § as follows:

(1) (Tf)(x) = suppe 4, §s [1(x, P, y) + f(9)1P(dy) -
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Let 0 be the function which vanishes identically. Then T"0 is your optimal
reward in n moves, over the class of all strategies, measurable or not.

Fix ¢ e n(S). Under mild regularity conditions, we will show that 70 is -
measurable; and there is a p-measurable strategy whose expected reward in n
moves is closeto (7"0)(x). The conditions are that S and 4 be analytic, and r
be semi-analytic. A function f is semi-analytic if its domain is an analytic set, it
takes nonnegative values, and {f > a} is analytic for all @ > 0. More precisely,
we show that 70 is semi-analytic, and that there are ¢-optimal strategies meas-
urable over the o-field generated by the analytic sets. As usual, z(S) is endowed
with the weak * topology and the s-field this topology generates.

If S, A, and r are Borel, Strauch (1966) showed that the optimal reward over
measurable strategies is nearly measurable (an exact statement is too complicated
to be helpful here) in the starting state, and can almost be realized by nearly
measurable strategies of various special kinds. Strauch (1967) and Sudderth
(1971) show that nearly measurable strategies do as well as nonmeasurable ones,
when S, 4, and r are Borel, and the total return is uniformly bounded. Our
results hold for more general S, 4, and r, and for unbounded returns. We con-
struct analytically measurable strategies which are available everywhere, instead
of Borel measurable strategies which are available a.e. And we provide a count-
ably additive method for evaluating nonmeasurable strategies (which is at least
as generous as the finitely additive methods). The main novelty, however, is
showing how to compute the optimal reward from T, without leaving the class
of functions which can be integrated by the ordinary countably additive method.
Our work overlaps to some extent with unpublished notes by P. A. Meyer. The
general issue of measurability of optimal rewards and existence of nearly optimal
and measurable strategies was raised by Dubins and Savage (1965) pages 35-38.

Section 2 reviews some known facts about analytic sets. Section 3 reviews a
selection theorem of von Neumann (1949) and Mackey (1957). Section 4 intro-
duces the semi-analytic functions. Section 5 discusses compact metric state
spaces. Section 6 establishes the dynamic programming results. Section 7 pre-
sents some examples.

2. Analytic sets. A detailed discussion of analytic sets, with proofs for most
of the facts listed below, can be found in Kuratowski (1966). Let N be the set
of sequences of positive integers, endowed with the product topology. So N is
homeomorphic to the irrationals. Let 4 be a separable metric set. Then A is
analytic provided there is a continuous function f on N whose range f(N) is A.

2) Any complete, separable metric set is analytic.

(3) Any Borel subset (that is, a set in the o-field generated by the open sets)
of an analytic set is analytic.

“4) Countable unions, intersections, and products of analytic sets are analytic.

(5) Let f be a Borel measurable mapping from the analytic set S into the
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analytic set 7. If A4 is an analytic subset of S, then f(A4) is an analytic subset
of T. If B is an analytic subset of T, then f-!(B) is an analytic subset of S.

(6) Let A4 be an analytic subset of the analytic set S. Then 4 is universally
measurable; that is, if ¢ is any probability on the Borel subsets of S, then 4 is
p-measurable. Forxe N, let L(x) = {y: ye Nand y, < x; for all i}. Let f be a
continuous function on N with f(N) = 4. Then

#(A) = sup,en {fTL(X)]} -
Facts (7)—(9) will be used only for constructing examples.

) There is an analytic subset of the unit interval whose complement is not
analytic. In fact, there is a Borel subset of the unit square (even a G,), whose
projection on the horizontal axis is analytic but not Borel.

The complement of an analytic set relative to a Borel subset of a complete
separable metric set is called complementary analytic.

®) There is a Borel subset B of the unit square, whose projection on the
horizontal axis is the whole unit interval: but there is no Borel function f of
the unit interval into itself, with (x, f(x)) € B for all x.

For a discussion of (8), see Blackwell (1968).

) According to Gddel (1938), it is consistent with the usual axioms of set
theory to assume there is a complementary analytic subset of the unit square,
whose projection on the horizontal axis is not Lebesgue measurable.

We will use the notion of the weak* topology on z(S), and review the main
points here. For a detailed discussion, see Parthasarathy (1967) Sec. II. 6. Let
S be a separable metric set. Let P, and P be probabilities on the Borel subsets
of S. By definition, P, — P in the weak* topology, provided s fdP, — {5 fdP
for all bounded, continuous f.

(10) If S is compact metric, so is 7(S) in the weak* topology.

(11) If f is bounded and continuous on S, there are bounded, uniformly
continuous f, on S with f, 1 f.

