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MARTINGALE CONVERGENCE TO MIXTURES. OF
INFINITELY DIVISIBLE LAWS

By G. K. EAGLESON
Statistical Laboratory, Cambridge

Sufficient conditions are found for the row sums of a double array of
martingale differences to converge in law to a mixture of infinitely divisible
distributions.

1. Introduction. Sufficient conditions for the row sums of a triangular array
of martingale differences to converge in law to an infinitely divisible distribution
were found by Brown and Eagleson (1971). Dvoretsky (1972) gave an example
to show that in general one could not expect convergence to mixtures of normals
without some sort of measurability assumptions. In this paper, the necessary
measurability assumptions are written out and sufficient conditions for the row
sums of a triangular array of martingale differences to converge in law to a
mixture of infinitely divisible distributions are obtained.

Two theorems are proved. In the first, the conditions require the almost sure
(a.s.) convergence of certain quantities and the conclusion is strong in that
certain conditional characteristic functions are shown to converge a:s. In the
second theorem, the conditions are weakened to convergence in probability and
the conclusion is correspondingly weakened to obtain only the convergence of
certain characteristic functions.

The results of this paper have been used to discuss central limit theorems for
stationary processes, see Eagleson (1974).

Throughout the paper only convergence to infinitely divisible laws with finite
variance and their mixtures is discussed. While the most general infinitely di-
visible laws could be considered, it would only complicate the analysis without
any essential change in the ideas and the conditions obtained would be difficult
to verify in a particular situation.

2. Convergence to mixtures of infinitely divisible laws. Consider a double
array of random variables (rv’s) whose rows are martingale difference sequences,
i.e. for each n = 1,2, ... we have rv’s X,,, ..., X, on a probability space
(Q, 7, P) with sub-g-fields &, c &, C --- € F,, of ¥ suchthat X,; is
F ,;-measurable and E(X,;| ¥ ,;.,) =0as.forj=1,...,k, where k, — oo

as n— oco. Let

S

2 k 2 by 2
nk — =1 O',,”- ) b, = maxjékn gnj .

n

= Adm + -0+ Xnk ’ g:i = E(bej|‘7&z——n».’;"1) 4

n
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Brown and Eagleson (1971) gave sufficient conditions for S, to converge in
law to an infinitely divisible distribution. Their result is (for the sake of refer-
ence) restated here as a Theorem.

THEOREM 1. If
1) b,—,0 as n— oo,

there exists a finite constant C for which

) lim,_., P(V3, > C) =0,
and there exists a bounded non-decreasing function G for which
©) m B(XL 1@ < Xy < 8)[F 0 500) =, G(6) — G(a)

as n — oo for all continuity points a, b of G, then S, converges in law to an infinitely
divisible limit law whose characteristic function ¢ is given by

“4) log ¢(f) = {=. (" — 1 — itx)x~*dG(x) .

There seems to be no reason why the function G, appearing in condition (3),
should be nonrandom. Let &% = N7, & ,, and suppose G is an & -measurable
function, in the sense that G is a function, G(¢, w), from R* x Q into R* which for
fixed ¢is an & -measurable rv. Suppose further that, for almost all fixed », G
is a bounded non-decreasing function of t£. One would hope that by conditioning
on &, it should still be possible to discuss the asymptotic behavior of S, and
then, by averaging over .5, to obtain limit laws which are mixtures. The aim
of this Section is to formalize this idea and to show how in this case .S, will
converge in distribution to a mixture of infinitely divisible laws.

