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THE COMPARISON METHOD FOR STOCHASTIC PROCESSES!

By G. L. O’BrIEN
York University

A relationship between the path structure of two real discrete time
stochastic processes is deduced from inequalities between their transition
functions. The approach is to define processes equivalent to the two on a
common space so that pointwise inequalities are possible. An iterated
logarithm type law for random walks is given as a particular application
of the general method.

1. Introduction. Our aim in this work is to develop a tool for studying real-
valued, discrete time stochastic processes. The idea is to investigate a given
process by comparing it with another process whose behavior is simpler or
better understood. Where feasible, this comparison is made prossible by linking
the two processes via a common probability space on which are constructed two
new processes equivalent to the two given processes. Inequalities between the
transition functions of the two given processes then imply inequalities between
the sample paths of the new processes.

Hodges and Rosenblatt (1953) used such a technique in their study of random
walks. Lamperti (1970) linked his maximal branching processes to associated
sums of independent random variables in order to deduce properties of the former.
Jacobs and Schach (1972) applied a similar technique to a queueing theory
problem.

Kalmykov (1962) made the first study of the general method of comparing
Markov processes. His approach was analytic, involving the transition functions
but not the spaces on which the processes were defined. In O’Brien (1972) we
gave an elementary analytic proof of his result. Daley (1968) gave a weaker
version of Kalmykov’s result. Applications of Daley’s results to queueing theory
problems can be found in Daley and Moran (1968).

The technique below, linking the two given processes via a common prob-
ability space, leads to a comparison theorem of a more general type than the
distributional inequalities of Kalmykov. Moreover, our results are formulated
for general discrete time processes, not merely Markov processes (see Section 3).
Kalmykov’s (1962), (1969) results are discussed in Section 4 and are generalized
to the nonMarkovian situation; the proofs are relatively simple.

The main results do not require the Markov property, but the notation is
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more complicated in the nonMarkovian case. For the sake of tidiness, we
therefore restrict our attention to Markov processes in Sections 5-8. In Sections
5 and 6 we discuss conditions for the hypotheses of the comparison theorem to
hold. In particular we generalize in Section 6 Daley’s (1968) useful concept of
stochastic monotonicity. Section 7 contains a few simple examples for Markov
processes, while in Section 8 a more substantial application proves an iterated
logarithm type law for a class of simple random walks.

Although the theorems are stated for processes on the real line, R, obvious
variations are possible for processes on subsets of R; our random walk application
is just such a case. Theorem 11 also exemplifies another modification which
allows for the periodic nature of simple random walks.

2. Preliminaries. Let N denote the positive integers and let N, = N U {0}.
A distribution function (df) F(-) is right-continuous and is frequently considered
as a function on the extended real line R* = R U {— oo, oo}, with F(—o0) =
0=1— F(c0). We write x" = (x5, -+, %,), X*=(X,, ---,X,), etc., and
x"é)’”fOTXoéyo,'--,xné}’n- .

A sequence of stochastic transition functions {p,} is a sequence of Borel
measurable functions p,: R* X R* — [0, 1], ne N, each of which is a df in its
last variable when the others are fixed. It is convenient to call a stochastic
process a quadruple ({X,}, Q, {p,}, F), where the X, are random variables on
(Q, &, P), Fisadf and {p,} is a sequence of stochastic transition functions, such
that for all n e N, and a" € (R*)"+, the joint df P(X" < a") is given by

2.1) §o - oo §ln, pu(x" dx,) - - o pu(x%; dxy)F(d).

A Markov transition function is a Borel measurable function p: R X R* —
[0, 1] which is a df in its second variable. A Markov process is a stochastic
process for which

(2‘2) Pn(x”) = P(xn—l’ xn) (all ne N) *
Our assumption that Markov transition functions are stationary is one of

convenience, and could be dispensed with at the expense of complicating the
algebra.

Suppose we are given a df F and a sequence of stochastic transition functions
{p.}. It is well known that there exist stochastic processes that have initial
distribution F and transition functions {p,}. The following explicit construction
has order preserving properties which will be useful in the proof of Theorem 2.

THEOREM 1. Let {§,, ne Ny} be a sequence of independent random variables on
(Q, &, P), each distributed uniformly on (0, 1). For each o € Q, define inductively:

(2.3) Xy(w) = inf{y e R: F(y) = &\(o)}
X, (0) = inf{yeR: p,(X*Y0); ) = £,(0)} .

