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GENERALIZED DISTRIBUTION FUNCTIONS:
THE ¢-LOWER FINITE CASE'?

By GORDON SIMONS

Unversity of North Carolina at Chapel Hill

A mass m(x) = 0 is assigned to each point x of a partially ordered
countable set X. It is further assumed that M(x) = 3 <. m(y) < oo for
each xe X. M is called a distribution function. For certain sets X, it is
shown that M determines m. For others, M need not determine m uniquely.
A theory is presented for g-lower finite spaces (sets), which are defined in
the paper. Such spaces are locally finite. That is, each interval [x,y] =
{ze X: x < z < y} has a finite number of points. MOobius functions, which
have been defined for locally finite spaces, are used throughout. Distri-
bution functions on a particular o-lower finite space arise naturally from
boundary crossing problems analyzed by Doob and Anderson. The theory
is applied to this example and to another.

1. Introduction. Let X be a partially ordered countable set with each point
x € X possessing a nonnegative mass m(x). We assume M(x) = >, ., m(y) < oo,
xe€ X, and refer to the function M as the (cumulative) distribution function.
Sometimes, we shall require the total mass m(X) = };, .y m(x) to be unity.* We
shall concern ourselves with the following questions:

(i) When does the distribution function determine the individual masses
m(x), xe X?
(ii) How are they found when they are determined?
(iii) When is a function M(x), x € X, actually a distribution function?

When X is finite, one has an inversion formula expressed in terms of the Mobius
function y(x, y) of X:

1) m(y) = Tesy Mx)p(x, y) yex.

Section 3 of Rota’s (1964) fundamental paper on the theory of Mobius functions
provides the relevant background. Thus, the distribution function always deter-
mines the individual masses whenever X is finite.

We shall be concerned with the more difficult situation in which X is infinite.
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! The general linearly ordered case has been considered in another paper (Simons 1974).

2 This research was supported by the Air Force Office of Scientific Research under Grant
AFOSR 72-2386.

3 Of course, the requirement m(X) = 1 is quite natural in a probabilistic context. However,
we shall refrain from making this an assumption at the outset since its inclusion would tend to
complicate the theory presented below.
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GENERALIZED DISTRIBU TION FUNCTIONS 493

The full range of possibilities is much more than we can cope with at this early
stage, and we shall be content with a modest beginning. We shall confine all
of our attention to locally finite spaces since it is for such spaces that a Mdbius
function is defined. That is, for each pair of points x, y € X, we shall insist that
the interval [x, y] = {z: x < z < y} be finite. ‘

A rather uninteresting extension of the finite theory discussed in the second
paragraph can be made when the number of summands in (1) is finite for each
ye X. Formula (1) still applies. We refer to such an X as lower finite. A lower
finite space is necessarily locally finite. »

An interesting example for which X is locally finite but not lower finite arises
(apparently unnoticed) in a much cited paper by Doob (1949): Let X consist of
a maximal point (0, 1) and pairs of points (n, 1), (n,2) forn = 1. x = (n, j) <
x' = (v, j') if and only if n > n’, n’ = 0. See Fig. 1. Let {W(r), 1 =0} be a
standard Wiener process (mean zero and variance 7) and let U and L be two
lines with U (the upper) having positive slope and intercept, and L (the lower)
having negative slope and intercept. Let M(0, 1) = 1 and, forn > 1, let M(n, 1)
and M(n, 2) denote the probability that there exist n time 0 < £, < +-- < t,
with (1, W(t)), - - -, (t,, W(t,)) alternately in U and L beginning with U and L,
respectively. (Anything may happen before r,, between times, and after ¢,.)
Then {M(x), x € X} is a distribution function corresponding to individual masses
such as m(0, 1) = P(W never touches U or L), m(1, 1) = P(W touches U but
never touches L) and m(2, 2) = P(W touches L before U then touches U then
never touches L again). :

(5,1) (4,:1) (3,1) - (2,1) (1,1)

« decreasing x (0,1)

(5.2) (4.2) (3.2) (2,2) (1,2)
’ FiG. 1.

