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MARKOV RANDOM FIELDS ON AN INFINITE TREE!

By FRANK SPITZER

Cornell University

Phase transition 1s studied on the infinite tree T in which every point
has exactly N + 1 neighbors. For every assignment of conditional proba-
bilities which are invariant under graph isomorphism there is a Markov
chain with these conditional probabilities and the main results ascertain
for which ones of these chains there are other Markov random fields with
the same conditional probabilities.

Let Ty, N = 1 be the infinite tree with N 4 1 branches emanating from every
vertex. When N = 1 this means that T, = Z,, the integers. When N > 2, T,
is the connected infinite graph without loops. Two points x + y in T, are neigh-
bors if they are connected by a branch. For any two points x # y there is a
unique path x = x, x,, - -+, X, = y such that x; and x,,, are neighbors for
i <1< k. Our goal is to discuss certain probability measures ¢ on the space

= {0, 1}7~ (with the g-algebra generated by the finite dimensional cylinders).
We are interested in those probability measures (called Markov random fields)
which reduce to ordinary 0, 1 valued stationary Markov chains in the case when
N = 1. These questions are of far greater importance in the setting of equilib-
rium statistical mechanics, where the graph Z, is of principal interest rather
than T,. Indeed all the methods we shall use here to obtain rather complete
results were first developed to solve the analogous, much more difficult problems
for Z, which are still not completely solved. For recent surveys see [4], [5],
[8], [11]. The infinite trees T, were first studied by Preston ([8] pages 97-105),
who proved Theorems 1, 2, 3, and 6 which follow.

We begin by stating the principal definitions and results.

DEFINITION 1. A Markov random field (MRF) is a probability measure x on

= {0, 1}7~, with strictly positive values for finite cylinder sets, and such that
conditional probabilities of the form y[w(x) = 1|w(+) on T,\x] depend only on
the values of w at the neighbors of x. Finally these conditional probabilities are
assumed invariant under graph isomorphism (but not y itself!). The set of all
MRF’s is denoted <.

It follows from the invariance requirement that the conditional probabilities
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are determined by N + 2 parameters,
(1 o, = plo(x) = 1|w =1 at exactly k of the neighbors of x],
0<kZN+1.

Not all possible vectors a = (a,, a,, - - -, @y,,) are realizable, of course, by a
MRF. A familiar result concerning the equivalence of MRF’s and so called
Gibbs states ([8] Theorem 4.1) describes exactly the class of realizable a.

THEOREM 1 [8]. The vector « is realized by a MRF if and only if there exists a
pair of positive numbers x and y, such that
) a, = [1 4 y - x¥-w+]-1, 0<kZN+1.

Therefore we make

DEFINITION 2. &, C ¥ is the class of MRF’s with a particular « satisfying
(2), and one has the decomposition
3) Z=U.%-

Note that each &, may consist of one or of many MRF’s. Our goal is to
describe which is the case, for all possible a, when N = 2. When N = 1, it is
known ([2] Theorem 3, [10] Theorem 3.22) that |<&7,| = 1 for all a. This study
will begin by showing that each &, contains a particularly simple and elegant
type of MRF which we shall call a Markov chain. (The theory on Z, is much
deeper primarily because it contains no analogue of these simple objects.)

DEeriNITION 3. For every strictly positive stochastic 2 x 2 matrix M =
{M(i, j)}, i,j = 0, 1, a probability measure s, on Q is defined as follows: First
let # = {=(0), =(1)} be the unique invariant probability measure for M (zM = =).
Then, for any finite connected subset 4 — T, let ¢ be a function from 4 to
{0, 1}, and define a simple ordering A = {x,, x,, - - -, x;,} of 4 with the property
that each x; with j > 1 is the neighbor of exactly one x, e{x,, x,, - - -, x;_,}.
Denote this index i = i(j). Thus i(2) = 1. Define the cylinder set probabilities
of py by
“4) tulo(r) = e(t), t € A] = n(x,) [T M(e(xi5)s e(x;)) -

Note that when T, = T, = Z this definition obviously gives a stationary
Markov chain if we let A be the usual ordering of 4, which is an interval of
integers. In fact (4) is independent of the ordering A of 4 chosen. This is an
easy consequence of the time reversibility of two valued stationary Markov chains
with strictly positive transition matrix, i.e. of
) n()M(, j) = =()M(j, 1), i je{0, 1}.

