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A GENERALIZATION OF ORNSTEIN’S d DISTANCE WITH
APPLICATIONS TO INFORMATION THEORY"

BY RoBERT M. GRrRAY, DAVID L. NEUHOFF AND PAauL C. SHIELDS

Stanford University, Universiy of Michigan
and University of Toledo

Ornstein’s d distance between finite alphabet discrete-time random pro-
cesses is generalized in a natural way to discrete-time random processes
having separable metric spaces for alphabets. As an application, several
new results are obtained on the information theoretic problem of source
coding with a fidelity criterion (information transmission at rates below
capacity) when the source statistics are inaccurately or incompletely known.
Two examples of evaluation and bounding of the process distance are pre-
sented: (i) the d distance between two binary Bernoulli shifts, and (ii) the
process distance between two stationary Gaussian time series with an alpha-
bet metric |x — y|.

1. Introduction. In an invited paper in The Annals of Probability, Ornstein
(1973) discussed the concept of the d distance between finite alphabet, discrete-
time random processes that he had developed earlier in several papers referenced
therein. In a discussion of Ornstein’s paper, Krengel (1973) predicted that much
of Ornstein’s work would lead to new methods and results in Shannon informa-
tion theory. In this paper we present some initial progress in this direction by
demonstrating that a natural generalization of the d distance can be used to
obtain results on source coding with a fidelity criterion when the source statistics
are inaccurately or incompletely known. This provides lower bounds to attain-
able average fidelity when trying to communicate a source with inaccurately or
incompletely known statistics across a channel with capacity possibly less than
the source entropy (which may be infinite). As examples, the process distance
is evaluated or bounded for two special cases:

(i) the d distance between two binary Bernoulli shifts, and
(ii) the generalized distance between two stationary Gaussian time series with
alphabet metric [x — y|.

2. The p distance. Let the alphabet 4 be a separable complete metric space
with metric p. Let % be the o-field generated by the open sets of 4. Since 4
is separable metric space, % thus defined is a separable o-field with some
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countable set of generators & = {a;}. For each n define the measurable space
(A" 77) = Xizo (A S73)
where A" is the Cartesian product of exemplars of 4, of 4 and .97 is the smallest
o-field containing all sets of the form X 77! B,, B, ¢ &£"~*. The metric on A" x A"
is defined as
Oa(X" y*) = 07t 23150 (X5 Vi)
where x* = (x,, - - -, x,_;) € A". Define the sequence measurable space (X, &) =
(A=, &7=), i.e., X is the space of doubly infinite sequences of elements of 4 and
& is the smallest o-field containing all of the cylinders of the form C = ... x
Ay x A xCyx Cppy % +oo X Cippy X Ay x -+ -, where each C; ¢ &,. De-
note the countable set of all such cylinders by <. As does Blumenthal (1973)
in his discussion of Ornstein’s paper, we consider sequence space rather than
an underlying probability space as this is more natural for information theoretic
applications.

Let g, be shift invariant (stationary) measures on (Z, .5”) for all values of an
index ¢ so that {(X, & u,)} is a family of probability spaces. We shall make use
of the fact that 4, is uniquely specified by its values on &. Let g, denote the
restriction g, to (A", ™). For elements x = (..., x_j, X, X3, ---) € X let
X,(x) = x, denote the projection of x onto the coordinate space 4, and let T
denote the shift on X, i.e., (Tx), = x,,;. The sequence of random variables
X, (x) = X(T"x) described by (Z, .S, ,) is then a stationary discrete time random
process and will be abbreviated by [4, #,].

Let [4, p,] and [4, p,] be two processes with corresponding sequences of
random variables {X,} and {Y,}, respectively. The processes are considered
identical if py(B) = p,(B), all Be €. Define the p distance between the two
processes, p(0, ¢), as follows:

(0, ¢) = sup, p.(0 ¢) »
pn(a’ SD) = infpney’n Ep”[pn(Xn’ Yn)] 4

Eplou(X", Y")] = Lancan 0u(3", y)dp™(x™, y*) ,
and &, is the class of joint measures p* on (A", ") yielding p," and g~ as
marginals, i.e.,
G =A{p" 1 p(B x A") = {puun dp™(x", ") = 11"(B),
PHA" % B) = §jnup dp*(x" ") = p,*(B), all Be.s/"),
Kailath (1973) has pointed out that 5,(f, ¢) is the Vasershtein distance
(Vasershtein (1969)) between the measures p," and p,* with metric p, on 4".
The p distance between two processes is thus a measure of how closely we can
“fit” the two processes together in a random manner according to a given metric.
We shall shortly see that the various interpretations of the d distance have cor-
responding interpretations of the g distance. We next state and prove several
straightforward properties of the g distance.

where
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PROPERTIES OF .