Doob describes how to compute M(x), x € X. His interest is in expressing, in
terms of these, a probability such as m(0, 1). In particular, he obtains a formula
which, in our notation, becomes

@ m(0, 1) = 1 — S5, (—1)~{M(n, 1) + M(n, 2)} .

Anderson (1960) obtains a formula for P(W touches U before L). (W does
not need to touch L.) This can be expressed in terms of the individual masses
as ) ».;m(n, 1). Anderson evaluates the probability as M(1, 1) — M(2,2) +
M3,1) — M4,2) + -

For the X of Fig. 1, we find that the distribution function always determines
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the individual masses. Besides (2), we have the related equations:

3) m(n, j) = M(n, j) — X 5oni (— 1Mk, 1) + Mk, 2)}
n g 1,] = 1, 2.

These equations can be checked by direct substitution.

Before we present some theory, we shall show that a locally finite space can
have distribution functions which fail to determine the individual masses. Our
example is only slightly more complicated than that of Fig. 1. See Fig. 2. X
consists of a maximal point (0, 1) and triplets (n, 1), (n, 2), (n, 3) for n = 1.
x=(nj)y<x'=(n,j)ifand only if n > n’, n’ = 0.

(5,1) (4,1) (3,1) (2,1) (1,1)

(5.3) (4,3) (3,3)  (2,3) (1,3)
FiG. 2.

ExampLE 1. M(0,1) =1 and M(n, 1) = M(n,2) = M(n,3) =2-*, n= 1.
There are many possible values for the individual masses but all of the possi-
bilities can be expressed as convex combinations of two extremal solutions:

SoruTIoN la. m(0,1) = }; m(n, 1) = m(n,2) = m(n, 3) = 2~ for n = 2, 4,
6, - - -; all other m(x) = 0.

SoLuTiON 1b. m(n, 1) = m(n,2) = m(n,3) =2-*' for n=1,3,5, ...; all
other m(x) = 0.

ExampLE 2. M(0,1) =1 and M(n, 1) = M(n,2) = M(n,3) = 3", n
There is only one solution: m(0, 1) = £ and m(n, 1) = m(n, 2) = m(n, 3) =
n>1.

> 1.
3,

These examples show that the issue of uniqueness for the individual masses de-
pends on the actual distribution function as well as on the structure of X. We shall
return to these examples later after we have some theory with which to justify
our claims.

While the spaces described in Figs. 1 and 2 are not lower finite, they are what
we shall refer to as g-lower finite. That is there exists a sequence of partitions
X = A4, + B, with 4, > B, (i.e., each point of A4, exceeds each point of B,),
A, /' X as k — oo, and each 4, is lower finite (i.e., for each y e X and each
k=1, {xed,: x <y} is finite). A og-lower finite space is necessarily locally
finite. We shall give a definitive answer to questions (i), (ii) and (iii) for s-lower
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finite spaces in Section 3. Although the ¢-lower finite assumption is stronger
than one might prefer, it permits a wide range of spaces. Departures from this
assumption can be analyzed but the assumption permits us to develop a reason-
ably uncomplicated theory.

2. Some preliminaries. Let X be locally finite. It will be recalled that the
Mo6bius function can be defined recursively by

px, y) =1 for x =y,
(4) = —Zx52<y ,a(x, Z) fOI' X < y ’
=0 for x£y.

Another useful formula is

(5) UX, Y) = — Dacasy 425 )) for x<y.

Let A’ denote the complement of 4 for each subset A of X,
Suppose X = 4 4+ B + C with 4 > C > B, where 4, B or C may be the
empty set . Define whenever the number of summands is finite:

u(x, A) = — Xlacoca (X, 7), xed,
(6) #(B, y) = — Xipcosy (2, )) 5 yes,
UB, A) = —1 + Fipipyea (X)) -
It is easily checked that

(7) uB, A) = —1 — Yipeacutt(x, A) = —1 — Lin<y<a 4(Bs ) .

It is most helpful to have an intuitive understanding of (6). p(x, A), (B, )
and p(B, A) are actual Mobius function values corresponding to various clus-
tered versions of X. If one views 4 as a single point and the points of 4’ as
individual entities, (4) with y = 4 yields the definition of x(x, 4). In a similar
manner, p(B, y) arises from (5). p(B, A) arises from viewing 4 and B as points
and the points in between as individual entities.