In fact an easy induction on the cardinality of A4, shows

THEOREM 2 [8]. Definition 3 defines unique consistent cylinder set probabilities
(independent of the ordering A for every finite connected A C T,) and hence a unique
probability measure p,, on Q.

DerInNITION 4. For each strictly positive M, y,, is called a Markov chain (MC)
and _# is the class of all Markov chains.
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An easy calculation shows that every MC is an MRF, or in other words that
A . In fact the class _# is large enough so that every &, contains at least
one element of _#Z This and subsequent results will now be stated in rapid
succession, and the proofs will follow.

THEOREM 3 [8]. . Z'C ¥, and for every a satisfying (2), the cardinality | #Nn Z,|
iseither 1,2, or 3 (depending on a). When N =1, | .Zn &, =1. When N > 1,
|#Zn Z,| can take all three values, 1, 2, and 3.

In order to further elucidate the role of _#Z as a subset of & we make

DEFINITION 5. 27 is the class of all homogeneous probability measures on
Q, i.e. those which are invariant under graph isomorphisms of T, (translation
and reflection of Z when N = 1). Let .7 be the class of all probability measures
on Q with trivial tail field.

For each @, &, is a compact and convex set (in fact a Choquet simplex [8]
Proposition 5.2, [5], [6]). Its extreme points are denoted Ext(¥,). Part (i) of
the following theorem is well known ([8] Theorem 11.1, [5], [6]).

THEOREM 4. (i) Ext(¥,) =9 n Z,;
(i) #Zc I n;

(iiiy Ext(Z,) N & = #n Z,.

Combining Theorems 3 and 4 we see that &, has always at least one homo-
geneous extreme point, and more than one if and only if |_#Z'n ¥, > 1. To find
useful conditions it is more convenient to parametrize the problem by use of M
instead of a.

DEFINITION 6. For every strictly positive transition matrix
6) M=(: ", 5,te(0,1)
let &, = &, with @ chosen (uniquely) so that x,, € &,. Let ¢ be the rational

function

txV 41 —¢
7 == T - .
™ o) = T ES
If M and M’ are two matrices of the type in (6) it may happen that they
give rise to MRF’s which lie in the same &,. We shall characterize when this
happens.

THEOREM 5. For each M satisfying (6), |y N .#| = 1 if and only if the equa-
tion ¢(x) = x has only one positive real root (namely x = 1). When N = 1, this is
always the case. When N = 2, &, 0 _# always consists of one, two, or three MC’s,
Uy being one of them. When N = 2, here is a detailed classification: divide the unit
square 0 < s < 1, 0 < t < 1 into the three regions defined by

RIZ{D(S,t)<0}U{S:t=%
R,={s+t=% and s+ 3} U {D(s,t) =0 and s+ 3}
R, ={D(s,t) >0 and s+ t + §},
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where D(s, t) = (s — ) + 2(s + 1) — 3.
Then |.#'n &y =konR,, k=1,2,3.
Theorem 5 still does not tell us the cardinality of &, even when | &, n _#Z|=1.

To understand the connection between | &, | and | &, n _#'| we have to introduce
a classification familiar from statistical physics.

DeriniTION 7. The matrix M in (6) is attractive if s 4+ ¢ = 1, repulsive if
s+ <1,
In the attractive case C. Preston showed how one can sharpen Theorem 5.

THEOREM 6 [8]. If M is attractive, then |2, | = 1 if and only if the equation
©(x) = x has only one positive real root (namely x = 1).

In the repulsive case it follows immediately from Theorem 5 that |_Z'n &, | =
1. But it may happen, nevertheless, that |, | > 1.