(i) lim,_. p,(0, ¢) exists and equals sup (9, ¢);
(ii) p is a metric;
(iii) if A, is finite and p(k,j) = 1 — §, ;, where §, ; is the Kronecker §, then
p(0; ¢) = d(6, 9);
(iv) if p, and g, both yield i.i.d. random processes, then 5(0, ¢) = p,(0, ¢);
V) 20, 9) = 0(0, ¢) = \ pdpy*dp,’.
Proor.

(i) Let p¥ yield g, (or arbitrary close if the minimum is not achieved). For
any n < N define
pn(B) — pN(B X Aﬁ(N—n)) R Be Mﬁn R
pYH(C) = pr(C x A™), Ce.orm.
We have immediately that p* ¢ &, and p*¥-» ¢ &%, _  and therefore |
Npy(0, ¢) = nE,np(X*, Y*) + (N — n)E,N — np,_ (X", Y¥~%)
= 19,0, ¢) + (N — mpy_.(0; ¢)

which implies that the limit of g, exists and equals the supremum (cf. Gallager
(1968) page 112).

(ii) Parallel to the d distance, the fact that p is a metric and that the above
limit exists implies that g satisfies the triangle inequality. @(f, ¢) is obviously
symmetric in its arguments and nonnegative. If 5(¢, ¢) = 0, then §,(0, ¢) = 0
for all n which implies that there exist p"(x", y»: x* = y*) = 0 such that for all
Be o7 we have p,"(B) = p*(B x A") and p,"(B) = p™(A" x B).

This is only possible, however, if p,"(B) = p,"(B), all Be .. Since this holds
for all n, [4, py] and [4, p,] are the same random process. Hence g is a metric.

(iii) This follows from the fact that for each n, g,(0, ¢) = d({P.},", {Q;},") as
defined by Ornstein (1973).

(iv) Let p!yield p, (or k arbitrarily close) and let p" be the product measure
of np’s. This yields an upper bound to g, since p" € &, if p," and p,* are them-
selves product measures of p,' and p,*'. Thus

ou(0, 9) = § pudpm = n7" 315 § pdp = pi(0, ¢) -
Since by definition p = sup p,, ¢ = p.
(v) The left-hand inequality follows from the definition. The right-hand in-
equality follows from the test measure p* = p," x p,".

We next present two alternative definitions of distances between processes.
Recall that & is a countable basis for & - Call a string x € X f-representative if

lim, ., n~* Y1223 I(T=*x) = p,(C) , all CeZ,

where I, is the indicator function. Denoting the collection of all f-representa-
tive strings by X,, we have from the ergodic theorem that for ergodic processes
#s(Zy) = 1. Define the g’ distance between two ergodic processes [4, p,] and
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[A’ :ugo] as
o0, ¢) = 1nf,ezmez¢ limsup, ., n=* 37221 o(x,, y,) -
The p’ distance tells us the smallest necessary amount by which we must change
a representative string of one process to make it look like a representative string
of the other process.
Let &, , be the set of all jointly stationary measures on (I, &¥)* having g,
and p, as marginals. Define

‘5"(0’ ) = infpwa,go Ep[p(Xo, Yo)] .
The g distance tells how closely two jointly stationary processes can be fit
together at a single time.

TreorEM 1. p"(0, ¢) = p(0, ¢), and, if [A, p,] and [A, p,] are each ergodic, then

p(0, ¢) = p'(0, ¢) = p"(0, ¢) -
Thus the g distance tells us

(i) how much we must change an entire representative sample function of
one process for it to be confused with a representative of the other process, and

(ii) how closely we can force the two processes to resemble each other at a
single time instant if the two processes are generated by a single stationary two
dimensional process. The proof of Theorem 1 is an adaptation of the correspond-
ing results for the d distance (Ornstein (1973)) and is relegated to an appendix.