PRrOPOSITION 1. Suppose X = A + B where A and B are not empty and A > B.
Then A and B have at least one minimal and one maximal point, respectively. More-
over, u(b, a)) = p(b, A) and p(b,, a) = p(B, a) for each a ¢ A, b ¢ B, minimal point
a, € A and maximal point b, e B.

ProOF. Let ac 4 and be B. [b,a] is a finite interval and must contain a
minimal point in 4 and maximal point in B. The equalities above easily follow
from definitions. []

PROPOSITION 2. Suppose X = A + B where A > B. Then
(8) #(b, @) = —pu(b, A)(B, a)
(with both factors well defined) for each a ¢ A and b ¢ B.

Proor. Since p(by, A) = p(B, a) = —1 for each minimal point a,¢ A4 and
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maximal point b, € B, the desired equality follows from Proposition 1 when a is
a minimal point of 4 or b is a maximal point of B. The remainder of the proof
uses induction based on the total number of elements in [, a]. The induction
step is:
20, @) = — Flsciza (2> @) = — Lipcaca (2, @) + (B, a)

= Dis<eca #(2> A)p(B, a) + (B, a)

=(Z b<zsag ©(2, a5)) (B, a)

= —p(b, a)p(B, a) = —p(b, A)u(B, a) . a

ProrposiTION 3. Suppose X = A + B where A > B and B + . Let x, be a
minimal point of A. Further, let x and y be distinct points satisfying x + x, and
y > x,. Then

ZB<z§y,z¢zo #(x’ Z) =0.

Proor. Using (4):

0 = Ylosisy #(X 2) = Xogssyren U(X Z) + Dugesy,zea #(X 2)
= Dlase<ay U(X5 Z) + 2lpcasy (X, 2)
= — X, X)) + Xip<esy (X5 2) = Xl pcosy,ena, H(X5 2) - a
We describe now, in terms of the notation used in the definition, the three
possible types of g-lower finite spaces:

Type I: X is lower finite.
Type II: X is not lower finite and p(B,,,, 4,) = 0 for infinitely many k.
Type III: X is not lower finite and p(B,,,, 4,) = O for only finitely many k.

PROPOSITION 4. The distinction between types 11 and 11l is independent of the
particular sequence of partitions X = A, + By, k = 1.

Proor. By viewing the points of B,,, and the points of 4, as single points,
it follows from Proposition 2 that u(B,.s 4) = — #(Biias Apsr)t(Brsrs 4i). In
turn,

) B A) = 11520 #Bryjuns Airs)s 1= 2.
It follows that the type, II or III, is unaltered by adding or deleting partitions
from a given sequence. []

3. Some theory. We shall successively examine o-lower finite spaces of types
I, II and IIL '

We have already commented about type I spaces (lower finite spaces) in the
introduction. They are so easily analyzed because each set {x: x <y}, ye X,
is finite and the restriction of a distribution function (on X) to {x: x < y} is a
distribution function on that finite space. Therefore, questions (i), (ii) and (iii)
(appearing in the introduction) are easily answered with the use of (1).

Suppose X is a g-lower finite space of type II. X has the following important

property:
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PROPOSITION 5. For a type 11 a-lower finite space X, each set {x: p(x, y) # 0},
y € X, is finite.

Proor. In view of (9), we may assume, without sacrificing generality, that
#(Byy1s A) = 0 for k > 1. Suppose y ¢ X. Then, necessarily, y € 4, for some
k. Since X is not lower finite, 4, ,, must be a proper subset of X. Consequently,
there exists a point x, € B,,,. Since [x,, y] is a finite set, it suffices to show that
u(x, y) = 0 for each x ¢ [x, y], We only need to consider x ¢ B,,,. For such
an x, we have, with successive applications of Proposition 2, p(x,y) =
— (%, 4By, y) = p(X, Ay )t(Byyss A)p(By, y) = 0. [

The following theorem tells us that (1) holds for type II spaces:

THEOREM 1. For any locally finite space, (1) holds for a given y e X whenever
the number of nonzero summands in (1) is finite.