As the double array {X,;, j < k,, n = 1} contains only countably many rv’s,
we may order them and take the sample space to be R*. Denote the minimum
o-field generated by all the X, ; by 5. We will restrict ourselves to considering
the probability space (R*, 2#; P) so that all rv’s considered from now on will
be Borel-measurable functions of the {X,;}. Given any ¢-field & C 5%, there
exists (see Breiman (1968) pages 77 ff) a regular conditional probability on 57
given % . That is, for each fixed o’ € R*, there exists a function Q,.(B, & ) =
Q./(B) such that

(a) for fixed Be 27, Q,.(B) is a version of P(B|.% "), and
(b) for fixed o’ € R*, Q,(+) is a probability measure on 57"

For each fixed o' € R, consider the measure space (R”, 5%, Q,,). Denote the
expectation with respect to @, by E,, and note that any set B € 22 which has
P-measure zero must have Q ,-measure zero, at least for P-almost all «’. Sup-
pose that {X,;, & ., j< k,,n=1}isa double array of martingale differences
on (R*, 27, P). Then {X,,, & ,;,J < k,, n = 1} is still an array of martingale
differences on (R, 57, Q,)—at least for P-almost all &’. To see this we prove:

LEMMA. Let & be a sub-o-field of 57 such that & C <. For P-almost all
' € R, if Yisarv such that E|Y| < oo, then E, (Y| Z)(0) = E(Y| &) (w) Q,-a.s.
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Proor. First assume that EY? < co. For fixed o/, set E, (Y| &) (w) = Z(w).
Thus Z is defined to be any one of the Q,-equivalence class of &-measurable
rv’s such that for all 4e &,

§4 Z(0)Qy(do) = {, Y(0)Q, (do) .
By the definition of Q,,, it follows that E(ZI(A)| & )(@') = E(YI(4)| & )(@'),
P-a.s.
Hence, by a standard argument, for any fixed rv U e &, such that EU? < co,
E(ZU| .5 )(@') = E(YU| .5 )(o'), P-a.s.
As both Z and E(Y|¥) are T-measurable, E((Z — E(Y|¥))'| & )(e') = 0,
P-a.s. and hence for P-almost all '

Z(0) = E,(Y|Z)(0) = E(Y|€)®), Q,-as.

Now approximate the original rv ¥ by a monotonically increasing sequence
of rv’s Y, for which EY,? < oo to obtain the result.

COROLLARY. If {X,;, F .;»] < k,, n = 1} is an array of martingale differences
on (R®, 57, P), then for P-almost all o', {X,;,  ,;,j < k,, n = 1} is an array of
martingale differences on (R>, 57, Q,)-

ProOF. Setting ¥ = X,;and & = &, ;_, in the lemma, shows that for P-
almost all o’
E, (X,;|F 0 -1)(@) =0, Q,-as. forall j<k,nz=1.

If conditions on the {X,,;} could be found so that for ‘most’ «’ the double array
of martingale differences on (R*, 57, Q,) satisfied the conditions of Theorem 1,
one could first condition on &, apply Theorem 1 and then integrate over .5 .

Let C(w) denote an (a.s. finite) positive, .5 -measurable rv, and G(t, ») a
random function which for fixed ¢ is an & -measurable rv and for almost all w
is bounded and nondecreasing in 7. As an example of what can be proved, we
have:

THEOREM 2. Suppose that {X,;, & ,;,j < k,, n = 1} is a double array of mar-
tingale differences on (R*, 57, P). If

(1) b,—0 a.s. as n— oo,
there exists a C(w) for which

(2" P{V3, (@) > C(w) for infinitely many n} = 0,

and there exists a G(t, ) for which

3) b, E(X, (@ < X,y £ B)|F,,.) — G(b) — G(a) aus.

as n — oo for all a, b belonging to some countable dense set D, then S, = > *», X, .,
conditional on ., converges in law as n — oo to an infinitely divisible distribution.
In fact

©)] lim, _,, E(e*n| &) = exp({2, (¢"* — 1 — itx)x~?dG(x)) a.s.
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Proor. Set Y = X};and ¥ = &, ;_, in the lemma. Then for P-almost all
o' € R, .
Ey (X3 F wi-)0) = E(X3;| 7, n,j-l)(w) Q,-a.s.
Thus (1’) implies that there exists a set N, € 5 such that P(N,) = 0 and such
that for fixed o’ ¢ N,