THEOREM 7. In the repulsive case | &, | = 1 if and only if the equation ¢ o ¢(x) = x
has only one positive solution (namely x = 1). When N = 2 this happens if and only
ifs+t =43

The proof of Theorem 7 will depend on a new class of non-homogeneous
Markov chains exhibiting the symmetry break-down into even and odd states
associated with the repulsive (anti-ferro-magnetic) case in statistical mechanics

[3].
DEFINITION 8. Let M* and M° be two stochastic matrices as in (6) and z°, =°
two probability vectors on {0, 1} such that

8) PM(G, ) = R()MG, i), b je{0, 1), M % M.
Decompose T, = E U 0 where E are the even sites (points which can be reached
by an even number of branches from some fixed site) and 0 = T, \E. Define the

probability measure f,. ,0 as in Definition 3, using z° for even sites, z° for odd
sites, M* for transitions from E to 0, and M° for transitions from 0 to E.

Just as in Theorem 2 it can be shown that this defines consistent cylinder set
probabilities, which define an MRF . ,0. These probability measures enter the
picture in the following way.

THEOREM 8. [In the repulsive case |&,| > 1 if and only if &, contains an MRF
Uage yos With M® = M. .

In the attractive case it is easy to see that ¢(x) is monotone increasing on
x > 0. Therefore the positive solutions of ¢(x) = x are exactly the positive
solutions of ¢ o ¢(x) = x. Hence Theorems 5, 6, and 7 can be combined into

THEOREM 9. For each M = (,%, '7*), s, t € (0, 1), & consists of a single prob-
ability measure (namely p,) if and only if the equation ¢ o ¢(x) = x has only one
positive solution (namely x = 1). When N = 1 this is always the case, and when
N =2 in the unshaded region, where the repulsive shaded region is the open set
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§>0,t>0, s+t < %, while the attractive shaded region, described by s < 1,
1< L (s—t)+2(s+ t) = 3 and (s, t) + (£, 3) is neither open nor closed.

Proor oF THEOREM 1. It follows from [8], Theorem 4.1, that an MRF is an
infinite Gibbs state with homogeneous nearest neighbor pair potential U and
vice versa. Let U(x, x) = u, and U(x, y) = U(y, x) = u, when x and y are neigh-
bors. Otherwise U(x, y) = 0. If we use U to define Gibbs states by the Boltzman
formula

(9) AU(A) = Z7\1 exp _% ZzeA ZyeA U(x,)’) ’ A C A ’

then any infinite Gibbs state with potential U will have the conditional prob-
abilities

1 : 1
(10) @, = = - ) 0<k<N+1,
I+ exp{% + kul} D AE S
if
(1 x = exp(_uz_l> , y = expi[u, + (N + Duy]. 0

Proor oF THEOREM 2. Formula (5) shows that the cylinder set probabilities
are well defined (independent of the ordering A in Definition 3) when A consists
of two neighboring points. Next, we shall show that the choice of x, in A is
immaterial for finite connected A of any cardinality. The rest of the product
in (4) is uniquely determined by the choice of x,, since every vertex x # x, in
Acan only be reached by one uniquely oriented sequence of branches. Equation
(5) may be used, step by step, to move x, from any site of A4 to any other,
without changing the value of y, in (4). The cylinder set probabilities in (4)
are obviously consistent, since M is a stochastic matrix. By Kolmogorov’s ex-
tension theorem they therefore define a unique MC p,, on Q. J

Proor or THEOREM 3. It follows readily from Definitions 3 and 4 that p,, is
an MREF for every M. Hence _#Z'C . Now suppose « satisfies (2) for some
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pair x > 0, y > 0. We shall show that there always exists a matrix M, satisfy-
ing (6), such that x, € &,, and that the number of possible choices for M is
always either 1, 2, or 3. By Theorem 1, z, € &, if and only if

pulo(x) = 1o =1 at N+ 1 neighbors] = [1 + yxV+]-*,
tylo(x) = 1o =1 at N neighbors] = [1 + yx¥=1]7*.