Proor. Under the assumption,

szu Zzsz |m(z),a(x, .y)l é M(.y) Z(z:wSy,M(z)#O) |/’l(x’ .y)l < o .
Thus, Fubini’s theorem applies. Then,

Zzéy M(x)/’l(x’ .y) = Zzéy Zzém m(z)y(x, .y)
= ZZSv m(z) Zzsméy #(x’ y) = m(}’) . D

While (1) can be used directly to answer question (iii) for type II spaces, it is
easier to use the following theorem:

THEOREM 2. A function M on a type 11 o-lower finite space X is a distribution
function if and only if

(a) the sum in (1) is nonnegative for each y € X, and
(b) the set {x: x <y, |M(x)| = €} is finite for each ¢ > 0 and y ¢ X.

PROOF. Assume (a) and (b), and fix y. Find an A4, containing y and an
x; = y which is a minimal point of 4,. Define m in terms of M by (1). Except
for a finite number of x € X, u(x, z) = 0 for all z in any given finite subset of
X. Thus, we may interchange the order of summation below, and we have
with the aid of Proposition 3:

ZBk<z§y,z¢xk m(z) = 3,5, M(x) 21 By <esy,eray H(X5 2)
= M)y, y) — M(xp)p(xe x) = M(y) — M(xy) .
Letting k — oo leads to .., m(z) = M(y). Thus, M is a distribution func-
tion. Conversely, if M is a distribution function for the individual masses m(x),

x € X, then (a) follows from Theorem 1 and (b) follows from the local finiteness
of X. []

Suppose X is a o-lower finite space of type III. Depending on the structure
of X, there may be two distinct sets of individual masses with the same distri-
bution function. This contrasts with type I and type II spaces where the answer
to question (i) is “Always.”
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Proposition 4 permits us to assume that 4, = @ and u(B,, 4,) # 0 for each
k = 1. For each x ¢ X, choose an arbitrary 4, containing x and define f(x) =

— (B, x)[p(By> Ay).
PROPOSITION 6. B is well defined in the sense that the value of B(x) does not
depend on how one chooses k. P(x) = u(B,, x) for x € A,. B is not identically zero.

ProOF. For x € A4, p(By11, X) = —p(Byrss A)p(Bys x) (cf., (8)), and p(By,,,
A4,)) = —p(Byyrs A)(By, Ay) (cf., (8)). Thus B(x) is well defined. If xe 4,
u(By; 4,) = —1 and p(x) = p(B,, x). Finally, if x, is a minimal point of A4,,
then u(B,, x,) = —1 and B(x;) = p(B,, 4)* + 0. []

Let 8* and $- denote the positive and negative parts of 8, respectively.

THEOREM 3. For each y € X,

(10) Zzév IB+(x) = Zxéy ‘B_(X) *
Thus, if 3, ,<, |B(x)| < co for each y € X, {B+(x)} and {B~(x)} represent two distinct
sets of individual masses with the same distribution function.

Proor. Fix y and choose a minimal point x, of 4, satisfying x, < y, for each
A, containing y. Then ¥ 5 ..<, .4z, #(Bi, 2) = 0 (cf., Proposition 3), and hence,

(11) ZBk<z§ﬂ.z=#a:k JB(Z) = 0 M
Then (10) follows by letting k — oco. [J

A space X will be called a determining space if every distribution function on
X corresponds to a unique set of individual masses.

THEOREM 4. A type Il g-lower finite space X is a determining space if and only
ifz;xéyo |B(x)| = oo for some y, € X.

We shall defer the proof of the “if” part until later. The “only if” part is
immediate from Theorem 3.

Define
v(x, y) = p(x, y) for xe4,,

= p(x, ) + p(x AYB(Y) for xeB,.

y(x, y) = 0 whenever xe B, and ye 4, for some k =1 (cf., (8)). Likewise,
v(x, y) = 0 whenever x € 4, and x £ y (cf., (4)). Thus, the sum };, ., M(x)u(x, y)
has at most a finite number of nonzero summands for each y ¢ X.

