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A REMARK ON LOCAL BEHAVIOR OF CHARACTERISTIC
FUNCTIONS

By R. A. MALLER
C.S.I.LR.O., Glen Osmond

1t is shown that, if, for a distribution function F, 1 — F(x) 4+ F(—x)
varies regularly at co with exponent @, 0 > a > —1, then |Im¢(s)| =
O(1 — Re ¢()) (t — 0), where ¢ is the characteristic function of F. Versions
for a < —1 are also given.

1. Let F be a distribution function and ¢ = y + i¢ its characteristic function.
Kesten (1972) page 715, has asked when

(*) lg(t)] = O(1 — x(t)) as t—0+.

Some sufficient but not necessary conditions are given in this note; in particu-
lar, if H(x) = 1 — F(x) 4+ F(—x) varies regularly with exponent a < 0, then
(*), or an extended version, holds. The extended version is designed to account
for cases when (*) fails, superficially, because moments of F are nonzero; for
example, if F has a nonzero mean and finite variance, (*) fails. This behavior
is easily explained by the Theorem given below. An example for which (*) fails
essentially has not been found.

2. Let H(x) = 1 — F(x) + F(—x) and G(x) = 1 — F(x) — F(—x) be the tail
sum and tail difference of F; then
x(t) = 1 4+ §& (1 — cos tx) dH(x) and o(t) = — ¢ sin tx dG(x) .
Introduce the symmetric mean u,* = —{ xdG(x) = lim,_,,., 7, x dF(x) and
the second moment p, = — {3 x* dH(x) = {=,, x* dF(x). Exclude the trivial case

G = 0 (F symmetric) and exclude the case where F has bounded support, so that
H(x) # 0 for any x.

“THEOREM. Let H vary regularly with index a. Then

(i) For0>a> —1, |¢p@t)| = O(1 — %(1)), (t > 0+).

(ii) Fora = —1, |§(f) + t §¥ xdG(x)| = O(1 — x(f)), (t — 0+).

(iii) For —1 > a = —2, |g(t) — tr*| = O(1 — x(1)), (t = O+).

(iv) For —2> a > —3, |§(t) — tp*] = O[—(1 — x(t) — (*[2))], (t = O+).

Proor. Now,
1 — x(t) = —§¢& (1 — cos tx) dH(x) ; — Yt (1 — cos tx) dH(x)
= (1 — cose)H(et™")[1 — H(¢t7")/H(et™)],
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where 0 < ¢ < 1. That H is of index @ means that H(r™*)/H(et™") —»e = < 1
(t — 0+) provided @ < 0. Choose & small enough for e~ + ¢ < 1; then t can
be chosen so small that H(t~*)/H(et™*) < e + 6 < 1. Hence

1 — y(t) = H(et™Y)(1 — cose)(1 — e —8) > 0.
Also,

|g(2)] = |— ¢ sin tx dG(x)| = t|§5 cos txG(x) dx|
< t|§¢/* cos txG(x) dx| + t|§, cos txG(x) dx| ,
after integrating by parts. Further,
1|55 cos txG(x) dx| < t §5* H(x) dx = eH(et™) o H(xet™")[H(et™Y) dx ,
after noting that |G| < H. Finally
1§, cos 1xG(x) dx| = f|[1 — F(et™)] §3} cos tx dx — F(—et™) §52 cos tx dx|
< 2[1 — F(et™) + F(—et™)] = 2H(et™)

by the second mean value theorem, where &, &, = ¢/t. Thus

TM(L)LT) < [e §3 [H(xst=)/H(et™)] dx + 2][(1 — cos e)(1 — = — )]
—X
so that, taking ¢ — 04 and & — 0+, (cf. Feller (1966) page 281),

lim sup,_,, T.19"_(’_% < [ef(a + 1) + 2][(1 — cose)(1 — e=2)]*

— X
provided 0 > a > —1. This completes the proof of (i). Now consider
() + 1§ X dG()|
= |—t {5 (1 — cos tx)G(x) dx — t §/; G(x) dx
+ G(t7*) + t {3, cos txG(x) dx]|

< e §i(1 — cosex)H(et7'x) dx + (1 — ¢)H(et™) + H(et™) + 2H(er™)
using the same arguments as before. Using the same estimate for 1 — y(?), it
will be seen that

im supo, 40 t_ﬁ;édG(x)l < [#)(a + 3) + 4][(1 — cose)(l — ],

valid for —1 = a > —3. Thisprovestheresultfora = —1. If -1 > a > -3,
in addition '
G(1) — ¥ = P(0) + 1§ xdG(x) + 1 §5, xdG(x) ,
while
|t §57 x dG(x)| = |G(t7") + ¢ {5 G(x) dx|
< H(et7™Y)(1 + § H(xt™*)/H(et™?) dx)
and §p H(xt™")/H(st™") dx < {7 H(ext™")[H(et™") dx — —(a + 1) as 1—>0+.



CHARACTERISTIC FUNCTION BEHAVIOR 1187

This proves (iii). For —2 > a > —3, the estimate for y is sharpened in exactly
the same way:

—(1 =20 _'_‘;_,z,,) = <‘_22’f — 1+ cos tx) dH(x)

> (4! — 1 + cose)(1 — e~ — 8)H(et™?)

as before. It is clear that the process can be repeated for values of a < —3.

REMARKS. (i) Referring to Feller (1966) page 313, shows that (*), or an ex-
tended version, holds for any distribution in the domain of attraction of a stable
law.

(ii) An examination of the proof of the Theorem shows that all that is actually
required is that H(¢~*)/H(¢¢*) be bounded away from 1 as¢t — 04 for0 < ¢ < 1,
and that |G(xet~)|/H(st™*) < g(x) where g ¢ L (0, 1). Both of these are satisfied
if there exist constants ¢, ¢/ > 0 such that c¢’e* < H(ex)/H(x) < ce* for x large
and 0 < ¢ < 1. A condition of this type holds for semistable F (Pillai (1971)).
The condition is related to the concept of “dominated variation” (Feller (1966)).
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