Then {X,} has initial distribution F and transition functions {p,)}.
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The proof of this result is direct and is omitted here (cf. e.g. O’Brien, 1971).

3. The comparison theorems. The statement of our comparison theorem for
general stochastic processes involves two sequences of functions which have
certain characteristics of the inverse of a distribution function. These functions
serve to unify the various specific examples (cf. Sections 4, 7, and 8). Their
role may be visualized better in the simpler Markov case (cf. Theorem 3). First
let S,: R*** X (R*)"— R*, ne N, denote a sequence of functions, each non-
decreasing in its last n arguments. Now, define 7,,: R**! X R* — R*by T, = S,
and

(3.1) T, (x*, y) = S,(x" T,_s(x" 4 p), -+, Ti(x%, y), ¥) -
THEOREM 2. Let F and G be df’s and let {p,} and {q,} be sequences of stochastic
transition functions which, for some sequence {S,} as above, satisfy

(-2) P75 %) = (375 Sulx™ ")
for all (x*, y"~*)e R*™*'. Then there exist a probability space (2, &, P) and
stochastic processes ({X,}, Q, {p,}, F) and ({Y,}, Q, {q,}, G) such that with T, as in
3.1),
(3.3) PY,£T,(X", Y),neN)=1.

Proor. Let (Q, %, P) and {£,} be as in Theorem 1 and define both {X,} and
{Y,} as in that theorem. By the construction and (3.2)

(V™5 Y, — €) < £, S pu(X*H X,) < (Y75 S,(X7, YY)
for any ¢ > 0, whence Y, < S,(X", Y*!). In particular, ¥, < §;(X%, Y) =
T,(X*, Y,). An inductive argument using (3.1) and the non-decreasing property
of S, completes the proof of (3.3).

To discuss the case of Markov processes, suppose there exists a function
T: R* X R* — R* such that each S, in Theorem 2 satisfies S,(x", y*™') =
T(X,_1> Xy Yn1)- Then T, = T and for n > 1,

3.4 To(x™ yo) = T(Xp_1s Xp> Tpus(X™ % ¥0)) -

Any function T: R* X R* — R* that is non-decreasing in its third variable will
be called a comparison function. Since for Markov processes (3.2) reduces via
(2.2) t0 p(X,_1; %,) £ 4(Pu-15 Sa(x™, y™71)), every S, may be assumed to have this
special form. We then obtain directly from Theorem 2

THEOREM 3. Let T be a comparison function and T, as in (3.4). Let F and G
be df’s and let p and q be transition functions satisfying

3.5) p(x, z) < q(y, T(x, 2, ))) » all x,y,zeR.

Then there are Markov processes ({X,}, Q, p, F) and ({Y,}, Q, 9, G) on a probability
space (R, &, P) such that

(3.6) P(Y, < T(X*, Y),neN) =1,
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4. Kalmykov’s theorems. Our next theorem generalizes to a nonMarkovian
context a result of Kalmykov (1962).

THEOREM 4. Let ({X,}, @', {p,}, F) and ({Y,}, Q", {q,}, G) be stochastic pro-
cesses satisfying F(z) < G(2) and p,(x**; z) < q,(y"; z) whenever y»! < x*-1,
Then

4.1) PX,=<2) < P(Y, £2), all zeR,neN,.

Proor. Define the functions S, of Theorem 2 by S,(x", y*~%) = x, if y*-! <
x"1, = oo otherwise. Then by that theorem, there are processes {U,} and {V’,},
defined on a common probability space and equivalent to {X,} and {Y,} re-
spectively, such that V, < U, a.s., whence (4.1).

The Markov version of this theorem, obtainable directly from Theorem 3 by
putting T(x, z, y) = z if y < x, = oo otherwise, is exactly Kalmykov’s result
which we quote as

THEOREM 5. Let ({X,}, Q, p, F) and ({Y,}, @, q, G) be Markov processes which
satisfy F(z) < G(z) and p(x, z) < q(y, z) whenever y < x. Then (4.1) holds.