As suggested by Kailath (1973), §”” can be interpreted as the Vasershtein dis-
tance (Vasershtein (1969)) between g, and , with metric limsup,_,..n~* 2-3 o(x;,
y:) on 37 and with the constraint that the class of joint probability distributions
on (2, &) be stationary. Hence Theorem 1 demonstrates the equivalence of the
p distance with the appropriate Vasershtein distance.

We note that the § distance as defined here extends naturally to continuous
time random processes with sums replaced by integrals.

3. Applications to information theory. We begin with a summary of the rele-
vant definitions and theorems of distortion-rate theory (theory of source coding
subject to a fidelity criterion) in the appropriate notation. The theory had its
origins in Shannon’s classic 1948 paper, and was further developed by Shannon
(1959). Modern measure theoretic expositions may be found in Berger (1971)
and Gray and Davisson (1974).

For an integer Na codebook Cy is a collection of ||Cy|| N-tuples {y, "}, ... 1o
drawn from AY = X! A, where 4, are replicas of the so-called “available re-
producing alphabet” 4 (usually 4 = 4). We assume that p is a metricon 4 U 4.
Each successive source N-tuple x* is encoded into the codeword y¥ ¢ C, mini-
mizing p,(x", y¥). The resulting codeword is denoted by #(x"). Define

ox(X" | Cy) = minyn o, p(xY, y¥) = py(x¥, X(xV)) .

The average distortion of a codebook C, used to encode a source [a, y,] is
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given by

o(Cy|0) =4 E,ug[toN(XNl Cw)l =a Yanw oy(xV | Cy) dpg™(xY)
The rate R(Cy) of a codebook is defined by R(Cy) = N~'In ||C,||. Let &(N, R)
denote the collection of all block length N codebooks having rate R or less. The
quantity of interest is the smallest attainable average distortion using codebooks
of a given block length and rate to encode successive source blocks, i.e.,

0o(R, N) = infy oy .z 0(Cy|0) .
Also of interest is the minimum attainable average distortion over all rate R
codes:
3,(R) = inf, 8,(R, N) .

It is easily shown that the limit of d,(R, N) as N — oo exists and equals the infi-
mum. Coupling this definition with Shannon’s channel coding theorem we can
interpret d,(R) as follows: If we attempt to send information about a source
[4, u,] across a channel of capacity C, then the minimum attainable average
distortion between the source and the channel output using block coding is d,(C).
(This is one version of the Information Transmission Theorem, Gallager (1968)
page 449.)

Information theory provides a means of evaluating 9,(R) via standard convex
minimization techniques. Let ¢* be a conditional probability measure on o7,
a o-algebra of subsets of A4, given events in .%". Let p" denote the joint
probability measure induced on & x o by g and ¢", i.e., for any set
Ge oo™ x 7™

P"(G) = § ¢"(x, G,) dp™(x)
where G, = {y: (x, y) € G}. Followir{g Pinsker (1960) or Berger (1971), define
the average mutual information /, of the joint probability space (A" x 4",
S x 7", p) by
I, = I(p*, q") = su ©,p"(G, x B)lo PG, x B))

where v*(B;) = p"(A" x B;) and the supremum is taken over all partitions of
A" x A" into countably many rectangles G, x B;; G,e ", B, ¢ 7. We define
the distortion-rate function of the source [4, p,] and distortion measure p as
follows: For Re |0, oo], define Q,(R) as the class of probability measures g»
such that n=(y,", ¢g") < R. Let

Dy (R) = infpncq in) §.0.(x", ") dp™(x*, y")
with D, (R) = + oo if Q,(R) is empty, and define
Dy(R) = lim,__ D, ,(R) .

It is easily shown that for stationary sources D,(R) exists and is a nonnegative,
monotonic, decreasing convex |J function over the interval in which it is finite.
The basic source coding theorem (Shannon (1949), Gallager (1968), Berger
(1971)) can be stated as follows (Gray, Davisson (1974)):
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THEOREM 2. SOURCE CODING THEOREM. Given an ergodic source [A, p,] with
distortion-rate function D,(R), assume there exists a letter X* for which

E, [0 #9] =4 § 0:(% #) dp(x) < p* < o0,
then Dy(R) = 0,(R) and hence there exists a sequence of codes C, such that
lim,_.. o(Cy | 6) = Dy(R) = 34(R) .

The generalization to stationary nonergodic sources via the ergodic decom-
position can be found in Gray and Davisson (1974).