(12) S can be homeomorphically embedded in a compact metric set S*.
After the embedding, m(S) becomes the set of u e n(S*) which assign outer
measure 1 to S, with the relative topology.

(13) n(S) is separable metric. The Borel o-field on z(S) is the s-field gener-
ated by the weak* topology.

(14)  The Borel o-field is also generated by the functions p — §s f dy, for

(a) all bounded, continuous f.
(b) all indicator functions f of any class of sets which generates the Borel
o-field in S.
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If S is Borel (that is, a Borel subset of a complete separable metric set), then
n(S) is Borel. If § is analytic, we will show #(S) is analytic. If S is a univer-
sally measurable subset of S*, we will show #(S) is a universally measurable
subset of 7(S*).

3. A selection theorem.

(15) PRroPOSITION. Let S and T be analytic sets. Let .97 be the o-field in S
generated by the analytic sets. Let p project S x T onto S. Let A be an analytic
subset of S x T. Then there is an S7-measurable function t from pA to T, with
(x, t(x)) € A forall xe pA.

NOTE. Y-measurable means =B ¢ &7, for all Borel subsets B of T.

Proor. Let f be a continuous function from N to S x T, whose range is A4.
So p o f is a continuous function on N whose range is pA4; and f~'p~I(x)is a
nonempty closed subset of N for xepA4. Let ¢(x) be the least element of
f7p7Y(x), in the lexicographic order, for x e pA4. So ¢ maps pA4 into N. Now
pAe 7 by (5). You can check that ¢ is p4 N .%“measurable. Finally, ¢ is
the projection of fo ¢ on T. []

This result is due to Mackey (1957) and von Neumann (1949). Even if S, T,
and A are Borel, and projs 4 = S, there may not be a Borel selector (8).
4. Semi-analytic functions. Let f be a nonnegative, real-valued function de-

fined on the analytic set S. Then f is semi-analytic provided the set {x: f(x) > a}
is analytic for all nonnegative a. See Kuratowski (1966) Sec. 35, XI. You can
verify the following:

(16) If f is semi-analytic on S, then {x: f(x) > a} is analytic.
17) Any nonnegative Borel measurable function on § is semi-analytic.

(18) Suppose f is semi-analytic on S, and T is an analytic subset of S. The
restriction of f to T is semi-analytic on T.

(19) Suppose f and g are semi-analytic functions on S. Then f + g, max{f, g},
min {f, g} and fg are also semi-analytic. If ¢ > 0, then cf is also semi-analytic.

(20) Let f, be semi-analytic on S for each n. Suppose f, 1 for f, | f. Then
f is semi-analytic.

(21) Let f be a semi-analytic function on S. Let g be a Borel measurable
function from the analytic set T’ into S. Then f o g is semi-analytic on T.

(22) If f is semi-analytic on S, then f is universally measurable; so f can be
integrated with respect to any probability on the Borel subsets of S.

(23) ExaMPLE. Let 4 be an analytic subset of the unit interval, whose
complement is not analytic. Then 1, is semi-analytic, but 1 — 1, is not semi-
analytic.
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(24) ExAMPLE. A Borel measurable function composed with a semi-analytic
function need not be semi-analytic. Again, let 4 be an analytic subset of the
unit interval, whose complement A° is not analytic. Then 1, o1, = 1, which
is not semi-analytic.

5. The compact metric case. Let S be a compact metric set. Let z(S) be the
set of probability measures on the o-field of Borel subsets of S. Endow z(S)
with the weak* topology, so z(S) is again compact metric. For a detailed dis-
cussion of z(S), see Dubins and Freedman (1965) or Parthasarathy (1967).

(25) LEMMA. If A is an analytic subset of S, and a is a nonnegative real number,
then {p: p e n(S) and p(A) > a} is an analytic subset of =n(S).

Note. p(A) is well defined in (6).

Proor. Let 2% be the set of nonempty, compact subsets of S, endowed with
the usual compact metric topology (Hausdorff (1957) Section 28). If K, and K
are elements of 25, then K, — K in this topology provided

(26) for each s e K, there are s, ¢ K, with s, — 5, and
(27) if 5,¢ K, and s, — s, then se K.

Since 4 is analytic, there is a continuous function f on N with f(N) = A4.
Define L(x) as in (6). We claim that the function x — f(L(x)) is continuous from
N to 25. Indeed, L(x) is compact, so f(L(x)) € 25. Suppose x(n) — x in N. We
have to show f[L[(x(n)]] — f[L(x)]. To verify (26), suppose ye L(x) and s =
f(9)- Let y(n), = min[x(n),, y.]. Then y(r) e L(x()) and y(n) > y, s0 f(y(n)) —
Sf(y). To verify (27), let z, = sup, x(n),, so ze N. Let y(n) € L(x(n)), and suppose
5, = f(y(n)) — s in S. Now y(n) € L(z), which is compact. By passing to a sub-
sequence, suppose y(n) — y in N. Clearly, y € L(x). But s = lim f(y(n)) = f(y).