The probabilistic method of proof for Theorems 4 and 5 has the advantage
of giving some immediate results on limit probabilities, hitting probabilities, and
first passage times. Specifically, we get

COROLLARY 4.1. Assume the hypotheses of Theorems 4 or 5 hold. Forany ac R
and k e N:

(a) P(X, > 0 asn— o) = P(Y, > oo as n— oo);
(b) P(X, €[a, oo) for some n = k) = P(Y, € [a, o) for some n > k);
(¢) P(min{n: X, = a} < k) = P(min{n: Y, = a} < k).

The derivation and extension to the nonMarkovian case of another result of
Kalmykov (1969) is equally simple. Let {a,} and {b,} be sequences for which
b, < a, for all ne N, and assume b, < X, < a,, b, < Y, < a,. Define the first
passage time random variables 7, = inf {n: X, > a,} (= oo if X, < a, for all
n), o, = inf{n: X, < b,} and similarly r, and ¢,. Then under the hypotheses
of Theorems 4 or 5, we have for all k ¢ N that

P(cx < min (o, k)) = P(z, < min (a7, k)) .

5. Properties of comparison functions. It is clear from Theorem 3 that com-
parison functions play a key role in the potential applicability of comparison
techniques to Markov processes: we study them more fully in this section and
the next. :

For any given comparison function T, define a binary relation 7* on the
space of (Markov) transition functions as follows:

DEFINITION. pT*q if and only if p(x, z) < q(y, T(x, z, y)), all x, y, ze R.

Let p and ¢ be any transition functions. Trivially, if T is identically + oo,
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then pT*q, so

(5.1) S(x, z, y) = inf {T(x, z, y): pT*q}

defines a comparison function, and pS*q by the right-continuity in z of g(y, z).
Inspection of Theorem 3 shows that replacing 7 by S yields a tighter bound on
Y, in (3.3).

Now suppose that p, ¢ and T are such that pT*q. Then V(x,z,y) =
inf, ., T(x, u, y) defines a comparison function, and pV*q. Thus, when pT*q,
we may assume that T(x, z, y) is non-decreasing in z; certainly, the S of (5.1)
has this property.

Let T be a comparison function such that the functions T, as defined by (3.4)
satisfy T,(x", y,) = T(x, X,,),). For example, the functions T, of Section 4
have this property; further examples are in Section 7. The conclusion of Theorem
3 is simpler in this case (or indeed, whenever T, depends only on x,, x, and y,
for each n). The following theorem, proved in Lamperti and O’Brien (1972),
gives conditions for such a sityation to hold.

THEOREM 6. Let T be a comparison function of the form

(5:2) T(x, 2, y) = f7'(x, 9(f (2, 7))

for some functions g: R* — R* and f: R X R* — R* where f(z, y) is one-one and
onto in y for each z and where f~*(x, u) is the unique solution z of u = f(x, z). Then
each function T,(x",y,) depends only on (X, X, y,). If g is the identity function,
then T, (x", yo)) = T(Xo; X, Yo)-

Conversely, if Ty(x*, y,) depends only on x,, x, and y,, and if T(x, z, y) is strictly
increasing and continuous in y for each x and z, then T satisfies (5.2) with g strictly
increasing and continuous. If Ty(x*, y)) = T(X,, Xy, y,), we may take g to be the
identity.

We conclude this section by establishing a criterion for the relation pT*q to
hold. Call a transition function p deterministic if there is a function f: R — R
such that p(x, y) = 1 if y = f(x), = 0 otherwise. Clearly the transition functions

form a convex set whose extreme points are the deterministic functions. For
any transition function p, let

(5:3) fix; p, a) = inf{yeR; p(x,y) = o}
for x e R and a € (0, 1). Then associated with p is the family of deterministic
transition functions {p,, a € (0, 1)} given by p,(x,y) = 0 if y < f(x; p, @), =1
otherwise, and
(5-4) p(x:y) = §palx, y) det .

THEOREM 7. For transition functions p and q and comparison function T, pT*q

if and only if p,T*q, for all a € (0, 1).
PROOF, Assume pT*q, and take ae(0,1), x,y,z¢ R. If px,2) < a,
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Pa(x,2) =0, while p(x,z) =« implies gq(y, T(x,z,y)) =a and hence
9.(y> T(x, z, y)) = 1. In either case p, T*q,.
The converse follows from (5.4) and the definition.

