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ITERATED LOGARITHM RESULTS FOR WEIGHTED
AVERAGES OF MARTINGALE DIFFERENCE
SEQUENCES!

By R. J. ToMKINS

University of Regina
Let (X», Fa,n=1) be a martingale difference sequence with
E(Xy?| % n-1) = 1 a.s. This paper presents iterated logarithm results in-
volving lim supa—e Y5 _; fim/n)Xm/(2n log log n)t, where f is a continuous
function on [0, 1]. For example, it is shown that the above limit superior
equals the Le-norm of f if the X,’s are uniformly bounded and f is a power
series with radius in excess of one. These results generalize (and correct

the proof of)) a previous theorem due to the author.
A generalization of the strong law of large numbers is also established.

1. Introduction. Let X, X,, - .. be a sequence of random variables (rv) and
let f be a continuous function on [0, 1]. This article investigates the limiting
behavior of

Z,(f) = (2nloglogn)=t 33»_, f(m/n)X,, as n—oo.

This problem was considered, in the case where X, X,, - -- are independent,
by the author (Tomkins (1971) and (1974)) and Wichura (1973). This paper
focuses on the case in which {X,} is a martingale difference sequence.

Following a discussion of notation and the presentation of several useful
lemmas in Section 2, upper and lower bounds for lim sup, ., Z,(f) are derived
in Section 3. Section 4 considers some ramifications of Lemma 2 (Section 2),
concerning the strong law of large numbers.

2. Some preliminary lemmas. This paper considers only continuous functions
on [0, 1]. Let f* = max,,, | f(x)|, the sup-norm of f, and || f]||, = ({3 f%¢) dt)t,
the L,-norm of f. If f is a function of bounded variation (BV), its total variation
will be denoted by V,.

(Sas F 4> n = 1) is a stochastic process with sigma-fields &, ¢ %, c - .- and
S, belng & ,-measurable. &, is the trivial sigma-field. Write a, ~ b” when
an/bn — 1.

The first lemma is a generalization of Theorem 1(i) of Tomkins (1972) and of
a theorem of Csaki (1968).

‘

LemMmA 1. Let (S,, & ,, n = 1) be a submartingale. Let {a,}, {B,) and {c,} be
positive real sequences satzsfymg
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(i) B, 1
(i) B,,, ~ B,
(iii) ¢,’loglog B, — 0 and
(iv) for some C >0 gnd N > 0, Eexp{tS,/(a,B,)} < Cexp{(t}/2)(1 + tc,)}
foralln = N and all t in [0, c,”*].
Then
lim sup, ., S,/(2B,? log log B,*)* < limsup,_, a, almost surely (a.s.) .

Proor. This lemma may be proved by following the proof of Theorem 1(i)
of Tomkins (1972) except that, instead of using Lévy’s inequality, one should
employ Doob’s inequality (Doob (1953) page 314), noting that (e*S», &, n = 1)
is a submartingale for each 2 > 0.

LEMMA 2. Let Y., Y,, --. be any rv. Suppose
1) limsup, ., |Y, + --- + Y,|/b, <1 aus.

for some positive sequence {b,}. Let {a,,}, m, n = 1, be a double sequence of reals
such that either

() X1 |0wn|E|Y .| < oo for all n, or,
(i) Yo i |wm — Apmia|E| 2371 Yy < oo for all n. Assume, moreover, that

(iii) a,, 2175 Y, > 0a.s. m — oo for each n = 1 and

(iv) for some number L and allm > 1, lim, _,, a,, = L. Then, for any sequence
{8,} with lim inf, 8, > 0,

lim Supnﬂoo ‘Bn_1|Z:nO=l Qum le é lim Supn—»w bnﬂn_l Z:=1 |anm - an,m+l| a.s.