The function (¢, K) — p(K) is upper semi-continuous from z(S) x 25 to the
unit interval, by Dubins and Freedman (1965) Theorem 3.8. So the composition
(5 x) — p{f[L(x)]} is upper semi-continuons from z(S) x N to the unit interval.

In particular,
B = {(¢, x): p{fTL(¥)]} > a}

is Borel in 7(S) x N; in fact, Bis an F,. Now {u: p(A4) > a} is the projection
of B on the p-axis by (6), and is analytic by (5). [

Let 2 be Lebesgue measure on the ynit interval. The next result is a known
consequence of Fubini’s theorem. ’

(28) LEMMA. Let (S, %7, P) be a probability triple. Let f be an .7-measurable
Jfunction from S to the unit interval. Then {(y, z): f(y) > z} is a product-measurable
subset of S x [0, 1]. And .

§s [()P(dy) = (P X D{(1> 2): f(y) > 2} -

(29) LeMMA. Let r(x, Q, y) be a semi-analytic function from S x n(S) x S to
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the unit interval. Let
h(x, @, P) = {5 r(x, Q, y)P(dy) -
Then h is semi-analytic on S x ©(S) x 7(S).

ProoF. LetI' = S x n(S) X S x [0, 1], a compact metric set in the product
topology. Define the function g from S x 7(S) x #(S) to =(I') as follows:
g(x, @, P) is P x 2 installed on the (x, Q)-slice of I'. More formally, if ¢ is a
continuous function on I, then the g(x, Q, P)-integral of ¢ is

$sxioa1 $(X> Q5 ¥, 2)(P x A)(dy, dz) .

We say that g is continuous. To check this, approximate ¢ by finite linear com-
binations of functions ¢ of the form ¢,(x)¢,(Q)ps(y)¢(2z), where ¢, and ¢, are
continuous functions on S, while ¢, is a continuous function on z(S), and ¢, is
a continuous function on the unit interval. This is possible by Stone-Weierstrass.
The g(x, Q, P)-integral of ¢ depends continuously on (x, @, P). Therefore, so
does the g(x, Q, P)-integral of ¢.

Let 4 = {(x, @, ,2): r(x, Q,y) > z}. Wesay A4 is an analytic subset of I'.
Indeed, 4 = |, 4,, where ¢ is a positive rational, and 4, = {r(x, Q,y) > ¢} N
{t > z}. Each 4, is analytic, so 4 is analytic, using (4). Let 4, ,, be the (x, Q)-
section of 4. Use (28), with the o-field generated by the analytic sets for %:

h(x, Q, P) = (P x D(Au.0) = 9(x, Qs P)(4) -

So
{h>a) =g u: pen) and u(4) > a},
which is analytic by (25) and (5). [I
(30) CoROLLARY. Let r(x, Q, y) be a semi-analytic function from S x n(S) x S .
to the unit interval. Let ‘
h(x, P) = \s r(x, P, y)P(dy) .

Then h is semi-analytic on S x (S).

Proor. The map (x, P) — (x, P, P) is Borel measurable, from S x =n(S) to
S x m(S) x n(S). Compose the & of (29) with this map, and use (21). [I

(31) CoOROLLARY. Let r(x, Q,y) be a semi-analytic function on S x n(S) x S.
Let

h(x, P) = § r(x, P, y)P(dy) .
Then h is semi-analytic on S x =(S).

PROOF. Let r, = min {r, n}. Then r, and n~'r, are semi-analytic by (19). And
0<n'r,<1. So :
ho(x, P) = n § n7'r,(x, P, )P(dy)

is semi-analytic by (30). But &, 1 & by monotone convergence. So A is semi-
analytic by (20). [
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(32) CoROLLARY. Let A be an analytic subset of S x =n(S). Let r(x, Q,y) be
a semi-analytic function on A x S. Let
h(x, P) = §5 r(x, P, y)P(dy)
B*(x) = suppe 4, h(x, P).
Then h is semi-analytic on A, and h* is semi-analytic on projs A.

