A REMARK ON LOCAL BEHAVIOR OF CHARACTERISTIC FUNCTIONS

By R. A. MALLER

C.S.I.R.O., Glen Osmond

It is shown that, if, for a distribution function F, 1 - F(x) + F(-x) varies regularly at ∞ with exponent α , $0 > \alpha > -1$, then $|\text{Im } \phi(t)| = O(1 - \text{Re } \phi(t)) \ (t \to 0)$, where ϕ is the characteristic function of F. Versions for $\alpha \le -1$ are also given.

1. Let F be a distribution function and $\phi = \chi + i\phi$ its characteristic function. Kesten (1972) page 715, has asked when

(*)
$$|\phi(t)| = O(1 - \chi(t))$$
 as $t \to 0+$.

Some sufficient but not necessary conditions are given in this note; in particular, if H(x) = 1 - F(x) + F(-x) varies regularly with exponent $\alpha < 0$, then (*), or an extended version, holds. The extended version is designed to account for cases when (*) fails, superficially, because moments of F are nonzero; for example, if F has a nonzero mean and finite variance, (*) fails. This behavior is easily explained by the Theorem given below. An example for which (*) fails essentially has not been found.

2. Let H(x) = 1 - F(x) + F(-x) and G(x) = 1 - F(x) - F(-x) be the tail sum and tail difference of F; then

$$\chi(t) = 1 + \int_{0+}^{\infty} (1 - \cos tx) \, dH(x) \quad \text{and} \quad \psi(t) = -\int_{0}^{\infty} \sin tx \, dG(x) \, .$$

Introduce the symmetric mean $\mu_1^* = -\int_0^\infty x \, dG(x) = \lim_{T \to +\infty} \int_{-T}^T x \, dF(x)$ and the second moment $\mu_2 = -\int_0^\infty x^2 \, dH(x) = \int_{-\infty}^\infty x^2 \, dF(x)$. Exclude the trivial case $G \equiv 0$ (F symmetric) and exclude the case where F has bounded support, so that $H(x) \neq 0$ for any x.

THEOREM. Let H vary regularly with index α . Then

- (i) For $0 > \alpha > -1$, $|\phi(t)| = O(1 \chi(t))$, $(t \to 0+)$.
- (ii) For $\alpha = -1$, $|\phi(t) + t|_0^{1/t} x dG(x)| = O(1 \chi(t)), (t \to 0+).$
- (iii) For $-1 > \alpha \ge -2$, $|\psi(t) t\mu_1^*| = O(1 \chi(t))$, $(t \to 0+)$.
- (iv) $For -2 > \alpha > -3$, $|\psi(t) t\mu_1^*| = O[-(1 \chi(t) (t^2/2)\mu_2)]$, $(t \to 0+)$.

Proof. Now,

$$1 - \chi(t) = -\int_0^\infty (1 - \cos tx) \, dH(x) \ge -\int_{\epsilon/t}^{1/t} (1 - \cos tx) \, dH(x)$$

\geq (1 - \cos \epsilon) H(\epsilon t^{-1})[1 - H(t^{-1})/H(\epsilon t^{-1})],

Received December 7, 1973; revised February 25, 1974.

AMS 1970 subject classifications. 60B15, 42A68.

Key words and phrases. Characteristic function, local behavior, distribution function, asymptotic behavior, regular variation.

where $0 < \varepsilon < 1$. That H is of index α means that $H(t^{-1})/H(\varepsilon t^{-1}) \to \varepsilon^{-\alpha} < 1$ $(t \to 0+)$ provided $\alpha < 0$. Choose δ small enough for $\varepsilon^{-\alpha} + \delta < 1$; then t can be chosen so small that $H(t^{-1})/H(\varepsilon t^{-1}) \le \varepsilon^{-\alpha} + \delta < 1$. Hence

$$1 - \chi(t) \ge H(\varepsilon t^{-1})(1 - \cos \varepsilon)(1 - \varepsilon^{-\alpha} - \delta) > 0.$$

Also,

$$\begin{aligned} |\psi(t)| &= |-\int_0^\infty \sin tx \, dG(x)| = t |\int_0^\infty \cos tx G(x) \, dx| \\ &\leq t |\int_0^{\epsilon/t} \cos tx G(x) \, dx| + t |\int_{\epsilon/t}^\infty \cos tx G(x) \, dx| \,, \end{aligned}$$

after integrating by parts. Further,

$$t|\int_0^{\varepsilon/t}\cos tx G(x) dx| \leq t \int_0^{\varepsilon/t} H(x) dx = \varepsilon H(\varepsilon t^{-1}) \int_0^1 H(x\varepsilon t^{-1})/H(\varepsilon t^{-1}) dx,$$

after noting that $|G| \leq H$. Finally

$$t|\int_{\epsilon/t}^{\infty} \cos tx G(x) dx| = t|[1 - F(\epsilon t^{-1})] \int_{\epsilon/t}^{\epsilon_1} \cos tx dx - F(-\epsilon t^{-1}) \int_{\epsilon/t}^{\epsilon_2} \cos tx dx|$$