Proor. Define T,, = »7, Y; and d,,, = a,,, — a, »4,- Using (iii) and Abel’s
partial summation formula (Apostol (1960) page 365), 3o _ 1, T = 251 Gpn Y
a.s.; these two series are well defined since one or the other converges a.s. by

(i) or (ii).
Let A be the event on which (1) holds. Let ¢ > 0. For each o € 4, a number
N = N(w) exists such that |T,| < (1 4 ¢)b, for n = N. Then

lim sup, ... 8,7 L1 Gum Y ()]
< lim sup, . {8, TNzt [dynl Max, oy TH@)] + (1 + €)5,8,7 T2ey [y}
< (1 4 ) limsup, . 6,8,7" 351 [dun| » by (iv). O
The next lemma will be the crucial tool in the proof of Theorem 1.
LEMMA 3. Let Yy, Y,, - -- be any rv satisfying
2) limsup, ., (2nloglogn)=4|Y, + ... + Y,| <.1 a.s.
Then, for any function g of BV,
lim sup, .., (2n log log n)=% | Y3%_, g(m/n)Y,,| < V, + |9(1)] a.s.
Proor. Letting b, = 8, = (2nloglog n)t and a,,, = g(m/n) or 0, accordingly
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asm < norm>n, in Lemma 2, we have

lim sup,, .., (2n log log n)=* | 337, g(m/n) Y|
< limsup, o, (X725 |9(m/n) — g(m[n + 1) — [9(0) — g(1/m)]) + |9(1)]
<V, 4+ Jg1)| as. a

RemaRrk. The quantity ¥, 4 |f(1)| is a norm on the space of all functions of
BV, but is not the usual norm for that space, namely || f||zy = V, + | f(0+)]
(cf. Dunford and Schwartz (1958) page 241). It is not hard to show that con-
vergence in the norm V, + |f(1)| and in the norm ||f||zy are equivalent; such
convergence has been called strong convergence by Morse (1937). It is easily
shown (see proof of Theorem 1) that ¥, + |f(1)| is no smaller than the sup-
norm on [0, 1] and, hence, is at least as large as the L,-norm.

Clearly, then, Lemma 3 is not as sharp as others which hold for independent
rv (cf. Tomkins (1971) and Theorem 1 herein), but it is valid for a wider range
of rv. Heyde (1973) and Révész (1972) give examples of dependent rv satisfying
2).

Our final lemma presents two special cases of Lemmas 4.1 and 4.2 of Stout’s
(1967) generalization of Kolmogorov’s exponential bounds.

LeEMMA 4. Let (S, = Y%y X, &, n = 1) be a martingale and let & C
be a sigma-field. Suppose that, for some ¢ > 0, max,, ., |X,|/s, =< ¢ a.s., where
5,2 = ES,*. Assume, moreover, that E(X,*| % ,_,) = EX,*a.s. Lete > 0.

(@) Ifec < 1 then P(S, > ¢5,| &) < exp{—(*/2)(1 — ec/2)} a.s.;

(b) forany y > 0 there exist numbers ¢, > 0 and 7, > 0 such that P(S, > ¢s,| &) >
exp{—(1 + 7r)e*/2} a.s. if ¢, > ¢ and ec < 7,.

3. The main results. This section contains two theorems which generalize
the work of Tomkins (1971).

THEOREM 1. Let (X,, & ,, n = 1) be a martingale difference sequence. Suppose

nd

a number N > 0 and a positive sequence ¢, = o((loglog n)~*) exist such that
(3) E(exp(tn='X,)| 5 _s) = exp{(#)n)(1 + [fle,)} ass.

providedn > N, m < nand |t| < ¢,
Let f be a function on [0, 1] such that

(i) a sequence {p,} of polynomials exists such that p,(1) — f(1) and V, _,—0
as m — oco. Then

0 lim sup, ... X5, f(m/m)X,/(2n log log n)t < ||f|l, a.s.

In particular, (4) holds if f(x) = },7.,a;x? is a power series with either
(ii) radius of convergence greater than 1, or '
(iii) limsup,_., |a,|"" = 1, }17.,]a;] < oo.