Proor. Let r*(x, P, y) = r(x, P, y) for (x, P)e A and ye S and let r*(x, P,
y) = 0 elsewhere on S x 7(S) x S. Then r* is semi-analytic. So (31) makes
{s r*(x, P, y)P(dy) semi-analytic. But % is the restriction of this function to A:
use (18) to make & semi-analytic. Then {A* > a} = projs{k > a} is analytic by
5).- 0

6. Dynamic programming. Return to the dynamic programming problem of
Section 1. A strategy s of length n is a sequence of functions

Xy — Sas (xl’ xﬁ) T Spzg Tt (xv Tty x,,) > Sap,eeizy
from §, §?, - .-, §" to n(S), subject to the constraint

Szpyererzy € sz for i=1,...,n.
For the moment, there are no measurability conditions. The reward of s at
X = (X o) Xpp) 08

Ta(8: X) = 1(Xy, 8,5 X3) + -+ 0+ 1(x,, Sayyeveszgs Xnt1) +
The upper expected reward p,(s, x,) of s starting from x, € S is the n-fold iterated
upper integral of r,(s, X) with respect to the n measures
Sappeeesog(@Xngr)s = 85, (dX)

In the absence of measurability conditions, these n measures on S cannot be
combined into a single measure on S”. If xe S and s is a strategy of length
n 4 1, the x-section s* of s is this strategy of length n:

X — szzl’ (xl’ x2) - Sxxlzg’ ] (xl’ D] xn) . Szzl,-n,z“ .

If 5 is a strategy of length k + 1,
(33) Pesa(8: X) = §5[1(x, 5,5 9) + 0u(s%, y)Is(y) -

The optimal reward operator T was defined in (1); and 0 vanishes identically;
and #, = T*0. The next result shows that u, is the optimal reward in » moves,
with nonmeasurable strategies allowed.

(34) PROPOSITION. (a) u,(x) = p,(s, x) for all x € S and strategies s of length n.
(b) Fix n and positive e. There is a strategy s of length n, such that

0x(8, x) > u,(x) — ¢ when u,(x) < oo
> 1/e when u,(x) = oo .
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PRroOF. Claim (a). Thisis clear forn = 1. Suppose it for n = k. Using (33),

Pria(s: X) = §s5[1(x, 825 ) + u()]s.(dy)
= (Tu)(%) = Uppa(x) -
Claim (b). This is clear for n = 1. Suppose it for n = k. Abbreviate 0,(z) =

z —eforz < oo,and 0,(z) = 1/e for z = oo. Use the case n = 1 on the reward
function r(x, P, y) + u,(y) to get a strategy ¢ of length 1, with

$s [r(6 12 9) + w()]t(dy) > 6. Jupn(x)] -
If £, 1 f and f; is bounded below, then {* £, 1 §* f. Consequently, there is a j(x)
so large that

§5 (6 12 9) + Ousio@eON]Ady) > O.J#410(¥)] -

Use the induction hypothesis to generate a strategy t* of length k, with
(175 ¥) > Oy [4e(¥)] for all y.

Outer integrals are order-preserving, so

$5[r(x 12 9) + (8%, D) 1(dy) > 01 a(6)] -
Let s be the strategy of length k + 1, with s, = ¢, and s* = *. Use (33). []

For the rest of this section, make the following measurability assumptions.

(35) ConpiTiONs. The state space S is analytic, and is endowed with the
Borel o-field. Embed S homeomorphically into a compact metric set S*. Let
7(S) be the set of probabilities on S, with the weak* topology. Then #(S) is
homeomorphic to {¢: x e n(S*) and p(S) = 1}, with the relative topology, by
(12). Here, p(S) is well defined by (6). So =(S) is analytic by (25) and (4).
And S x =(S) is analytic in the product topology. The contraint set 4 is assumed
analytic. So, 4 x S is analytic in the product topology. Remember that the
x-section A, of A is nonempty for all xe S. The reward function r is assumed
semi-analytic on 4 x S.

The optimal reward operator T is defined for semi-analytic functions f by

(36) (Tf)(x) = suppe, §s[r(xs P y) + f()]P(dy) -
37 THEOREM. If conditions (35) hold, Tf is well defined by (36) and is semi-
analytic on S, for each semi-analytic function f on S.

Proor. For a moment, fix (x, P). Then r(x, P, .) is semi-analytic on §, so
r(x, P, ») 4 f is semi-analytic on S by (19). Consequently, the integral is de-
fined by (22). This proves Tf well-defined. Why is it semi-analytic? The map
(x, P, y) — y is Borel. So (x, P, y) — f(y) is semi-analytic by (21). .And

n(x P, y) = r(x, P, y) + f(y)
is semi-analytic by (19). Now use (32) on r,. []
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(38) COROLLARY. If conditions (35) hold, T"f is well defined by (36) and is
semi-analytic on S, for each semi-analytic function f on S.