If M = (;2, '3°), then, using (4), these two equations become

(12) vt = L= =9 v (L= 9"

tN+1 tN

The system (12) is equivalent to

1—s tx?
13 = s
(13) s 1 —¢
and
(14) 41—t = (1 ! >w X(xp)=

Theorem 3 will therefore hold if the number of solutions ¢e (0, 1) of (14) is
always one, two or three. This is easily verified, since the left side in (14) changes
linearly from 1 to x* as ¢ goes from O to 1, and the right side decreases from oo
to 0, and has exactly one point of inflection in (0, 1) when N > 1. When N = 1,
(14) always has a unique solution. []

ProOF OF THEOREM 4. Part (i) is the well-known result that the extremal
Gibb’s states with a given potential may be characterized by the property that
their tail field is trivial. This will be essential for the proof of (iii). Part (ii)
consists of two assertions. _#Z'C 57 is immediate from the definition of _#.
The fact that _Z'C .7~ is well known if N = 1 ([9] Chapter 5), for then every
Ly € A is a positive, irreducible, ergodic, stationary Markov chain. Therefore
it is strongly mixing and hence it has a trivial tail field. This proof is easily
adapted to the infinite tree 7, with N > 2. Let U, V be finite subsets of 7, and
A, B the cylinder sets in Q defined by

A={w: o =u on U}, B={w:w=v on V}.
Let B® ={w: ® =vonV + x}, xe Ty, and let |x| be the distance from x to a
fixed point a of 4 (the number of branches from x to @). Then a short computa-

tion based on (4) and the ergodic theorem for finite positive stochastic matrices
shows that

(15) 1My o f22(A N B®) = pr,(A)(B) -

By a standard approximation argument ([1] Theorem 8.1.1) (15) continues to
hold for arbitrary events 4 and B. If we choose 4 = B in the tail field, then
B® = A for each x, and (15) shows that p,(A4) = 0 or 1, so that the tail field
is trivial.
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To prove (iii) suppose that x € Ext(Z,) n 2#. Let 0 be a fixed point in T,
and let Z be a subgraph of T, which is graph isomorphic to the integers, and
which contains 0. The first step of the proof of (iii) will be to show that the
projection fi of ¢ on {0, 1}# is an MRF (when N = 1, T, = 7Z, and then this is
obvious). Let &, be the os-algebra generated by w(x), |x| = n, and &, =
Nz, &, the trivial tail field. Let E[-| -] denote conditional expectation with
respect to 4. Letj > 0 be an element of Z. Since p is a nearest neighbor Gibbs
state, the conditional expectations for finite sets depend only on the values on
the boundary ([8] page 26). Hence

E[0(0)| o(—1), o(1), 7] = E[0(0)|o(k) for |k| < j,k # 0; 5]

for every 1 < j < n.
Letting n — oo, and using the fact that &, is trivial,

E[0(0)| o(—1), o(1)] = E[«(0)| (k) for |k| <),k = 0].
Since p € 57, we have
E[o(n)| o(n — 1), o(n + 1)] = E[o(n)|o(n + k) for |k| <j, k # 0],

and therefore f is an MRF. It follows from [2], Theorem 3, or [10], Theorem
3.2.2, that fi is a stationary Markov chain. Let M denote its transition matrix.
It follows that x has the cylinder set probabilities specified by (4) for any finite
set A C Z. For finite sets 4 which cannot be imbedded in a subgraph isomorphic
to Z, a simple induction argument (on the cardinality of A) establishes that (4)
holds. For example, take N = 2 and 4 the set {x, y, z, u} where x, z, u are the
neighbors of y, and think of x, y, z as imbedded in Z. Then

tulo = ¢ on A] = py[o =€ on {x,y, z}juy[o0 =€ at u|lo on {x,y, z}]

= m(e(x))M(e(x), ())M(e(y), £(2))
x lim,_, py[0 = ¢ at u|o on {x,y,z}, #,].