ReEMARK. If f satisfies (i) then f is absolutely continuous (AC) by Theorem
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2.1 of Edwards and Wayment (1971). Since it will be shown that (ii) and (iii)
each imply (i), Theorem 1 is applicable only to AC functions.

ProoF oF THEOREM 1. For brevity’s sake, define r,” = 2n loglogn, t,> =
2loglogn, and Z,(9) = r,™* Xn-1 9(m[n)X,, for any function g on [0, 1]. If
|lflls = O the result is trivial, so there is no harm in assuming || f||, = 1.

Suppose, first of all, that f is a polynomial, say, f(x) = 2.5 a;x’. Lete > 0.

Define 4 = Y2_,|a,;| and 6 = ¢/4. Choose ¢ > 1 s0 close to 1 that

(5) N2olasl(el — Dei K6, < 2,0 < 1 46,0 > 2(c+ — 1)t

For each k = 1, let n, = [¢¥] 4+ 1, where [x] is the integral part of x. Thus
n, ~ c*, and, for all large k (say, k = K,), 1y < 1 Assume k > K, hereafter.

Following the proof of Theorem 2 of Tomkins (1972), one can deduce from
(3) and Lemma 1 that, for each 0 < j,

(6) lim sup, .. | 2%, M X,|/(nir,) = (2] + D31 as.
Now
Ry = MaX,_ cnza, ot Tt {f(mfn) — f(m[n,_)}Xal
(7) = maxnk_1<n§nk rZ;_IIZLo aj(n_j - nl;jl) Z?n"’:—‘ll ij'ml
< Xioolagl(m’ — ni_)n,~ 9| 2wkt miX,|[(nf 1T, _,)
so that, in view of (5) and (6),
(8) lim sup, .. R,y < ¢ a.s.

Now forany 0 < j < p, let W, = 2la,_ <msn, miX, and w2 = Y. _ <cmsn, M-
Then ny&i+H w2 — (¥ — 1)[(2j + 1) < (¢ — 1) < (6/2)*by (5). Moreover,
it follows easily from (3) that Eexp{tW,/w,} = exp{r}/2)(1 + |t|c,*)} provided
|tle,* < 1, where ¢,* = 2cP*#(2p + l)ic, . But (exp(tn,_, Zin,_ <msn miX,), F u»
n,_, < n < n,)is a submartingale. Again by Doob’s inequality, we have, for k
satisfying ¢, ¢,* < 1,

Pk* = P[maxnk_1<n§nk an_1<msn ijm g 5",7;_1 r”k—l]
P[maxnk_l.<n§nk t'nk_l an_1<m§n ijm/wk _2_ 5”1{1:%’3»,,_1“’1:_1]
exp{—onitit w7t 4 (1, /2)(1 + ta "))
exp{—1,_} = {(log o)(k — D},
so ), P,* < oo.
By a similar argument 37, P** < oo where P,** is defined like P,* except
with —X,, in place of X,,. Foreach0 <j<p, then, the Borel-Cantelli lemma
shows that

9) lim sup, .., MaX,, _ <ngn, |2in,_ <msn miX,|/(nj_y7,, ) S0 as.

Therefore, letting Ry, = MaX,, _ cnzny Fup_y | 2ing_y<msn f(m[n)X,,|,

IATA I

lim sup, . Ry

(10) § lim Supk—m Z’g"=0 Iajl maxnk_1<n§nk Ian_1<m§n ijmll(nlJ;—l rnk_l)
é 0A =¢.



ITERATED LOGARITHM RESULTS 311

By (8) and (10),
(1) limsup, . max,, ..., rit |5, f(m/n)X, — 5 wit flmn, 1) X, | < 26 .
Noting that 3% _, f(m/n) ~ n||f]ls* = n, we have,