This is one of the main results of the paper.
The next main result (43) shows there are nearly optimal analytically meas-
urable strategies. Here are some preliminaries.

39) LemMMA. Let S, T, and U be analytic sets. Let f map S into T, and let g
map T into U; so g o f maps S into U. Let X = S, T, or U. Let <&y be the Borel
o-field in X; let 7 be the o-field generated by the analytic subsets of X; let
be the o-field of universally measurable subsets of X. So <&y, C Sy C #y. Sup-
pose g is analytically measurable: 9~\(%,) C 7.

(a) If f is Borel, that is, f~(Fy;) C B, then [~1(7) C V.

(b) If f is Borel, then g o f is analytically measurable.

() If f is universally measurable, that is, f~Y(<5,) C #, then g o f is univer-
sally measurable.

Proor. Claim (a). With the help of (5),

[7B\C) = (fTBNSHO) e s,
for analytic subsets B and C in T. So f~%(D) € %7 for all sets D in the algebra
generated by the analytic sets. Here, B\C is the set of points in B but not in C.
Claim (b). This follows from (a).

Claim (c). Let p be a probability on <%;. There is a g-null Ne &% and a
Borel function f” with f = f’ off N. Now g o f” is analytically, and so, univer-
sally measurable by (b), and g o f’ = go foff N. []

(40) PRroPOSITION. Let U and V be analytic sets. Let f = 0 be universally
measurable on U x V and let ¢ > 0 be Borel measurable on U x V. Let u —t, be
universally measurable from U to n(V'), where n(V') has the Borel g-field generated
by the weak* topology. Let p be a probabiliy on U.

(@) u—§, ¢(u, v)t,(dv) is universally measurable.
(b) There is a unique probability p x t on U x V such that

Soxy pd(pe x 1) = §y §y $(u, V)1, (dv)p(du)

for all nonnegative Borel ¢.
(c) v— f(u,v) and u — §, f(u, v)t,(dv) are universally measurable.

(d) Suxy fa(p x ) = §y §y flu, v)1,(dv)p(du).

PRrROOF. Claim (a). It is enough to do this when ¢ is the indicator of a Borel
rectangle. Then (4, P) — § ¢(u, v)P(dv) is Borel on U x =n(V). Compose this
function with the universally measurable map « — (u, ¢,) and use (39¢).

Claim (b). Use (a) and monotone convergence.

Claim (c). For the first claim, consider measures concentrated on {u} x V.
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For the second, there is a Borel function f’ and a Borel set G, such that
(#x#)(G)=1and f=f" on G. Let G, be the u-section of G, and let G* =
{u:1,(G,) = 1}. Then G* is universally measurable by (a), #(G*) = 1 by (b).
Fix u e G*. Now f(u, v) = f’(u, v) for all ve G,, which has r,-measure 1. So

§y f(u, v)t,(dv) = §, f'(u, v)t,(dv) for ueG*.
The right side is universally measurable in u by (a), and p(G*) = 1, so the left
side is #-measurable; but 4 is arbitrary.

Claim (d). Continuing the same argument, #(G*) = 1 shows

So §v flu, v)1(dv)p(du) = §y §y f(u, V)1,(dV)pe(du)
= Yo f1d(p % 1) by (b)
= Yuur fd(pe % 1),
where the last line follows because f = f” with (¢ x f)-probability 1. []
It will be helpful 10 establish this result in several dimensions.

(41) CoRrOLLARY. Let U, ---,U,,, be analytic sets. Endow n(U,) with the

Borel g-field generated by the weak* topology. Let

uy—t,, (U, u) >t N (A ' R

uyug?
be universally measurable functions from U,, U, x U,, ---, Uy x -+ x U, to n(U,),
m(Uy), «++s ®(Upy)- If fis a functionon U, x .- x U,,,, its u-section f, by u e U,
is this function on Uy x --. x U,,;:

(Ugy + oy Uyy) = fUy Ugy -+ Uy ) -

(a) Foreachue U, there is a unique probability t,on U, x - .. x U,,,, such that
Sv2x.--xuﬂ+1 ¢, dt, = SU2 ce SU,H_I pu, uy, - -, un+1)’uu2,--~,u”(dun+l) e t(duy)
for all nonnegative Borel ¢ on U, --- U,,,. The integral is a universally measurable

function of u.