The above limit is
lim, ., py[0 =¢ at u|o at y, F,] = p,lo =¢ at u|lw at y]
= M(e(y); e(w)) -
This gives the cylinder set probability required by (4). [I

Proor oF THEOREM 5. We start with M given by (6) and look for a transition
matrix M such that x; € &,. Let

M, - M,
16 'Tlg = > 'Tol = .
(16) i, W

A simple calculation shows that x; e &, if and only if

N4l 1+ 81 2 __
(a7 yere = e[ 2L e,
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where x, y are given by (12). Equation (17) can be written

2TV
(18) yxN-ly = I:H_x:l , Xt =&y,
7+ 1 7
Using (12) to express yx”~' and x* in terms of s and ¢ gives
N
PR/ G
(19) 7 _ | l=s d-9d=-9_,
1 —s 7S ’ st =7
11—y + s
|
Letting
/N
20 = ( 773 >1 )
(20) =1
(19) induces to
1) u= oy, E=L1=1,n

Equation (21) always has the solution # = 1 which gives M = M. There are
other possibilities for A7 if and only if ¢(#) = u has a positive solution u = 1.
When N = 1 this is never the case. When N > 2 it is easy to check that ¢(x) = x
can only have one, two or three positive solutions, but this also follows from
Theorem 3. The detailed results for the case N = 2 follow from a careful analysis
of the equation ¢(x) = x. One obtains

(22) x —o(x) = [(1 —9)x* + s]7Y(x = D[x*(1 —5) + x(1 —s—1) + (1 — 1)]

from which one readily deduces that (22) has one, two or three positive zeros
in the regions R,, R,, R, respectively. (Note that (s, /) ¢ R, whenever M is
repulsive.) []

PrOOF OF THEOREM 6. We take M given by (6), with s + 7 > 1, and (s, #)
such that ¢(x) = x has only the positive root x = 1, and we have to show that
every MRF with the same conditional probabilities as z, must be p, itself.
Let us then suppose that p is such an MRF. In other words it is a Gibbs state
with potential U as in (9), (10), (11) and the condition s + ¢ = 1, which by (11)
and (13) is equivalent to #, < 0, means that U is an attractive pair potential.
There is an elegant criterion for the absence of phase transition for such a po-
tential ([7], [8] Theorem 8.1): Let A, be a sequence of finite subsets of T, which
increase to Ty. We shall take A, = {x: XeT,, |x| > n}. Then the boundary
oA, = {x:|x| =n}. Let p,* and p,~ be the restrictions of x, to A,, and con-
ditioned by @ = +1 on dA, in the case of x,*, and by w = 0 on JA, in the
case of y,~. Then

(23) i [0(0) = 1] £ plw(0) = 1] £ p,Ho(0) = 1], n=1
far every p e &, and &, = {u,} if and only if
(24) Ji, . 2, [0(0) = 1] = lim, o, 1, *[w(0) = 1] .
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Fortunately these limits can be explicitly calculated. Let

pnt =t [0(0) = 1],  p,” = p,"[0(0) = 1].
Decompose A, U dA, into N isomorphic pieces, each starting at 0. Call one of

these S,. Thus every branch of S, which starts at 0 has length » and there are
21 of these. Let ¥, be the set of 2*~*! end vertices

FiG. 2.

7(O)R,*(0) = pyf0(0) = 0,0 = 1 on V],
7(0)R,~(0) = p1,[®(0) = 0, = 0 on V,],
()R, (1) = pyf0©) = 1,0 =1 on V,],

#()R,~(1) = py[0(0) = 1,0 =0 on V,]. -
N
- SR

The definition of p, shows that
(26) Rin(1) = f[R (] + (1 — OIR,*(0)]"
R;n(0) = (1 — )R]V + Ss[R,*(0)]"

with two similar recursion formulas for R,~. If we define

(27) r,t = R”+(1) s r,” = 5—”—_(—1)- s
R,*(0) R,=(0)

then (26) shows that, for ¢ defined as in (7),

(28) rin = @(rt), Fopr = @(r7) -

Now it follows from (25) and (28) that (24) will hold provided
(29) Xpp1 = @(%,) nz0=lim,, ¢o(x,) =1 for every x,> 0.