Pz, ()= +e)]
s exp{—(1 + o), + (6, Tk fAmin,_)/(2n,_)(1 + Ty €6}
= exp{—(11,_,/2)(2 + 26 — (1 + ¢/2)7} < (log n,_,)-+m)
= O((k — 1)),
where ¢,/ = f *Cy,_, and k is so large that lay_ € < €/2and Y 7 [i(mn,_) <
(1 + ¢/2)n,_,. Again by the Borel-Cantelli lemma, lim sup,_,, Z, ()S1+e
a.s. This inequality, together with (11), establishes (4) if fis a polynomial.
Now suppose (i) holds. Using a well-known result (cf. Apostol (1960) page
164), for each x € [0, 11, |p..(x) —f)sV o+ [f(1) = pu(1)] > 0as m — co.
Hence p,, — f uniformly, so ||p,||, — [1fl]: as m — oo.
Letting C = 1, «, = 1 and B, = n?, and using (3), Lemma 1 shows that 2)
holds (with X, in place of Y,). For each fixed m = 1 we can now apply Lemma
3 to get

lim sup, ., Z,(f) < lim SUPse Zo(f — pu) + limsup,_, Z.(pn)
S Viepy + 1) = pu()] + || palls -
Letting m 1 oo, (4) obtains.

Now let f(x) = Y5 ,a,x7 and, for each m = 1, define p,(x) = 31, a;xi,
Suppose that either (ii) or (iii) holds; note that Pa(1) > f(1) and 35 a,| < oo
in either case. Choose any partition 0 = x, < x;, < -+ < x, = 1. Then

2= [(f = pudx) — (f — Pu)(Xi_)|
= 21 [ X mn a;(x’ — xi_))|
é Z;?=M+1 ZZ:I ]aj,(xkj - xli—l) = Z?=m+l ,ajl .
Hence V,_, < 315,104,/ > 0as m— oo; i.e. (i) holds. [J

REMARKs 1. In the special case where Xy, X,, - - - are independent with mean

zero and variance one, Theorem 1 improves the theorem of Tomkins (1971).

Note, however, that Wichura (1973 page 279) has shown that equality holds in
(4) for a wide range of independent rv, provided only that f is of BV.

REMARK 2. N.S. Chen has observed that, while (7) holds even when p = oo,
Fatou’s lemma was inappropriately applied by Tomkins (1971) to establish (8).
The proof just completed corrects the error by using a different approach.

The next theorem, complementary to Theorem 1, is analogous to the result
of Tomkins (1971) and generalizes Gaposhkin’s (1965) result.

THEOREM 2. Let (X,, &, n > 1) be a martingale difference sequence with
EX, =0, E(X?|~,_.) =1 as. and max,,_, [X,| < M, a.s. where {M,} is a
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positive sequence such that (log log n)M,’[n — 0. Then, for any continuous function
fon[O0, 1],
(12) lim sup,_., (2n loglog n)~ 3% _, fim/m)X,, = ||f]ls a.s.

ReMaRrK 1. It is not hard to show that (3) holds under the hypotheses of
Theorem 2 (see pages 254-255 of Loéve (1963)), so that equality holds in (12)
if any of (i), (ii) or (iii) of Theorem 1 holds.

ProOF OF THEOREM 2. As in the proof of Theorem 1, we may assume ||f||; =
1. Let 0 < e < 1. For 0 < x < 1, define I(x) = {§ f*(r) dt. Choose a positive
integer p such that I(p~") < ¢*. Define v = I( Y-

For each k=1, let n, = p*, U, = Nt fimin)X,, u’'= EU2, V,=
an_1<m§nkf(m/nk)Xm and v} = EV,?. Lett,’ = 2loglogn.

Since f is continuous, n,~'w,* —v. But }i7_, f¥(m/n) ~ n, so v~ m(l —v).
Choose K > 0 so large that, for all k = K, (1 — 2¢)m} < (1 — ey, /(1 — vk

For each k = K, (f(m[n) Xy, F o oy <M= 1) is 2 martingale difference
sequence; note that | f(m/m)X,|/v, < f*M, v, "a.s. Hence, using Lemma 4 (b),
with & = ﬁnkq and y = (1 — e) !t — 1,

P(V, > (1 — 2¢)(2n, log log n,)¥| ﬁ"nk_l)
=PV, > (1 —e)(1 —v)y o, | F., )
> exp{—(1 + 7)1 — &), (1 —»)7/2}
> (2klogp)= a.s. for all large k.