(b)

SU2X---XU“+1 fu dtu = sz e SU,,.H f(u’ Ugy =+ 2 un+l)tuu2 ..... u,,,(dunH) e tu(du2)
for all nonnegative universally measurable f on U, x --. x U,,,. The integral is a

universally measurable function of u.
(c) u—t, is universally measurable.
Suppose n = 2. Forue U, let t* be the sequence of functions

u2 - tuuz’ (u29 us) - tuuzuss MR ] (ll, llz, M) un) - tuuz,u-,u

from Uy, Uy x Uy, -+ -, Uy x -+ x U, to a(U,), n(U)), - -+, n(U,,,)-
(d) (u, v) > t,* is universally measurable on U, x U,.

n

ProoF. This is a straightforward but messy induction from (40). You can
reduce the number of factors by one if you group the first two together. []
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Now return to dynamic programming under conditions (35). A strategy s of
length n and its x-section s* and its reward r,(s, x) at x = (x,, - - -, x,,,,) are
defined as in the general case. The strategy s is called analytically or univer-
sally measurable if all the component functions are; as usual, #(S) is endowed
with the Borel g-field generated by the weak* topology.

(42) LEMMA. Suppose (35). Let s be a universally measurable strategy of length
n. Define the probability s, on S™ by (41).

(@) ru(s, x5 Xp5 «+ -, X,,,) is a universally measurable function on S™+1,

() 0,(5, x) = §sn 1(S, X, Xy =+ 5 Xpp1)Sx(dXy, « + -, dx,,,) is @ universally meas-
urable function of x € S.

(¢) Suppose n = 2. Then p, (5%, y) is a universally measurable function of
(x,y) e $? and

Ou(8:%) = §s [1(X, S5 ¥) + Pua(s”5 ¥)]15:(D) -
Proor. For (a), use(39c). Then (b) follows from (41b), and (c) from (41d). [

The next theorem is the second main result of the paper. Remember u, = 70
is the optimal reward in n moves, even allowing nonmeasurable strategies.

(43) THEOREM. Suppose conditions (35). Fix a positive integer n, and a positive
¢. There is an analytically measurable strategy s of length n, such that

0,(8, x) > u,(x) — ¢ when u,(x) < oo
> 1/e when u,(x) = co.

PROOF. The casen = 1. Let
h(x, Py = §s r(x, P, y)P(dy) for (x,P)eA.

So k is semi-analytic by (32). And u,(x) = supp.,, h(x, P). Fix a positive integer
k withk > 1/e. Forj=0,1, ..., let

A; ={(x, P): (x, P)e A and k(x, P) = jlk}.

So A; is analytic by (16), and 4 = 4, D 4, D ---. Let B; be the projection of
A; on S, so B; is analytic by (5), and S = B, D> B, D ---. Let B* = N, 8,
which is also analytic by (4).

Remember that 7 is the o-field generated by the analytic subsets of S. Use
(15) to find .%“measurable functions ¢; from B; to =(S), with (x, t;(x)) € 4; for
all x e B;. Use (15) again to find an .%“measurable function ¢* from B* to x(S)
with (x, t*(x)) € 4, for all xe B*. Let

s, = t;(x) for xeB)\B;,, and j=0,1, ...
= t*(x) for xeB*.
This s is an analytically measurable strategy of length one. We say it is e-

optimal. Indeed, p,(s, x) = h(x, s,). Fix j=0,1,... and xe B;\B Then

J+1°



OPTIMAL REWARD OPERATOR 937

h(x, P) < (j + 1)/k for all Pe A,, because x ¢ B;,, = projs{h = (j + 1)/k}. So
u(x) = (j + 1)/k. But (x,s,)e 4; = {h = jlk}, so

h(x, s,) = jlk > u(x) — e.
Finally, B* = {u, = co}. If x € B*, then (x, s,) € 4, so h(x, s,) =k > 1/e.

The induction. Suppose k > 1 and the theorem holds for n = k. We must
get it for n = k 4+ 1. Fix e > 0; we will construct an ¢-optimal analytically
measurable strategy s. The construction is made separately on the sets {u, ., < oo}
and {u,,, = co}. The second set is analytic by (38), so the first is CA.

The set {u,,, < co}. The modified reward function r(x, P, y) + u,(y) is semi-
analytic by (19) and (38). If you integrate out y with respect to P, and sup out
Pe A,, yougetu,,,(x). So,you can use the case n = 1 with the modified reward
function to generate a je-optimal analytically measurable strategy ¢ of length
one. Let t* be a le-optimal analytically measurable strategy of length &, for
the original reward function, generated by the inducticn hypothesis.