But (29) is true when ¢(x) = x has only the positive root x = 1. In fact

o(x,)\, 1 when x, > 0 and ¢(x,) /1 when x, < 1 because ¢(x)  as x .
Hence &, = {py). O '

PrOOF OF THEOREMs 7 AND 8. The proof is divided into three parts. In PartI
we show that |&,| > 1 when ¢ o ¢(u) = u has a positive root » = 1, and that
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&, will then contain a probability measure g, 40 with M* = M°. In Part II
we assume that ¢ o ¢(u) = u has only the positive root # = 1, and show that
&y = {¢y}. Finally, in Part III we take N = 2 and show that ¢ o ¢(#) = u has
a positive root # = 1 if and only if s 4+ ¢ < 4.

PART I. Let us assume M is defined by (6) with conditional probabilities given
by (2). Let us call the probability measures defined in Definition (8) even-odd
Markov chains (EOMC’s). We begin by looking for an EOMC with the same
conditional probabilities as ,,. The proof will be complete when we show that
there is one if and only if ¢ o ¢(#) = u has a positive root # == 1. The computa-
tion will be essentially the same as in (16) through (21). We get

(30) Ay = (1 4 pxdven—t = [1 + «*(0) (Me(o, 1)>N+1:|-1

m(1) \M(1, 1)
e *(0) ( M*(0, 1)\¥ M0, 0)7]*
= 1 N—1 1 = [1 n'( ( >
G = (14027 2 \art, 1)) M, 0)
and two more equations with M*, = replaced by M°, z°. If we define
31) Me(1,0) _ ¢ M0, 1) _ M°(1,0) _ g M0, 1) _ 7
M(1,1) "7 M¥0,0) M1, 1) © M0, 0) ’
then (30) becomes, after some algebra,
(32) x*=¢&p =28y,
27N 5 27NV
'x”-1=|:—_77+x:|, xN_1=|:——77+xil.
v 7+ 1 ” 7+1

Note that this is the analogue of (18). Just as was done there, use (12) to express
yx¥-*and x* in terms of s and ¢, and define

_ 7S 1/N . ﬁs 1/N
& e
Then (12), (32), and (33) yield
(34) = go(ll) R U= go(ﬂ) .

It follows that we have found an EOMC if and only if (34) has a solution with
u>0,a >0, u=+a. Thishappens ifand only if ¢ o ¢(u) has a positive solution
u=+1.[ '

ParT II. This part is analogous to the proof of Theorem 6. We assume
(35) poopu)=u, u>0=u=1,

and that M is defined by (6) with s 4 7 < 1. Thus g, is a Gibbs state with self
potential #, and repulsive pair potential #, > 0. The proof will depend on the
mapping p: Q — Q defined by

P o 0(x) = o(x), xekE, pow(x)=1—wk), xe&,
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where E are the even sites (containing the origin of T) and & the odd sites.
The point of this mapping is that it transforms y,, by the formula

(ot f)=(usfop)s fe Q)

into a Gibbs state p o ,, = p,’ which is again a nearest neighbor Gibbs state.
Thus its potential U’ (cf. [8] page 56) satisfies U'(x, y) = u,/ = —u, < 0 when x
is a neighbor of y. Thus p,’ is an attractive Gibbs state. Its self potential u,(x)
is non-homogeneous, but this does not affect the theorem, used in the proof of
Theorem 6, that there is a unique Gibbs state with potential U’ if and only if
the one point probabilities are the same in the limit, whether one uses the bound-
ary condition @ = 1 or @ = 0 on dA,. But of course there is a unique Gibbs
state for U’ if and only if there is a unique one for U. We shall carry out the
evaluation with y, instead of y,’. Then we must take for p,* the p,-probability
that w(0) = 1 with the boundary condition that o = 1 on A, when n is even
and @ = 0 on A, when n is odd. In the definition of p,~, 0 and 1 are reversed.
The recursion formula (26) now becomes

(36) Rin(l) = f[R,-(D]" + (1 — H[R,~(0)]"
R:4(0) = (1 — )[R~ (D] + s[R,=(0)]"

and two more equations with + and — interchanged. Let us define r,* and r,~
exactly as in (27). Then one obtains, just as in (25),