6. Reflexive transition functions. For a given comparison function T a
transition function p is reflexive if pT*p. We use R(T) to denote the class of
reflexive transition functions. For the comparison function used in the proof
of Theorem 5, R(T') consists of the class of stochastically monotonic transition
functions studied in Daley (1968) and O’Brien (1972). They made use of the
fact that if p < ¢ and either p or ¢ is in R(T), then pT*q. This fact holds for
general T and leads us to study the nature of R(T).

Suppose T is a comparison function such that T(x, z, x) < z (all x,ze R). If
pT*q, then p(x, z) < q(x, T(x, z, x)) < q(x, z). Thus T* is anti-symmetric and
transitive. The restriction of T* to R(T) is an order relation (T* being reflexive
on R(T)) and R(T) is a distributive lattice under T*.

It is almost trivial that R(min (S, T)) = R(S) N R(T) and that if S < T, then
R(S) < R(T). Applying Theorem 7 we obtain the first part of

THEOREM 8. For any comparison function T, p € R(T) if and only if f(y; p, @) <
T(x, z, y) whenever f(x; p, @) < z. Hence R(T) is nonempty if and only if there is
a function h: R — R such that h(y) < T(x, z, y) whenever h(x) < z.

Proor. For R(T) nonempty and p e R(T), let h(x) = f(x; p, .5) and apply the
first statement of the theorem. Conversely, when such a function 4 exists, define
p by p(x,y) = 1if y = h(x), = 0 otherwise. Then p e R(T).

For the rest of this section, we assume T is a comparison function of the form
T(x, z,y) = z + g(y — x) for some non-decreasing function g: R* — R*. This
special case includes the comparison function used in Theorem 5 and all those
discussed in Sections 7 and 8. If

(6.1) fip> @) = fxi pra) = 9(y — %) @ll x,y, a)
then pe R(T) by Theorem 8. Conversely, if pe R(T), fix x, y and a and let
z = f(x; p, a); then (6.1) holds by Theorem 8. Similarly, R(T) is nonempty if
and only if there exists a function 2: R — R such that

(6.2) h(y) — h(x) = 9(y — ¥) @l x,yeR).
The last condition leads to the following.

THEOREM 9. For T(x, z,y) = z + 9(y — x), R(T) is nonempty if and only if
9(x) > —oo (all xe R) and A = inf (9(x,J) + --- + 9(x,)) > —oco where the in-
Sfimum is over allne N and x,, - - -, x, € R for which x, + --- + x, = —1.

Proor. For R(T) nonempty, (6.2) implies g(x) > —oo for all x and, if
X4 oo+ x, = —1,9(x) + -+ + 9(x,) = h(—1) — h(0), whence 4 > —co.
To prove the converse, it suffices to find #: R — R for which (6.2) holds.

First assume that g(a) < co for some a > 0. Define #: R — R* by h(x) =
inf [g(uw,) + --- + 9(u,)], where the infimum is over all n and u,, - .-, u, such
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that u;, + ... 4+ u, = x. Then k is finite-valued, since 4 = h(—1) < h(x) +
h(—x — 1), and (6.2) holds. Now assume g(0+) = co. Since 4 > —oo and g
is non-decreasing, there is an ¢ > 0 and a finite constant X > 0 such that g(x) =
Kx for x € (—¢, 0). Consequently there is a function f: (— oo, 0] — R which is
concave, increasing and continuous, satisfies f(0) = 0 and satisfies f(x) < g(x)
for all x < 0. Define £: R — R by h(x) = 1f(2x) for x < 0, = —}f(—2x) for
x > 0. Then # satisfies (6.2), which completes the proof.

CoRrOLLARY 9.1. If T is as in the theorem and R(T) is nonempty, then g(x) 4+

9(—x) = 0 for all x. In particular g(0) = 0. If g(x) + g(—x) = O forall x, then
9(x) = cx for some constant c.

7. Examples. We give several simple examples related to Theorem 3. In
each case T has the property that T,(x", y,) = T(X, X,, y,). Moreover, T has
the form T(x, z, y) = z 4+ g(y—x).

ExampLE 7.1. Let T(x, z, y) = z. Then pT*q if and only if p(x, z) < ¢(y, 2)
(all x, y, z); hence pT*p if and only if p(x, z) is independent of z. Jacobs and
Schach (1972) proved our Theorem 3 for this T under the assumption that

p> 9 € R(T), i.e., the processes concerned were sequences of independent random
variables.