$$\leq 2[1 - F(\epsilon t^{-1}) + F(-\epsilon t^{-1})] = 2H(\epsilon t^{-1})$$

by the second mean value theorem, where $\xi_1, \, \xi_2 \ge \varepsilon/t$. Thus

$$\frac{|\psi(t)|}{1-\chi(t)} \leq \left[\varepsilon \int_0^1 \left[H(x\varepsilon t^{-1})/H(\varepsilon t^{-1})\right] dx + 2\right] \left[(1-\cos\varepsilon)(1-\varepsilon^{-\alpha}-\delta)\right]^{-1}$$

so that, taking $t \to 0+$ and $\delta \to 0+$, (cf. Feller (1966) page 281),

$$\lim \sup_{t\to 0+} \frac{|\psi(t)|}{1-\chi(t)} \leq [\varepsilon/(\alpha+1)+2][(1-\cos\varepsilon)(1-\varepsilon^{-\alpha})]^{-1}$$

provided $0 > \alpha > -1$. This completes the proof of (i). Now consider

$$\begin{aligned} |\psi(t) + t \int_0^{1/t} x \, dG(x)| \\ &= |-t \int_0^{\epsilon/t} (1 - \cos tx) G(x) \, dx - t \int_{\epsilon/t}^{1/t} G(x) \, dx \\ &+ G(t^{-1}) + t \int_{\epsilon/t}^{\infty} \cos tx G(x) \, dx| \\ &\leq \varepsilon \int_0^1 (1 - \cos \varepsilon x) H(\varepsilon t^{-1} x) \, dx + (1 - \varepsilon) H(\varepsilon t^{-1}) + H(\varepsilon t^{-1}) + 2H(\varepsilon t^{-1}) \end{aligned}$$

using the same arguments as before. Using the same estimate for $1 - \chi(t)$, it will be seen that

$$\lim \sup_{t \to 0+} \frac{|\psi(t) + t \int_0^{1/t} x \, dG(x)|}{1 - \chi(t)} \leq [\varepsilon^3/(\alpha + 3) + 4][(1 - \cos \varepsilon)(1 - \varepsilon^{-\alpha})]^{-1},$$

valid for $-1 \ge \alpha > -3$. This proves the result for $\alpha = -1$. If $-1 > \alpha > -3$, in addition

$$\psi(t) - t\mu_1^* = \psi(t) + t \int_0^{1/t} x \, dG(x) + t \int_{1/t}^{\infty} x \, dG(x) ,$$

while

$$|t \int_{1/t}^{\infty} x \, dG(x)| = |G(t^{-1}) + t \int_{1/t}^{\infty} G(x) \, dx|$$

$$\leq H(\varepsilon t^{-1}) (1 + \int_{1/t}^{\infty} H(x t^{-1}) / H(\varepsilon t^{-1}) \, dx)$$

and $\int_1^\infty H(xt^{-1})/H(\varepsilon t^{-1}) dx \le \int_1^\infty H(\varepsilon xt^{-1})/H(\varepsilon t^{-1}) dx \to -(\alpha+1)^{-1}$ as $t \to 0+$.

This proves (iii). For $-2 > \alpha > -3$, the estimate for χ is sharpened in exactly the same way:

$$-\left(1-\chi(t)-\frac{t^2}{2}\mu_2\right)=-\int_0^\infty \left(\frac{t^2x^2}{2}-1+\cos tx\right)dH(x)$$

$$\geq \left(\frac{1}{2}\varepsilon^2-1+\cos \varepsilon\right)(1-\varepsilon^{-\alpha}-\delta)H(\varepsilon t^{-1})$$

as before. It is clear that the process can be repeated for values of $\alpha \leq -3$.

REMARKS. (i) Referring to Feller (1966) page 313, shows that (*), or an extended version, holds for any distribution in the domain of attraction of a stable law.

(ii) An examination of the proof of the Theorem shows that all that is actually required is that $H(t^{-1})/H(\varepsilon t^{-1})$ be bounded away from 1 as $t \to 0+$ for $0 < \varepsilon < 1$, and that $|G(x\varepsilon t^{-1})|/H(\varepsilon t^{-1}) \le g(x)$ where $g \in L(0, 1)$. Both of these are satisfied if there exist constants c, c' > 0 such that $c'\varepsilon^{\alpha} \le H(\varepsilon x)/H(x) \le c\varepsilon^{\alpha}$ for x large and $0 < \varepsilon < 1$. A condition of this type holds for semistable F (Pillai (1971)). The condition is related to the concept of "dominated variation" (Feller (1966)).

REFERENCES

Feller, W. (1966). An Introduction to Probability Theory and its Applications, 2nd ed. Wiley, New York.

Kesten, H. (1972). Sums of independent random variables—without moment conditions. *Ann. Math. Statist.* 43 701-732.

PILLAI, R. N. (1971). Semistable laws as limit distributions. Ann. Math. Statist. 42 780-783.

R. A. MALLER, C.S.I.R.O., DIVISION OF MATHEMATICAL STATISTICS, PRIVATE BAG NO. 1, GLEN OSMOND, SOUTH AUSTRALIA 5064