One of the major shortcomings of the theory is that in practice source statistics
are not known precisely. The calculation of D,(R), however, requires precise
knowledge of the measure p,. Two questions thus naturally arise:

(i) If a sequence of codes is designed for a source model [4, y,], but the actual
source is [4, p,], how much performance might be lost due to this mismatch?

(ii) What is the minimum attainable average distortion using fixed rate block
coding if we must encode an unknown member of a class of sources?

The first problem has not been treated in the information theoretic literature to
our knowledge. We shall see that the § distance provides a simple solution. The
second problem is that of universal coding subject to a fidelity criterion and
has been studied by Dobrushin (1963), Sakrison (1969), Ziv (1972), Gray and
Davisson (1974), and Neuhoff, Gray, and Davisson (1975). Here, the g distance
provides a new intuitive method that provides both some new results and
simplified proofs of results similar to known results.

The solution to the first problem and the basic method for attacking the second
is given by the following easy result.

THEOREM 3. Given two stationary sources [A, py] and [A, p,], any integer N, and
any codebook C,, then

lo(Cx |0) — o(Cxl @)l = (0, ¢) -
Proor. Let p?¥ yield g, (or be arbitrarily close), then

o(Cule) = Yav de," (Y)Y | Cy) = Jawwan dp™(x", y")p(y" | Cy)
= Lawean dp™(x", y")on(x", y7) + o(x7| Cy)]
= (0, ¢) + p(Cy |0) < p(Cx|0) + 0(0, ¢) -
Interchanging the roles of 6 and ¢ yields the theorem.
The above simple proof demonstrates the natural application of the g metric
to information theoretic problems involving approximation.
If a sequence of codes C,, is designed for [4, p,] so that o(Cy|0) —y_.. 04(R),
then the above theorem states that if we apply this sequence to a source [4, p,]
we will have limiting average distortion

limy_., 0(Cy | @) < limy_o, 0(Cy |0) + 0(0, ¢) = 34(R) + 5(0, ¢)

so that codes will work well for the “true” mismatched source if the g distance
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between actual source and the design model is small. We note that this conclu-
sion does not follow from closeness in the vague topology (distribution metric).
Since the left-hand side is bound below by 6,(R), we have immediately the
following corollary;

CoROLLARY 1. Given two stationary processes having separable metric spaces for
alphabets, then

|04(R) — 3,(R)| = (0 ¢) -
In particular, if the sources are ergodic
|Dy(R) — Dy(R)| = (0> ) -

The distortion-rate inequality can easily be extended to nonergodic stationary
sources using the first inequality and the coding theorem for nonergodic sources
(Gray and Davisson (1974)).

We next consider the problem of universal source coding. Consider a class
of ergodic sources {[ 4, y,]; € A}. The object is to construct a sequence of codes
without knowledge of ¢ that will work well regardless of the actual source chosen
by nature. A sequence of codes C), is said to be weakly-minimax universal if

lim, . R(Cy) = R,
limy ., o(Cy|0) = 04R), all deA.

The sequence C), is said to be strongly-minimax if the above limits are uniform
in 0, i.e., if given ¢ > 0 there exists a single N, not dependent on ¢ such that

IR(Cy) — R| < ¢,
10(Cy |0) — 8,(R)| < &, all e A, N> N,.

When actually constructing finite length codes, strongly-minimax universality is
more desirable. Weakly-minimax universality is usually easier to demonstrate,
however, and provides a good class of codes to search for the stronger variety.
Ziv (1972) has shown via a complicated covering argument that under tighter
restrictions on the source alphabet that weakly-minimax universal codes always
exist for arbitrary classes of stationary sources. We prove a parallel result for
the more general alphabet of separable metric spaces but less general measures.
Thus our result reinforces Ziv’s and neither subsumes the other. The point here,
however, is that the § metric provides a much simpler and more direct and in-
tuitive proof. As a corollary we then give sufficient conditions for the existence
of strongly-minimax universal codes. This is the only such result known to the
authors.

THEOREM 4. UNIVERSAL CODING. If the class {[A, p,]; 0 € A} is a separable
metric space under § and if there exists an X* such that .