Hence Yo P(V, > (1 — 2¢)(2m,loglog m,)t|.&,, ) = co a.s. soO that, by

Levy’s generalization of the Borel Zero-One Law (see Loéve (1963) page 398),

(13) lim sup,_.. V,/(2n, loglogn,)t > 1 — 2¢  a.s.
Assume v > 0. Then applying Lemma 4(a) with & = .,
P, = P[|Uy| > 2¢(2n, loglog n,)}] < P[|Uy| > eu,t, v7]
< 2exp{— (4, v72)(1 — et,, f¥M, vhu,7[2)}
< 2(2k log p)""

for all k so large that e, f*M, < (1 — eyvtu, and 2(n,v)} > u,. Since v < ¢,
Y&, P < oo and, by the Borel-Cantelli lemma,

(14) lim sup,_... |U,|/(2n, log log n,)} < 2¢  a.s.

If v = 0 then f(x) = 0 on [0, p~]. Hence U, = 0 and (14) holds trivially.
(13) and (14) together imply (12). []

The following corollary shows that Gaposhkin’s (1965) result remains true in
a martingale setting. Since the function f(x) = (1 — x)= is continuous on [0, 1],
satisfies (iii) of Theorem 1, and ||f||; = (2a 4- 1), the corollary follows im-
mediately from Theorems 1 and 2.

CoRrOLLARY 1. Let (X,, & ,,n=1) be a martingale difference sequence with
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EX, =0, E(X,?| % ,.,) = las.and |X,| £ Ma.s. forsome M > Oandalln = 1.
Then, for every a > 0,

lim sup, . (2nloglogn)=t 3% _, (1 — m/n)*X,, = 2a + 1)7t a.s.

REMARK. It is also possible to establish Theorem 2 by using Lemmas 1 and
3 of Stout (1970).

4. A strong law from Lemma 2. It is worth observing that Lemma 2 has
some consequences connected with the strong law of large numbers (SLLN).
We will present one such consequence and an example.

THEOREM 3. Let Y,,Y,, ... be any integrable rv satisfying the SLLN (i.e.
(Yy+ .-- +Y,)/n—0 as.). Let {a,,} be a double sequence of reals satisfying,
foreachn > 1,

() 2o i|wm — Apmpi| < Kn™? for some K > 0, and,
(li) Z;=1 IanmIEIYm, < oo or Z:=1 ,anm - an,m+1,E,Z?=1 YJ, < OO’ and
(iii) lim sup,,_., ma,,, < .

Assume, moreover, that
(iv) for some L and all m = 1, lim,_,, a,, = L. Then
m%—ow Zm—l a'n/m Ym - 0 a.s.

Proor. Let ¢ > 0. Define b, = ne/K and B, = 1. Clearly (1) holds. Since
(iii) and the SLLN hold, it is easy to show that (iii) of Lemma 2 holds. In view
of (ii) and (iv) we can use Lemma 2 and (i) to get

lim sup, ... |25 1 Gpn Y| < limsup, . enK=! 3o |Gy — Gy pya| < ¢ as. []

In the special case where Y, Y,, . - . are independent, Theorem 3 is reminiscent
of results of Chow (1965), Pruitt (1966) and Stout (1968), but does not seem to
be a consequence of the wide-ranging theorems of these three authors. For ex-
ample, let Y,, Y,, - - - be independent rv with EY, = 0, EY,? = 1 and let q,,, =
(n + m)~*forall n, m = 1. Note that Kolmogorov’s SLLN applies. (i), (iii) and
(iv) of Theorem 3 are clear. But (ii) also holds since E|Y;™, Y,| = O(m?) and
Dot |Gum — Appa|mt = Y ymi(m 4 n)(m 4 n 4+ 1)< Tino imm < oo,

Therefore, Theorem 3 shows that > _, Y, /(n 4+ m) — 0 a.s.
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