For this paragraph, restrict x to {u,,, < oo}. The strategy s is defined start-
ing from such x as follows: s, = 7, and s* = t*. Clearly, it is analytically meas-
urable. To see why it is c-optimal, notice that

Uey1(x) =2 s [7(x5 155 y) + we(P)]e(dy) > wppa(x) — Je .
Since u;,,(x) < oo, t{u, = oo} = 0. Using (42c¢),
Orsals> %) = §s [1(xs 255 ) + 0u(t*, Y)]to(dy)
> Stug<or [F(X 1 y) + w(y) — Felt(dy)
= (s [r(x, 2,5 ¥) + w(¥)]2.(dy) — %e
>y (X) — 36 — de = U 4(x) — e
The set {u,,, = oo}. Let

h(x, P) = §s [r(x, P, y) + u(y)]P(dy) ,
a semi-analytic function of x and P by (38) and (31). Letn > 2. Let

A, = {(x, P): (x,P)e A and h(x, P) > 1 and Plu, = oo} > i} :
€ n

So 4, is analytic by (16) and (25). Let B, = Proj, 4,, analytic by (5). Use (15)
to construct an analytically measurable function ¢, on B,, with (x, ¢,(x)) € 4,
for xe B,. Let 6 be an ¢/n-optimal analytically measurable strategy of length
k, generated by the induction hypothesis. Clearly, B, C {u,,, = oo}. Define s
on ., B, as follows: if xe B,\B,_;, let 5, = ¢,(x) and s* = 6. Clearly, s is
analytically measurable. Why is it e-optimal? If xe B,\B,_,, then (x, s,) € 4,,
s0 s,{u, = oo} > 1/n.
Continuing with the help of (42¢),

Praa(8: X) = §s[r(%: 55, y) + (0, y)]s.(dy)

Z Yiuy=cr 00, )s5:(dy)
1

>£Sx{uk:00}>—n—'——1—=——-
€ 5 n €
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To define s on {u, ,, = coc\U_, B, let
A% = {(x, P): (x,P)e A and h(x, P) > ¢ + 1[»
[

As before, 4* is analytic. Clearly, {u,,, = oo} C Projs A*. Use(15) to construct
an analytically measurable function ¢ on {u,,, = oo}, such that (x, ¢(x)) € A*
when u,,,(x) = co. Let t* be an e-optimal analytically measurable strategy of
length k, generated by the induction hypothesis. For x € {,., = co}\UJ5_, B,., let
s, = ¢(x)and s* = t*. Clearly, sis analytically measurable. Why is it c-optimal?
Since (x, s,) € A* but x ¢ B,, it follows that (x, s,) ¢ A4,,, s0 s,{u, = co} = 0. Using
(42¢).
P X) = §s [1(xs S5 p) + (1% y)]s.(dy) g
> §s[r(x 5. 9) 4 w(y) — els.(dy)
> _1_ + e —¢e= L .
[

3

This completes the construction of s. It is e-optimal and analytically meas-
urable since all three pieces are. []

Nortes. (a) In fact, ours, ... is %/ ‘-measurable. If Sisuncountable, o
is smaller than the o-field generated by the analytic subsets of S.

(b) If ris uniformly bounded, the argument generates Markovian strategies:
S,,-...s; depends only on i and x,.

(c) Clearly, u, is non-decreasing in n. Letu, = lim, u,. Our argument will
produce an analytically measurable strategy for the infinite game, which stops
everywhere, and whose expected reward starting from x exceeds 6 [u,(x)].
Namely, let n(x) be the least n with u,(x) > 6,[u.(x)]. So n(x) is analytically
measurable in x. Use the theorem separately on each piece {n(x) = n}, to con-
struct an e-optimal strategy of length n. We define the reward of a nonmeasur-
able strategy in the infinite game as the limit in n of what it can accomplish in
n moves. Then we can do as well with analytically measurable strategies.

(d) From (36)—(37),

Up (%) = SUPpea, §5[F(x; P, y) + u,()1P(dy) -
By monotone convergence, u,, = Tu,. The argument in (c) shows that equality
holds. Indeed, suppose, s is the e-optimal strategy for the infinite game. Let
Py = 0. Then

SS [r(x’ Sz y) + pn(z)—l(sx’ .y)]sz(dy) > 0e[uw(x)] °
Using (34a),

(Tua)(x) 2 §s[r(x; 55 9) + ua(9)]sa(dy) > 6. [un(x)] -

Let ¢ —» 0. That is, under condition (35), the optimal reward in the infinite
game is 4, a semi-analytic function; u,, satisfies the optimality equation Tu,, =
u.; and there is an e-optimal strategy which stops everywhere and is analytically
measurable.
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(e) We used the condition that r is semi-analytic in two critical places. First,
we need it to prove that , is semi-analytic in (38). Second, we need r and #,
to be semi-analytic in order to use the selection procedure (15) on {(x, P):
(x, P)e Aand § [r(x, P,y) + u,(y)]P(dy) = a} in the proof of (43).