(6) Q,(w:sup,g E (X3;| F, -)(@) >0 as n—o0) =1.
As both C(w) and G(t, w) are & -measurable, for fixed ' and ¢
C(w) = C(o") and
G(t, w) = G(t, ) Q,-a.s.

i.e. except for a set of w of Q,,-measure zero, C(w) and G(¢, w) are the same as

the constants C(«’) and G(t, ').
So from (2’) and (3’), using the lemma again, we see that for all fixed o’ ¢ N,,

where P(N,) = 0,

¥ lim, o, Q@ Eha, Ep(X25] 5, 50)(0) > C(@) = 0
and
) Qu(w: X E(X};1(a < X,; £ b)|F, ;1)(@)

— G(b, ') — G(a, w') as n— oo forall a,beD)=1.

But (6), (7) and (8) imply that the conditions (1), (2) and (3) of Theorem 1
are satisfied for the array of martingale differences {X,;, & ,,,j < k,,n = 1} on
(R~, 27, Q,) at least for all ® outside a set of P-measure zero. Thus for P-
almost all o’

lim,_, E, (") = E(eSn| & )(0')
= exp({© (e — 1 — itx)x?dG(x, o)) .

COROLLARY 1. Under the conditions of Theorem 2, S, converges in law as n — oo
to a limit law whose characteristic function ¢ is given by

&(t) = E(exp(§=, (€"* — 1 — itx)x~?dG(x, w))) .
Proor. The corollary follows from (5), using dominated convergence.
COROLLARY 2. If there exists an # -measurable, a.s. finite positive rv 1 such that
) Ve, ™1 a.s. as n— oo,
and if for any e > 0
(10) o) E(X0; (| X0 > €)| F 0 i-1) — 0 aus. as n— oo,

then S, = Y%, X,;, conditional on &, converges in law as n — co to a normal
distribution. In fact,
lim,_,, E(e'5n| &) = et a.s.,

and hence S, converges in law as n — oo to a limit law whose characteristic function
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¢ is given by
(1) = E(exp(—14'y)) -
PRrOOF. As (9) clearly implies (2'), we need only prove that (10) implies (1).

But
SUp; g, E(X; | F 0 im0) = € + Xy E(XG1(1X,5] > €) | F,050)

— & a.s. as n— oo .

As ¢ > 0 is arbitrary, the result follows.

If only an asymptotic distributional result (rather than the a.s. convergence
of the conditional characteristic function) is required, then the conditions of
Theorem 2 can be substantially weakened.

THEOREM 3. Suppose that {X,;, F ,;,j < k,, n = 1} is a double array of mar-
tingale differences on (R*, 57, P). If
1" b,—,0 as n— oo,

there exists a C(w) for which

(2") lim, o, P(V, (@) > C(@)) =0,

and there exists a G(t, w) for which

(3") i E(XG;1(a < X5 S 0)[F,,520) =, G(b) — G(a)

as n — oo for all a, b belonging to some countable dense set D, then S, = Y%, X, .
converges in law as n — oo to a limit law whose characteristic function ¢ is given by
(11) o(t) = E(exp (12 (' — 1 — itx)x~?dG(x, w))) .

Proor. Choose any subsequence of {S,}, say {S, }, which converges in dis-
tribution; such a subsequence must exist. Choose a further subsequence of {n,},
{m,}, such that (1””) and (3”") hold a.s. and such that

L5 PV, (@) > C(0)) < oo .

As there are only countably many conditions, such an {m;} can be found by the
usual diagonalization procedure. It follows from Theorem 2 that S,, (and hence
S,;) converges in distribution to the law with characteristic function (11). As
this is true for all convergent subsequences of {S,}, S, itself must converge in
law to the same distribution.

COROLLARY. If there exists an F -measurable, a.s. finite, positive rv v such that
(12) Vi, =27 as n— oo
and if for any ¢ > 0
(13) by BX,1(X,] > €)]57,50) =, 0 as n— oo,

then S, = Y%, X, converges in law as n — oo to a mixture of normal distributions
whose characteristic function ¢ is given by

$(t) = E(exp(—3t'p)) -
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