PROPOSITION 7. Let M be a distribution function corresponding to the individual
masses {m(x)} and let « = m(B,). M and & together determine m. In particular,

(12) m(y) = Yisex M(x)(x, y) + aB(y) yex.

PROOF. a < oo since there exists a point y, € 4, and @ = m(B)) < M( ¥o) < oo.
Fix k = 1 and view B, as a point. Then (cf., (1)),

(13) m(y) = Xl.ea, M(x)p(x, y) + m(B)p(By, y) » yeA,.



GENERALIZED DISTRIBUTION FUNCTIONS 499

Next, view both D = {ze 4,: z £ y,} and B, as points. Then (cf., (1)),
M(y)) — @ = m(D) = M(yy) - | + Z.e,-5, MX)2(x, 4)) + m(Bp)( B, 4) -
Consequently,
(14) @+ Yl.en,-5, M(x)p(x, 4;) + m(B) (B, 4,) = 0.
Combining (13) and (14), we obtain for y € 4,,
m(y) = Lo, MX)(%, ) + (Zaen,-n, M), A1) + @)B(y)
= Zleex M(x)u(x, y) + @B(y) . 0
ProoF oF THEOREM 4 (“if” part). Let {m,(x)} and {m,(x)} be distinct sets of
individual masses which give rise to the distribution function M. From (12),
we have Am(x) = Aaf(x), where Am = m, — m, and Aa = Am(B,). Since
Am(x) # O for some x, Aa =+ 0. Thus for any ye X,
Ziasy [B(x)| = [8a” T,y [Am(x)| = [2Ba7|M(y) < oo . o

THEOREM 5. A function M on a type 1II o-lower finite space is a distribution
function if and only if

(a) there exists an a which makes the right-hand side of (12) nonnegative for each
yeX, and
(b) the set {x: x < y, |M(x)| = ¢} is finite for each ¢ > 0 and y € X.

Each such a corresponds to a unique set of individual masses {m(x)} defined by (12),
and for this set, a = m(B,).

ProoF. The proof of the “if” part parallels that for Theorem 2. But here
one defines m by (12), using the a predicated in assumption (a), instead of (1).
The complications brought in by 8 (both directly and indirectly through v(x, y))
are taken care of by using (11). One obtains M(y) = X .., m(x), ye X. If a
were not equal to m(B,), Proposition 7 would be contradicted. For the converse,
(a) is a consequence of Proposition 7 and (b) is due to the local finiteness of X. ]

Let M be a distribution function. It is easy to see that the possible value
for « = m(B,) is an interval [a,,,, @,,.], perhaps a point.

PROPOSITION 8.

(13) Cin = SUP {— Duex M(X)(x, y)/B(y): B(y) > O} .

(16) Cmax = 10 {— T, x M(x)u(x, Y)[B(y): B(y) < O}
If Y.<, |B(x)| = oo for some z (and necessarily for all z), then

(17) Amin = Uz = UMy { T3, cyca, | Dwex MW Y/ 2 5, <u<a, 1B} -
If m(B,)|p(By, A))] — 0 as k — co, then

(18) Amin = Amax = _limk-.eo ZB,,<2<A1 M(X)[l(x, Al) .
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Proor. Formulas (15) and (16) follow easily from Theorem 5. Suppose
N 2s: |B(2)] = co. We may suppose z € 4,. Then from (12), we have for each k:

|l 235, <y<a, 1B — 2By <u<d, | X eex M(x)x(x, y)|
= Dspcuca, M) S M(2) < oo

The first sum — oo as k — oo, and (17) follows. Formula (18) follows directly
from (14). [

The condition for (18) is difficult to validate directly since one is not likely to
know the value of m(B,) without knowing a. However, m(B,) < M(x), x € 4,,
k = 1. So, an indirect validation is possible.

We now turn our attention toward the evaluation of the total mass m(X). A
requirement such as m(X) = 1 sometimes determines a unique choice for the
individual masses when a distribution function, by itself, does not. The most
direct formula, of course, is m(X) = 3],., m(x). However, there are some
advantages in securing formulas which primarily involve the values of the dis-
tribution function.