(f) / Dynamic programming problems are often formulated this way. There
is a state space T, with g-field ¢(T), and an action set © with g-field ¢(®). There
is a transition probability g(« |¢, 6') on o(T), for each re T and ¢’ € ©. There is
a reward function f(t, ', ') on T x ©® x T. The transition probability and re-
ward function are product measurable. Informally, if you are te T, you can
chose any 6’ € ©, and move to ¢’ € T chosen at random from ¢(- | ¢, 6’); you re-
ceive the reward f{(¢, ¢’ t').

Such a problem can be reformulated in the constraint-set terms of the present
paper as follows. The new state space Sis T x O, with the product g-field. The
constraint set A4 is the range of the map

(1, 0,0") —[(+, 0), 9(+

from T x ® x ©® to S x n(S); here, d, is point mass at 6’. The new reward
function is

1,0 x 6,]

1(t, 0), P, (', 0] = f(1, 0, 1) .
An original starting state ¢ is translated into the starting state (¢, 6,), where 6,
is a fixed (arbitrary) point of ®. Suppose T and © are analytic, ¢(T) and ¢(0)
are the Borel o-fields, and f is semi-analytic. Then (35) is satisfied, for 4 is
analytic by (5).
Similarly, any constraint-set problem (S, 4, r) can be formulated as an action-
set problem, by introducing a new absorbing state co ¢ S. The appropriate
action set is all of #(S). The transition probability g is

x,a)=a when (x,a)e 4
=0, when (x,a)¢ 4.

q9(+

And r(x, a, y) is set equal to zero if (x,a)g A or y = oco. Again, d,, is point
mass at oo.

7. Examples.

(45) ExaMPLE. There is a dynamic programming problem with S, 4, and r
Borel, but #, not Borel.

ProofF. Let S be the unit interval. Let d, be point mass at z, so z—d, is
continuous, and 7,(S) = {0,: z ¢ S}is compact. Let 4 = § x 7,(S). Let Bbea
Borel subset of the unit square, whose projection on the x-axis B* is not Borel.
Let r(x, d,, y) = 14(x, z). Then § r(x, d,, y)d,(dy) = 14(x, z), s0O

u(x) = sup, 15(x, z) = 15(x). 0

(46) ExampLE. There is a dynamic programming problem with S, 4, and r
Borel, and A4 a product set, but no 4-optimal Borel strategies of length one.
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Proor. Use the construction for (45). Suppose f is a function from S into
S, and x — d,,, is }-optimal. If x e B*, then 1,(x, f(x)) exceeds §, so is 1. If
x ¢ B*, clearly, 1,(x, f(x)) = 0. That is, 14(x, f(x)) = 1(x), which is not a
Borel function. So f is not Borel. []

(47) ExaMpPLE. There is a dynamic programming problem with S, 4, and r
Borel, and u,(x) = 1. But there are no Borel strategies of length one.

ProoF. Let S be the unit interval. Let B be a Borel subset of the unit square,
whose projection on the x-axis is S, but which includes no Borel graph. Let
A={(x,9d,): (x,y)e B}, and r=1. []

(48) ExampLE. Consistent with the axioms of set theory, there is a dynamic
programming problem with Borel S, 4, and r, and a universally measurable f,
such that

(49) § [r(x; P, y) + (TF)(»)1P(dy)
is undefined for some (x, P) € 4.

ProofF. Let S be the closed unit interval, and let r = 0. Let p project the
closed unit square onto the x-axis. Let ¢ be a one-to-one bimeasurable map of
the open unit square onto the open unit interval. Let g = p o ¢~', a measurable
map of the open unit interval onto itself. Let B be the graph of g, visualized as
a function from the y-axis to the x-axis:

B={(x,)):0< x,y<1, and x = g(y)}.

Let A consist of the pairs (x, d,) with (x, z) € B, together with the pairs (0,
Lebesgue) and (1, d,).

Let E be a complementary analytic subset of the open unit square, with pE
not Lebesgue measurable (9). Let C = ¢(E), a complementary analytic subset -
of the open unit interval. Let f = 1,. Then fis universally measurable. Clearly,
(Tf)(0) = Lebesgue (C) and (Tf)(1) = f(1). Suppose 0 < x < 1. Then

(Tf)(x) = SUPpey, § f[(V)P(dy) = SUp;e 5, 1¢(2) -
So (Tf)(x) = lifthereisaz e C with (x, z) € B, that is, with x = g(z) = p(¢7'(2)):
otherwise, (Tf)(x) = 0. In other terms, (Tf)(x) = 1 iff x € p(¢9=%(C)) = pE. That
is, Tf = 1,5. So (49) is undefined at x = 0 and P = Lebesgue. []
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