Ezp(xt, X*) < p* < o0, all O A,

then there exist weakly minimax universal codes.
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Proor. Let {f,}7_, index a countably dense (in the § distance) subset of pro-
cesses. Given ¢ > 0, let {V,} be spheres of radius ¢/3 about 6,. Construct a
subsequence of codes as follows: For each K =1, 2, 3, ... choose N(K) large
enough so that there exist rate R codes Cy,(k), k = 1, - - -, K, such that

P(Cry(k)10,) < aak(R) +¢/3
and N(K) = K.
Form the union codebook

Crir =a Uk=1 Cyir (k) -
The union codebook is then coupled with the usual encoding rule (find the

“best” codeword in Cy,, for any given source vector) providing a block length
N(K) code with rate

R(Cyix) =R+ NK)7'InK <R + K InkK.

Since the “best” codeword in Cy, for any particular source block can be no
worse than the best codeword in any particular subcode Cy ,(k), we have for
any 6 that f

o(Crix 10) £ T 0(Crae(K) | O (0) + 00*[1a(0) — Tux_, v, (0)]

where I,(0) is the indicator function of the set A. Since the ¥ are spheres about
a dense subset of A, A = |Ji_, V; and we have from Theorem 3 and its corollary
that

limg .. 0(Cyx, |0) < limg_o, X241 [0(Crix (k) | 04) + 6/3]IVk(0)
< limg., 3054 [0,,(R) + 2¢/3]1y,(6)
< limy_. . [0s(R) + €My y(0) = 3,(R) + ¢ .

Since ¢ is arbitrary and since a subsequence of codes Cy y, yields a sequence Cy
with the same properties (Gray and Davisson (1974)), the theorem is proved.

Shields (1974) has shown that the class of all B-processes with a fixed alphabet
is separable under the d distance and that the class of k state Markov chains is
separable under the d distance. The class of all independent, identically distri-
buted (i.i.d.) processes with a fixed separable metric space is easily seen to be
separable (put rational probabilities on countable generators). Separability of
the space of Gaussian time-series with a magnitude alphabet metric follows from
the formula of the next section and the separability of L,(—=, ) under ||+||;.

From the proof of the weakly-minimax universal coding theorem we have the
following obvious corollary.

COROLLARY 2. If the space of processes {[A, p,]; 6 € A} is compact or totally
bounded under p, then there exist strongly minimax universal codes.

The class of all i.i.d. processes with a given finite alphabet is compact under
the d distance. Shields (1974) has shown that given d > 0, the class of finite
alphabet Markov chains for which any state is reachable in a specified finite
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number of steps with probability > d is compact. From the results of Section
4 it follows that any class of stationary Gaussian processes with power spectral
densities in a compact subset of L, is compact. Finally, any finite collection of
processes is clearly compact. It would be of interest to obtain more general
classes of g-compact classes of random processes.

The g distance has also proved useful in providing a new definition of Shannon’s
distortion-rate function and interpreting the source coding theorem (Gray,
Neuhoff and Omura (1975)) and in proving a source coding theorem using
nonblock codes (Gray, Neuhoff, and Ornstein (1975)).

4. Evaluation of p.

ExaMpLE 1. We first consider the simplest possible example: the d distance
between two i.i.d. binary sequences with bias p, and p,. This example is also
developed in a different way by England and Shields (1974) and is presented
here for completeness. Since the processes are i.i.d., § = g, and hence,

p(0, p) = inf 4 5 Dass q(ks J)
Y=o q(L, J) = ps> 2i=0q(k, 1) = p, .

A LaGrange Minimization immediately yields p(0, ¢) = |p, — p,|. An interpre-
tation is as follows: if p, > p, and x is p,-representative, then change a percentage
P2 — p, of the ones in x to zeroes and the resulting string will be p,-representative.

ExaMmpLE 2. Consider two real stationary Gaussian random time series: Let
A be the real line and let [4, y4,] be a sequence {X,} of zero mean Gaussian
random variables described by the correlation function R,(k) = EX;X,,, and
power spectral density (discrete Fourier transform) f,(2) = X5 _. Ry(k)e™ .
Similarly, let [4, p,] be a zero mean Gaussian time series {Y,} with correlation
R, (k) and f,(4). Consider two measures of distance on A: p(x', y') = [x! — )|
and p*(x', y') = (x' — y*)*. The first measure p is a metric and hence all of the
previous results and applications apply. The second measure p* is not a metric,
but is considered since it is one of the most popular measures of “distortion” in
information theory and since all of the properties of the resulting g* “distance”
remain valid except for the triangle inequality (and therefore the applications
described in Section 3). Since other uses of § do not require the metric property
(e-g., Gray, Neuhoff and Omura (1975), and Gray, Neuhoff, and Ornstein
(1975)), this non-metric “distance” is presented for comparison and completeness.
For simplicity consider the g definition and define p(f, ¢) = inf E,{|X* — Y|}
and p*(0, ) = inf E {(X* — Y")’}, where both infimums are over &, ,. For any
stationary p € §, , yielding a pair process {X,, Y,}, define the cross-correlation
function R, (k) = E,(X,Y,,;) and its Fourier transform f,,(2) = 3 R,,(k)e™**,
the so-called cross-spectral density. From Rozanov (1967) page 19, we have for
any p that |£,,(D]* < fo(Af,(4)-