ExampLE 7.2. Let T(x,z,y) =z + y — x. Then pT*q if and only if
plx, x 4+ z) < q(y,y + 2) (all x, y, z). For such p and ¢ and any df’s F and G,
there are processes ({X,}, Q, p, F)and ({Y,}, Q,¢9,G)such that ¥, — Y, < X, —
X, (all ne N). Defining S(x, z, y) = T(x, z,y) if y < x, = oo otherwise, pS*q if
and only if p(x, x 4+ z) < q(y,y + z) whenever y < x, and we must then have
F < G in order to guarantee Y, — Y, < X, — X,. Note that pT*p if and only
if p(x, x + z) is independent of x, while pS*p if and only if p(x, x + z) is non-
increasing in x for each z.

ExaMPLE 7.3. Our final example is related to a result of Lamperti (1959).
Fix M > 0 and define T(x,z,y) =z + 2M if y < x 4+ 2M, = oo otherwise.
Then pT*q if and only if p(x, z) < q(y, z + 2M) whenever y < x 4+ 2M. For
such p and ¢ and df’s F and G with F(z) < G(z + 2M), there exist processes
({X.}, Q, p, F) and ({Y,}, Q, ¢, G) such that P(Y, < X, + 2M, ne N) = 1. Let
p be such that p(x,x — M) =0, p(x,x + M) =1, and p(x, x + z) is non-
decreasing in x for each z. Then (cf. (5.3)) x — M < f(x; p, @) < x + M, and
so f(y; p» @) — f(x; p, @) < 2M, if y — x < 2M, whence by (6.1), pe R(T). In
particular, p e R(T) if p is a transition function for sums of independent random
variables with each term bounded by M.

8. Random walks. We give in Theorem 10 below a law of the iterated
logarithm for a class of simple random walks on N, with a reflecting barrier at
0. To this end, we need to modify Theorem 3 in an obvious manner to cover
the case where the state space of the process (and hence the domain of definition
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of the transition functions) is a subset of R. In the present context, a simple
random walk is a Markov process such that p(0, 0) = 0, and for (i, j) e N, X N,,
pi,)=11ifj>i, =0if j <i—1, and = p(i,j — 1) if j =i. Thus, p is
determined by {p(i, i), i € N}.

THEOREM 10. Let ({Y,}, Q, q, G) be a simple random walk for which q satisfies
(8-1) | 9, 1) Z (( — m — )i — m)), i>m,
for some m e N, and some v < 1. Then
(8.2) P(lim sup,_., Y, /(2nloglogn)t < 1) =1.

PrOOF. Let p be a transition function for a simple random walk with p(i, i) =
(i — v)/(2i) forie N. Let T be the comparison function T(i, k,j) = k 4+ m + 1
for j <i+ m+ 1, = oo otherwise. It is not difficult to check that pT*q,
and since T,(i",j) = T(iy i,,]), it follows that there exist random walks
(X} @', p, G) and ({Z,}, @', ¢, G) such that P(Z, < X, + m + 1, all n) = 1.
Now Brezis, Rosenkrantz and Singer (1971) showed that (8.2) holds for {X,},
so it holds for {Z,} and hence for {Y,}.

The comparison technique can also be used to get a lower bound for certain
simple random walks. We give a shorter proof of the following result due to
Brezis et al. (1971).

TueoreM 11. Let ({Y,}, Q, g, G) be a simple random walk such that q(i, i) < }
forallie N,. Then

(8.3) P(limsup, . Y,/(2nloglogn)t > 1) = 1.

ProOF. Assume G(0) = 1 for convenience, and let T(i, k,j) = kifj < i, = oo
otherwise. Let p be a transition function for a simple random walk with
p(i,i) =% (e N). Then in the proof of Theorem 3 with F = G, we require
only that p(i, k) < q(j, T(i, k, j)) for i and j both even or both odd, and this
does in fact hold. Therefore there exist simple random walks ({X,}, Q’, p, G)
and ({Z,}, @', ¢, G) with X, < Z, a.s. By the law of the iterated logarithm for
X,, (8.3) holds for Z,, and hence for Y,.
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