(37) ot =[1+ ZE‘I’; ey |
or = [1 + ’;E(l’; (r,,-)~NT,

while (36) gives
(38) Fas = @(r7) » Foy = ?(rnJr) .
Thus p,* and p,~ will have the same limit (and hence |&,| = 1) provided
(39) Ay = ?(bn) y b= 90(‘71:.) , n=0
= lim,_,a, = lim,_ b, =1 forevery pair a, >0, 5,>0.
\
To prove (39) observe that a,,, = ¢(b,) and b,,, = ¢(a,) implies
(40) Az = 00 P(an) s  bauya = o p(by) .
Also s + t < 1 implies that ¢(x) is strictly decreasing for x > 0, so that ¢ o ¢
is strictly increasing. Thus (35) and (40) imply
limn_,w a, = lim,‘_,w bn =1. |:|

Part ITI. We assume N = 2 and investigate the positive roots of ¢ o ¢(x) = x.
The set of zeros of ¢ o p(x) — x contains the set of zeros of ¢(x) = x. Therefore
¢ o p(x) — x must contain as a factor the cubic polynomial

P(x) = [(1 — 8)x* + s][x — o(x)] -
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See (22) for an explicit formula for P(x). We may write
pop(x) — x = [(1 — $)(tx* + 1 — 1 + s((1 — 5)x* + 5] 70(x)
where Q is a polynomial of degree 5. Hence P is a factor of Q, and one may
verify that
O(x) = P(x)R(x) , Rx)=x*(+s5s—8)+x(t+s5s—1)4+ s+t — 1.

Since s 4 ¢t < 1 we know that P has no positive zeros other than x = 1. Hence
every positive root of ¢ o ¢(x) = x with x = 1 must be a zero of R(x). The
zeros of R(x) are given by

1 —s5s—1¢
X =
282 + s — %)
+ 1
2 + s — 5%

(41)

[(2s + 2t — D)[(s — )25 + 2t — 1) — 1]]¢.

In the region s > 0, t > 0, 5 4 ¢ < 1 the discriminant in (40) is positive if and
only if s + ¢ < } and zero exactly when s + ¢ = 4. The latter case gives x = 1.
Therefore ¢ o ¢(x) = x has a positive zero x = 1 if and only if s + ¢ < §. [

REFERENCES

[1] CHuNG, K. L. (1968). A Course in Probability Theory. New York.
[2] DoBrusHIN, R. L. (1968a). Description of a random field by means of conditional proba-
bilities and the conditions governing its regularity. Theor. Probability Appl. 10 193~
213.
[3] DoBRUSHIN, R. L. (1968b). The problem of uniqueness of a Gibbsian random field, and the
problem of phase transition. Functional Anal. Appl. 2 302-312.
[4] GaLrLavorTi, G. (1972). Instabilities and phase transition in the Ising model. Riv. del
Nuovo Cimento 2 133-169.
[5]1 Georail, H. O. (1973). Stochastische Felder und ihre Anwendung auf Interaktionssysteme.
Preprint, Heidelberg.
[6] Lanrorp, D. E. and RUELLE, D. (1969). Observables at infinity, and states with short range
correlations in statistical mechanics. Comm. Math. Phys. 13 194-215.
[71 LeBowrTz, J. L. and MARTIN-LOF, A. (1972). On the uniqueness of the equilibrium state
for Ising spin systems. Comm. Math. Phys. 25 276-282.
[8] PresTON, C. J. (1974). Gibbs States on Countable Sets. Cambridge Univ. Press.
[9]1 ROSENBLATT, M. (1962). Random Processes. Oxford Univ. Press.
[10] SpiTzER, F. (1971). Random fields and interacting particle systems. MAA lecture notes,
Williamstown.
[11] SpiTzERr, F. (1974). St. Flour Lectures, Springer Lecture notes in Math. 390.

‘ DEPARTMENT OF MATHEMATICS
WHITE HALL
CORNELL UNIVERSITY
ITHACA, NEW YOrK 14850