Let X* = X + {x*} be an augmented space satisfying x* > X. If m(x*) = 0,
then M(x*) = m(X). If X* is locally finite, then p*(x, x*) = p(x, ¢), x € X,
where p* denotes the extension of p to X*.4

PROPOSITION 9. Suppose X* is a g-lower finite space. Then X is a a-lower finite
space of the same type as X*. If X* is of type 1 or type I,

(19) m(X) = — e x Mx)p(x, 8)

a sum with only a finite number of nonzero summands.
If X* is of type 111, then A, is a finite set and

(20) m(X) = —Xsea, M)(x, §) — ap(By, ¢) »
where a = m(B,).
Proor. Briefly, (20) follows from (cf., (1)):
0 = m(x*) = m(X)p*(x*, x*) + T,eq, MX)e(x> $) + m(B)(Bys 6) -
Formula (19) is shown similarly. The details are left to the reader. []

Proposition 9 is still usable when X* is not ¢-lower finite: Express X as
{x,,n=1). Then define X, ={zeX:z < x; for some j=1,...,n} and
X,* = X, + {x*}, n = 1. If X is o-lower finite, then so is each X,* (and of the
same type as X). Furthermore, m(X,) /' m(X) as n — co.

THEOREM 6. Suppose X is a o-lower finite space. If X is of type 1 or 11, then
(21) m(X) = limn—m Zzex {M(X) ZveX,, y(X, y)} *

4 We shall superscript an extended function with an asterisk only when it aids clarity. Here,
#(x, ¢) has a different meaning from p*(x, ¢). The latter is zero for all xe X.
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If X is of type III,
(22) m(X) = a + lim, o, 3,4, {(M(x) — @) Zyex, #(x, 1)},

where a« = m(B,). Each sum has a finite number of nonzero summands.

Proor. The details easily follow from (6), (19), (20) and the foregoing dis-
cussion.

4. Applications. We shall confine our applications to the two spaces illus-
trated in Figs. 1 and 2. Both are o-lower finite spaces of type III. The basic
facts about these spaces are summarized in Table 1. For Fig. 1, a,,;, = @,z =
Se (=DYM(n, 1) + M(n, 2)} (cf., (18)). This is consistent with (2). For
Fig. 2, define S, = M(0,1) and, for n =1, S, = X5, (—2)*{M(k, 1) +
Mk, 2) + Mk, 3)} + (—2)* min (M(n, 1), M(n, 2), M(n, 3)). Then, a,, =
sup {S,, S;, Sy, - --}and a,,, = inf{S,, S,, S,, - - -} (cf., (15) and (16)).

Finally, we turn our attention to Examples 1 and 2. We see in Example 1 that
the first and second solutions correspond to m(x) = 3-(x) and m(x) = }p*(x)
(x € X), respectiyely. For the first solution @ = @, = 4, and for the second
a = ay,, = 1. For Example 2, (18) applies, and we obtain « = §. With this,
the values of m(x) follow immediately from (12).

TABLE 1
X - Fig. 1 Fig. 2
An {x:x> 1)} {x: x> (n 1)}
#(n, j), (', j)) (=)»-»  for n <n —(=2)»-v-1  for n'<n
1 for n=n", j=j 1 for n=n", j=j
0 otherwise otherwise
1 Bn, (0, j")) (—=1)n—n' for ! <n —(=2)n—n'-1 for n’ <n
/“((n’j)a An')) (_1)"_“""1 for n’ <n —(—z)n—n' for n’ <n
1(Bn, Aur) (=1)n—n'+1 for " <n —(=2)n—n' for " <n
B(n, j) (=D»+1 —(=2)=n»
Deso, 1 |B(X)| S 4
Dosn, p BHx) oo 21-n
Yzs, 5 B(X) oo 21-n
v((n, j), (0, j")) 1 for n=n"=0, j=j =1 1 for n=n"=0, j=j=1
(=1)n—n"-1 for # >nz=1 (—2)n—n'—1 for " >nz=1
-1 for n=n"z=21, j+j +3 for n=n"=1, j=j
0  otherwise —% for n=n2z1, j+j

0 otherwise
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