Since X! and Y! are zero-mean Gaussian random variables, Z = X' — Y! is
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also a zero-mean random variable with variance ¢ given by
o = E,Z* = Ry(0) + R,(0) — 2R,,(0)

= 2m)7 2. [fo(A) + fo(D) — 2o, (2)] d2

= 207 2 o) + £, — 2[o(Df (D) dd =, 0* .
We therefore have for any stationary p e §,, that E {(X* — Y')’} = ¢, = ¢ and
hence g*(0, ¢) = o*.

Since the matrix
[ Jo(2) (fo(2), go(l))*]
(So DD [(2)

is nonnegative definite, there exists a stationary Gaussian pair process {X,, Y,}
with f, (2) = (fy(4)f,(4))* from Section 1.9 of Rozanov (1967) and therefore we
have for the resulting p that ¢,> = ¢* and

E[|X* — Y} = (2/m)'o = p(6, ¢)
E{(X* = YV} = o* = p*(0, ¢)
yielding the following Theorem.

THEOREM 5. If [A, p,] and [A, p,] are stationary Gaussian time series with
spectral densities f, and f,, respectively, and if o(x', y') = |x' — y'| and p*(x', y') =
(x — yY)?, then

(2n)oy — o,| = 80, ¢) = 77§ |fo(DF — [ (DY da?
P40, ¢) = @)~ § S — (D} dA.

The lower bound to p follows from the fact that g = p,, which has been
evaluated by Vallender (1973). If both processes are i.i.d., then (@, ¢) =
(27)l, — 0.

Note that 5*(0, ¢) is the square of the L,(—=, =) distance between the square
roots of the spectral densities. It is easy to construct processes that have the
desired distance p*. If W, is an i.i.d. sequence of zero mean, unit variance,
Gaussian random variables, then [4, ,] can be generated by passing W, through
a linear time-invariant filter with transfer function f,(2). The process [4, p,]
can be generated in a similar manner. If we now use W, to simultaneously
generate both X, and Y, as shown in the figure, then Z, = X, — Y, can be
considered as the output of a linear filter with transfer function f,(2)} — f,(2)
and application of linear systems relations (Rozanov (1967) pages 34-35) yields

— Vi X, [

Fic. 1.
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that

0 = E{(X, — Y.)’} = @n) 7 {1, |fo(2)! — [ (D)} d2.
Since X, — Y, is therefore Gaussian with the desired variance, E((X, — Y,)’) =
p*(0, ¢) and the joint process achieves g*.

The p distance may provide a useful topology on Gaussian random processes
in problems of system identification and modeling since the equivalent definitions
of p provide interpretations of closeness or goodness of fit in terms of representa-
tive sample functions and time average distortion in addition to the ensemble
meaning.

We close this section with a corollary:

COROLLARY 3. Let [4, py] and [A, p,] be two stationary random processes having
power spectral density f,(4) and f (2), then for p*(x', y') = (x* — y')

p*(0, ¢) = (27)71 V2, |fo(2)F — f ()Y d
with equality if the processes are Gaussian.

The corollary follows immediately from noticing that the lower bound part
of the theorem proof did not involve the fact that the processes were Gaussian.
Thus Gaussian processes provide an extreme in the class of stationary processes
with given spectra and a mean-squared error “distance” in that we can fit them
together at least as well and possibly better than non-Gaussian processes having
the same spectra. We conjecture that the lower bound equals g* only if the
processes are Gaussian.

APPENDIX
PrROOF OF THEOREM 1.

(@) p=p". Givene >0, let pe &, be a measure yielding E,[p(X,, Y;)] <
p"(0, ¢) + ¢. The restriction p™ of p is contained in &, and therefore E,.[p, (X",
Y")] = 6.(0, ¢). Since p is assumed stationary, §"(0, ¢) + ¢ = E,[p(X,, Y,)] =
E[o,(X", Y] = p,(0, ¢), all n. Since ¢ was arbitrary, g"” = p.

Let pre &, n = 1,2, ... be a sequence of measures such that
(Al) Ep”[pn(Xn’ Yn)] é ﬁn + €
where ¢, > 0 and lim,_,, ¢, = 0. Let ¢, denote the product measure on (Z, &)’
induced by the p*, i.e., for any N and any N-dimensional cylinder C = X._.. C,,
where all of the C; = A4* except for a finite number N which are elements of &2,
define

qn(c) = H;’L—mpn(cin X Cjn:+1 X oo X Cjn+n—1) .
Thus ¢, treats successive n-tuples as independent. The 7T"-invariant measure ¢,
can be averaged to form a T-invariant measure p, on cylinders:

Pu(€) = 17 155 qu(T*C) = 7" T T15emwo P (Cinas X+ o+ % Chniznn) -
Since p, is T-invariant on cylinders and consistent, it extends to a stationary
measure, also denoted p,,, on (Z, &)’
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For any m < n the marginal mth restrictions of p, can be related to the origi-

nal measure as follows: Let G = XptG, e o™,
gu(@; 0 = (x,) € T% x™ € A", y" € G)
= P A" x (4" x G)) = (A" x G) = ,(G)
since p* € &#,. Thus
Pu"(A™ x G) = py(0: ® = (X, y); x™ € A", y" € G)
(A2) =n(n —m + 1)p,™(G)
+ 7t D " (KRS G, (Kb G

with a similar expression for G x A™. By a standard diagonalization, the se-
quence of probability measures p, has a subsequence p, converging on every
cylinder in €. The limit measure, denoted p, can be extended to a measure on
(Z, &)’. From (A2) we have for each fixed m that
v Pa"(A" % G) = p™(4™ x G) = 1,"(G)
lim, ., p,™(G x A™) = p™(G x A™) = p,™(G)

lim

and hence for any cylinder C in &
PE x C) = p,(C)
P(C x Z) = 1(C) .
This implies that p induces the desired marginals and hence is itself a proba-

bility measure on (Z, &”). Since by construction p is T-invariant, pe &, .
Furthermore,

7 < Elp(Xp Y] = lim, . B, [p(Xes Yo)]
= limy_, m,~" Z7E? E, [o(X;; Y))]
< lim,_, (P, +€0)) =0
and therefore § > @', completing the proof that 5 = 5”.

(b) #’ = p. Assume that x is f-representative and y is p-representative. Fix
n. For each N define for B*, C" e Z™,

py(B* x C*) = N7 ZX3 Tpnwon(Xis Xogas =+ 05 Xignesd Yoo * % Yigno1) -
Since such rectangles generated 7*", u, extends to a measure on (4", )’ and
hence for B*, C*e &*,

(A3) limy._... gy(B* x A" = p,"(B"),
liMmy . py(A" x C*) = p,"(C") .

since x and y are representatives.
From Parthasarathy (1968), Theorem 3.2, there is a compact set K such that

prK)>1—c,  prK)>1—c.
Thus (A3) implies that if N is large then g (K x K) > 1 — 4e.
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From Theorem 6.7 of Parthasarathy (1968), the sequence {y:,} therefore has
a convergent subsequence of probability measures. Let p be a limit point of
{ry}. Equation (A3) implies that for B, C* ¢ 7",
B x A% = p (B,
A x C*) = p,X(CY)
so that pe &, It is easy to see that
E, [o.(X" Y™)] = N- 0 n=t 3o } 0(Xi4 55 Viws)
so that
E[ou(X™, Y")] < limsupy_, N 315" 0(x;, i)
and hence g < p'.
Choose for ¢ > 0 a stationary measure p € &, , such that

E(o(Xp, Yo)) < 0" + ¢

since p is stationary and has marginals y, and g, relative frequencies converge,
for almost all points @ = (x, y) € Z* such that x is f-representative, y is p-repre-
sentative, and

f(w) - hmn«»oo - Zn-l p(xi’ z)
OF
Taking expectation under p yields from the ergodic theorem and the above that

7 < ELf(0)] = Elo(xp y)] S 0" + .
Since ¢ is arbitrary § = §”" > p’, completing the proof.

exists and therefore
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